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Approximating the frequency dispersion of the permittivity of materials with simple analytical functions
is of fundamental importance for understanding and modeling the optical response of materials and resulting
structures. In the generalized Drude-Lorentz model, the permittivity is described in the complex frequency
plane by a number of simple poles having complex weights, which is a physically relevant and mathematically
simple approach: By construction, it respects causality, represents physical resonances of the material, and can
be implemented easily in numerical simulations. We report here an efficient method of optimizing the fit of
measured data with the Drude-Lorentz model having an arbitrary number of poles. We show examples of such
optimizations for gold, silver, and copper, for different frequency ranges and up to four pairs of Lorentz poles
taken into account. We also provide a program implementing the method for general use.
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I. INTRODUCTION

The interest in nanotechnology has increased greatly over
the past decade, particularly in nanophotonics, which exploits
optical properties of structures on the nanoscale, composed
of different materials. In order to design photonic structures
and predict and optimize their properties, such as optical
field enhancement, chirality, or enhanced radiative emission
via the Purcell effect, the electromagnetic response of the
underlying materials has to be simulated. An effective medium
approach of the optical response is suited for many structures
in which nonlocal effects can be neglected. The properties
describing the linear optical response of non-chiral media
are the frequency dependent permittivity tensor ε̂(ω) and
permeability tensor μ̂(ω). In most relevant natural materials,
the permeability is close to unity, so that we concentrate here
on ε̂(ω). However, the method is applicable equivalently to
μ̂(ω) or, in general, to other material response functions.

Using an analytical model of ε̂(ω), which contains only
simple poles, is motivated by physical arguments, such as
the presence of resonances in the material self energy and
response functions. Furthermore, this form of the permittivity
can be efficiently implemented in numerical methods, such
as the finite difference in time domain (FDTD) method [1],
and in the more analytic and rigorous approaches, such as the
dispersive resonant-state expansion [2]. The pole structure of
the permittivity naturally includes a zero-frequency pole of
the Ohm’s law dispersion, which however works well only
in the long wavelength limit and is not suited to describe
the material properties in the optical range. Real metals are
much better described by the Drude model [3], which takes
into account the finite mass of the charge carriers. Adding
real-valued Lorentz components [4] to the Drude model is
suited to represent electronic interband transitions. A further
refinement of the model uses complex weights (residues) of
the Lorentz poles [5,6]. This is known in some of the literature
as the critical point model [1,7,8]. We use this generalization
in the present work and call it a Drude-Lorentz (DL) model.

A fit of the material permittivity with the DL model has
been performed in a number of publications [1,5–8] for its
further use in FDTD solvers. However, the experimental errors

available in the literature [3] have not been taken into account
in those fits. In the present paper, we provide an efficient
algorithm of fitting experimental data, using available errors,
with the DL model with an arbitrary number of Lorentz
poles. This algorithm combines an exact analytical approach
for determining the linear parameters of the model, with a
numerical solver for optimizing its nonlinear parameters. We
illustrate the resulting pole positions and their weights in the
complex plane to give some physical insight how the model
approximates the electronic transitions in real materials.

The paper is organized as follows. Section II introduces a
generalized DL model of the permittivity. Section III relates the
experimental errors of the measured refractive and absorption
indices to the errors of the complex permittivity used for the
fit. The fit procedure, including the analytical and numerical
optimization of parameters of the DL model and the algorithm
for determining appropriate starting values in the gradient
descent minimization procedure is described in Sec. IV.
Results of the fit are provided in Sec. V for gold and in the
Appendix for silver, copper, and monocrystalline gold.

II. DRUDE-LORENTZ MODEL

Quite generally, the permittivity ε̂(r,ω) can be treated as
an analytic function in the complex frequency plane, having a
countable number of simple poles and therefore, according to
the Mittag-Leffler theorem, can be expressed as

ε̂(ω) = ε̂∞ +
∑

j

iσ̂ j

ω − �j

, (1)

where ε̂∞ is the high-frequency value of the permittivity and
�j are the resonance frequencies, which are the poles of
the permittivity, determining its dispersion, with the weight
tensors σ̂ j corresponding to generalized conductivities of the
medium at these resonances. The Lorentz reciprocity theorem
requires that all tensors in Eq. (1) are symmetric, and the
causality principle requires that ε̂(ω) has no poles in the upper
half plane of ω, and that ε̂∗(ω) = ε̂(−ω∗) [9]. Therefore, for
a physically relevant dispersion, each pole of the permittivity
with a positive real part of �j has a partner at �−j = −�∗

j with
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σ̂−j = σ̂ ∗
j . Poles with zero real part of �j have real σ̂ j . For

simplicity, we assume in the following an isotropic response,
such that the conductivities and thus the permittivity are
described by scalars. We note however that it is straightforward
to extend the presented treatment to a nonisotropic response.

We first separate the poles with zero real part of the
frequency, which describe the conductivity of materials in the
Drude model:

εD(ω) = ε∞ + iσ

ω
− iσ

ω + iγ
= ε∞ − γ σ

ω(ω + iγ )
, (2)

where ε∞ is the permittivity at high frequencies and σ is the
real DC conductivity. The pole at zero frequency represents
Ohm’s law, corresponding to the ω−1 low-frequency limit
of the dispersion. Together with the second pole, at −iγ ,
it provides the ω−2 high-frequency asymptotics, originating
from the nonzero mass of the charge carriers. In real materials,
the carrier mass and the damping can show a frequency depen-
dence, which is not included in the Drude model. To describe
such effects, the DC conductivity can be split [10] into several
Drude contributions, with fractions ηd and dampings γd , so that

εD(ω) = ε∞ + iσ

ω
− σ

D∑
d=1

iηd

ω + iγd

, (3)

where
∑D

d=1 ηd = 1. Adding the poles �k with nonzero real
part, which are called Lorentz poles and describe material
resonances at finite resonance frequencies, such as phonons
or electronic interband transitions, we arrive at

ε(ω) = εD(ω) +
L∑

k=1

(
iσk

ω − �k

+ iσ ∗
k

ω + �∗
k

)
, (4)

where L is the number of pairs of Lorentz poles. The
generalized conductivities σk = σ ′

k + iσ ′′
k are complex. We

denote real and imaginary parts of complex quantities with
prime and double prime, respectively, and keep using this
notation throughout the paper.

The model of the permittivity ε(ω) given by the analytic
function Eq. (4) with �′′

k � 0 respects the constrain of causality
by construction. The parameters of the model, which are
the conductivities and the resonance frequencies, have to be
determined from the experimentally measured data.

III. EXPERIMENTAL DATA AND ERRORS

In typical experiments [3], the refractive index n(ω) and
absorption index κ(ω) are determined at a number of real
frequencies ωj providing nj = n(ωj ) and κj = κ(ωj ). The
measured values are assumed here to have an error defined
by the root-mean square (RMS) deviation, 	nj and 	κj ,
respectively. We will see in Sec. IV that it is computationally
advantageous to find the model parameters by minimizing the
deviation of ε, and not of n and κ . We therefore calculate
ε = (n + iκ)2 and determine its RMS error 	ε by assuming
statistically independent errors 	n and 	κ , which yields

	ε′ =
√(

∂ε′

∂n
	n

)2

+
(

∂ε′

∂κ
	κ

)2

= 2
√

(n	n)2 + (κ	κ)2 , (5)

	ε′′ =
√(

∂ε′′

∂n
	n

)2

+
(

∂ε′′

∂κ
	κ

)2

= 2
√

(κ	n)2 + (n	κ)2 . (6)

We then define 	εj = 	ε(ωj ), treating all quantities in
Eqs. (5) and (6) as functions of ω. We assume that the
frequencies ωj are sorted in ascending order, and that the
minimum (maximum) frequency is ω1 (ωN ).

IV. OPTIMIZATION

With the analytic model Eq. (4) of the permittivity, the
task of fitting the experimental data reduces to finding the
parameters of the model which minimize the error weighted
deviation E between the analytic and the measured values of
ε, as this maximizes the probability of the model given the
data. Assuming Gaussian errors, we use the squared deviation,
weighted with the RMS errors:

E =
N∑

j=1

(
ε′(ωj ) − ε′

j

	ε′
j

)2

+
(

ε′′(ωj ) − ε′′
j

	ε′′
j

)2

, (7)

where εj are experimental values and 	εj are the correspond-
ing errors. Considering that typical experimental data sets
consist of tens to hundreds of points, and ε(ω) is an analytic
function of ω with a large number of parameters, typically in
the order of ten, a robust and efficient algorithm is needed.
To achieve this goal, we first make use of an exact, analytical
minimization with respect to the parameters in which ε is
linear—these are all the conductivities and ε∞. This is the
reason why it is advantageous to fit ε instead of the complex
refractive index n + iκ , as for the latter none of the parameters
is linear. Then for the rest of the parameters, in which ε is
nonlinear—these are the pole frequencies—we use an iterative
minimization with a gradient decent and a suited selection of
starting points.

A. Exact minimization over linear parameters

An exact minimization of the RMS deviation is available
for all the parameters in which the model is linear. To make
this linear dependence more clear, we write the permittivity as

ε(ωj ) =
2L+D∑
l=0

Algl(ωj ) (8)

with 1 + D + 2L real linear parameters Al and the related
complex functions gl(ωj ) as given in Table I.

Minimization of the total error E, given by Eq. (7), with
respect to Al can be done analytically by setting the derivatives
to zero,

∂E

∂Al

= 2
N∑

j=1

(
g′

l(ωj )
( ∑

m Amg′
m(ωj ) − ε′

j

)
(	ε′

j )2

+ g′′
l (ωj )

(∑
m Amg′′

m(ωj ) − ε′′
j

)
(	ε′′

j )2

)
= 0. (9)
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TABLE I. Linear parameters Al and related functions gl(ωj ) used
in the model, with the integers d = 1...D and k = 1...L.

l Al gl(ω)

0 ε∞ 1

d σηd − γd

ω(ω + iγd )

2k + D − 1 σ ′
k

i

ω − �k

+ i

ω + �∗
k

2k + D σ ′′
k

−1

ω − �k

+ 1

ω + �∗
k

These provide a set of 1 + D + 2L linear equations for Am

which can be written as
2L+D∑
m=0

HlmAm = Bl, (10)

where

Hlm =
N∑

j=1

(
g′

l(ωj )g′
m(ωj )

(	ε′
j )2

+ g′′
l (ωj )g′′

m(ωj )

(	ε′′
j )2

)
, (11)

Bl =
N∑

j=1

(
g′

l(ωj )ε′
j

(	ε′
j )2

+ g′′
l (ωj )ε′′

j

(	ε′′
j )2

)
. (12)

Equation (10) can be solved using standard linear algebra
packages with a computational complexity of (1 + D + 2L)2,
which is smaller than the complexity of N (1 + D + 2L)2 for
calculating Hlm and Bl for typical sizes of datasets and number
of poles. We can fix the value of ε∞ if necessary, removing it
from the set of linear parameters, by subtracting our chosen
value ε∞ from ε(ωj ) (see an example in Table II).

B. Minimization over nonlinear parameters

Using the values of Al found in Sec. IV A by exact
minimization of E, we now define, via Eq. (7), a new
error function Ẽ, which has been already minimized with
respect to the linear parameters Al and depends only on the
nonlinear parameters, which are the Drude dampings γd and
the complex frequencies �k of the Lorentz poles. Overall,
there are D + 2L real parameters over which Ẽ has to be
minimized. To represent the average deviation of the model
from the measured data points relative to their experimental
RMS error, we introduce

S =
√

Ẽ

2N
. (13)

A fit to the experimental data has two sets of independent errors
relative to the correct ε(ω): the error of the measurements and
the errors of the fit. For a fit which is equal to the correct ε(ω),
we expect, by definition, S = 1. If instead the magnitude of
both errors are the same, and they are uncorrelated, we expect
S = √

2. Therefore, for a fit dominated by the measurement
errors, the S values are expected to be close to unity, below√

2. Furthermore, we note that there are 1 + 2D + 4L fitting
parameters and 2N data values, which can be of comparable
number. Therefore, there are only 2N − 1 − 2D − 4L values

which cannot be exactly fitted by the model function. Indeed,
the set of the fit conditions is overdetermined and thus
provides a finite error of the fit, resulting in finite values of
S below unity. Specifically, we would expect for the best
fit a value of S = √

1 − (1 + 2D + 4L)/(2N ). When the
expression under the square root is zero or negative, it is
possible to fit the data exactly, i.e., S can approach zero—we
will see examples of this later.

During the minimization, we found instances (specifically
when fixing ε∞) where the pole frequency and the corre-
sponding weight diverged simultaneously with fixed ratio,
representing a frequency-independent permittivity component
iσ̂ j /�j . Furthermore, we observed poles at nearly equal
positions, or Lorentz poles on the imaginary axis. All these
situations correspond to local minima of Ẽ which should be
avoided. We also found poles with positive imaginary part,
which are not compatible with causality of the response. In
order to avoid the corresponding unphysical pole properties
while not significantly compromising the resulting error S, we
minimize not Ẽ, but Ẽζ instead, where

αi =
(

1 + s2
1δ

2

|�′
i |2

)(
1 + s2

2δ
2

|�′′
i |2

)
(14)

βi =
∏
j>i

(
1 + s2

3δ
2

|�′
i − �′

j |2 + |�′′
i − �′′

j |2
)

(15)

ζ =
∏

i

αiβiζi, ζi =
{

1 for |�i | < ωN ,

1 + s2
4

(
|�i |
ωN

− 1
)2

else .

(16)

The Drude poles are included in the product Eq. (16) using
their pole frequencies � = −iγd . The parameter δ denotes the
maximum width between data points. The factors s1 and s2

determine the strength of the repulsion of the Lorentz poles
from the imaginary and real axes respectively, s3 determines
the strength of the repulsion between Lorentz poles, and s4

determines the strength of the repulsion for absolute pole
position larger than ωN . We used s1 = 0.2, s2 = 0.5, s3 = 0.2,
and s4 = 0.04 for the results shown in this work. Generally,
the repulsion parameters are increased from zero to suppress
unphysical pole positions and to find the global minimum
of Ẽ.

To minimize Ẽζ over the D + 2L nonlinear parameters
we use known minimization algorithms based on the gradient
decent (implemented in MATLAB as function ‘fminunc’).
The main challenge is to select suited starting points for the
parameters, from which the algorithm finds local minima. The
starting points should be selected in a way that the global
minimum amongst the local minima is found.

The complexity of the problem depends on the number of
Drude poles D and Lorentz poles L. For L = 0 and D = 1,
only a single parameter γ1 has to be varied, which results in a
reliable convergence towards the global minimum independent
of the choice of its start value. Increasing D to D + 1, we use
as starting value γD+1 = 2γD .

For L = 1, we have an additional pair of Lorentz poles
given by a single complex parameter �1. For the starting value
of �1, we use a random logarithmic distribution within the
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TABLE II. Optimized model parameters for a different number of
Lorentz pole pairs L and optimization energy ranges corresponding
to the data shown in Figs. 2, 3, and 6. The number of data values 2N ,
the number of fit parameters, and the resulting error S are also given.
The last column shows an example where we choose ε∞ = 1.

L 1 2 3 3

ε∞ 3.9199 2.6585 −10.534 1
γ (eV) 0.0893 0.07247 0.07373 0.074018
σ (eV) 875.79 1056.9 997.41 995.13

�′
1(eV) 2.7326 2.5509 2.5997 2.6039

�′′
1(eV) −0.69021 −0.27427 −0.43057 −0.42417

σ ′
1(eV) 3.0701 0.57604 1.4835 1.4145

σ ′′
1 (eV) 2.9306 0.18443 0.88382 0.89754

�′
2(eV) – 2.8685 3.7429 3.685

�′′
2(eV) – −1.2195 −1.2267 −1.2475

σ ′
2(eV) – 4.1891 1.1372 1.5109

σ ′′
2 (eV) – 4.2426 3.8223 3.9555

�′
3(eV) – – 7.3145 17.087

�′′
3(eV) – – −21.843 −0.41705

σ ′
3(eV) – – 225.27 −30.678

σ ′′
3 (eV) – – −193.27 13.987

h̄ω1(eV) 1.24 1.24 0.64 0.64
h̄ωN (eV) 3.1 3.1 6.6 6.6
2N 30 30 98 98
Fit parameters 7 11 15 14
S 2.4735 1.0029 1.4747 1.4872

range of the measured data, specifically

�1 = ω1

(
ωN

ω1

)Y

− i(ωN − ω1)NY ′−1 (17)

where Y and Y ′ are random numbers with a uniform distri-
bution between 0 and 1. The minimization is repeated with
different starting points until at least three resulting S values
are equal within 10%, and the parameters for the lowest S are
accepted as global minimum.

The parameter space volume to be covered in such a
procedure increases exponentially with L, making it com-
putationally prohibitive to use this approach for large L.
Increasing L, we therefore revert to a different strategy. Instead
of guessing all �k randomly, we use the optimized values
for �1,...,�L−1 of the model with L − 1 poles as starting
values for the simulation for L poles, and choose the starting
value for the additional pole as �L = [1 − i/(L + 1)]ωN . This
procedure is sketched in Fig. 1. It is fast but can result in not
finding the global minimum. However, we can vary the range
of the experimental data to be fitted in order to provide more
starting points. Here, we choose to keep the lowest frequency
ω1 fixed but vary ωN and consequently N . Increasing or
decreasing N by one, we use as starting point the optimized
values for N .

Furthermore, going back, from L + 1 to L, just removing
one pair of Lorentz poles provides L + 1 additional starting
values for the simulation with L poles. It is also possible
to go back multiple steps, e.g., from L + 2 to L provides
(L + 2)(L + 1)/2 starting values—this however has not been
used to produce the S values in this paper. Remaining abrupt

frequency Ωk

transfer
L=1

minimize

L=3

L=2

random

ΩL

FIG. 1. Sketch of the procedure for choosing start values for
Lorentz pole frequencies �k , with an increasing number of Lorentz
pole pairs L.

changes of S with N can (but do not have to) indicate that
the global minimum was not yet obtained, and more starting
values should be employed.

V. RESULTS FOR GOLD

Here we discuss examples of the DL model optimized for
measured material dispersions. As the main example we use
the data for gold by Johnson and Christy [3], which is widely
used in the literature and we can compare our model with
previous approaches. Fits for other materials presented in
Ref. [3], such as silver and copper, as well as for a newer
measurement on single-crystalline gold [11], are provided in
the Appendix.

The data by Johnson and Christy [3] covers the h̄ω range
from 0.64 eV to 6.6 eV, and provides n and κ with their errors
as discussed in Sec. III. Previous works [1,8] concentrated on
a narrower region 1.24–3.1 eV, corresponding to the extended
visible light range 400–1000 nm. We start by using this range
for the optimization, as it is the most relevant range for
applications, and also allows us to directly compare our results
with previous findings. We use D = 1, which is sufficient in
the frequency range considered, as the photon frequency is
much higher than the Drude damping, i.e., ω � γ .

The optimized model using L = 1 is compared with the
experimental data in Fig. 2(a). The refraction and absorption
indices are shown as functions of the photon energy, with
the measured data including error bars and lines representing
the fit functions of the DL model. The poles of the model
[see Eqs. (2) and (4)] are shown as circles in Fig. 2(b),
centered at their pole positions �j in the complex photon
energy plane, with the complex pole weight represented by
the circle area proportional to |σj | and the color giving the
phase. We find S = 2.47 for this fit, with other parameters
given in Table II. One can see the dominant contribution of
the Drude pole having the weight about 200 times larger than
the Lorentz pole. We can also see that the Lorentz pole is
properly positioned to model the interband transitions of gold
above 2.3 eV. The phase of σ1 is π/4, close to the phase π/2
of a classical damped Lorentz oscillator, such as a mass on a
spring. The resonance is at �′

1 ∼ 2.7 eV, around the center of
the interband transition within the optimization range, and the
half-width of the resonance, −�′′

1 ∼ 0.7 eV, is approximately
covering the width of the interband transitions in the same
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FIG. 2. (a) Refractive index n and absorption index κ of gold
according to [3] (circles and error bars) and the DL model Eq. (4) for
L = 1 (solid lines) as functions of the photon energy h̄ω. The fit is
optimized for the range 1.24 ≤ h̄ω ≤ 3.1 eV. (b) Pole positions �j

and weights σj of the fitted ε(ω). The circle area is proportional to
|σj |, and color gives the phase of σj as indicated. For the Lorentz
poles, σj is multiplied by a factor of 1000 for clarity.

range. Comparing the model with the data in Fig. 2 we can see
that using only a single Lorentz pole is insufficient to describe
the measured data within their error, which is confirmed by
the corresponding value of S above

√
2.

Moving to a model with two pairs of Lorentz poles,
L = 2, the error is decreased to S = 1.0. The value of S

below
√

2 indicates that this is sufficient to model the data
in the optimization range. This is also seen in Fig. 3, with
the corresponding parameters given in Table II. We show in
Figs. 3(c) and 3(d) the data and the fit also for ε′ and ε′′,
the quantities which are actually fitted, according to Eq. (7).
Individual pole contributions to ε′ and ε′′ are displayed as well.
The interband transitions are now described by two Lorentz
poles. The first pole is at �′

1 ∼ 2.6 eV, close to the onset of the
interband transition region, with a half-width of −�′′

1 ∼ 0.3 eV.
This pole describes the edge of the interband transitions.
Indeed, it has a phase close to zero, which is appropriate, to
describe the asymmetry of the edge, see Fig. 3(c). The second
pole is at �′

2 ∼ 2.9 eV, with a half-width of −�′′
2 ∼ 1.2 eV.

This pole describes the central part of the interband transition
region. It has a weight about ten times higher than the
first pole, and a phase close to π/4. The contribution to ε′′
has accordingly a peak at around the resonance, while the
contribution to ε′ is more dispersive.

Concerning the relation of the poles to intraband transitions
in solids, it is important to emphasize that in microscopic
theory the optical response is due to a large number of
transitions, often described by a continuum. This continuum,
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Sum
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Lorentz k=2

FIG. 3. As Fig. 2, but for L = 2. Additionally, the permittivity, ε′

and ε′′, is shown in (c) and (d), together with the individual terms of
the model Eq. (4).

however, can be represented by an infinite or a finite number
of poles of the self-energy describing the effects of screening
and frequency dispersion. Therefore, the model with a limited
number of Lorentz oscillators presents a fully physical though
approximate approach, collecting the oscillator strength and
transition energies of the continuum into a finite number of
poles. The resulting pole positions and weights depend on the
energy range to be described and represent sets of microscopic
transitions in the material.

As we have seen, we can optimize the model parameters
for a given photon energy range and quantify the fit quality by
the resulting value of S. Now we use a variable optimization
range, from the lowest measured photon energy to a variable
upper boundary of the photon energy h̄ωN taking all available
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FIG. 4. (a) ε′′
j as function of h̄ωj . (b) Error S as function of the

upper photon energy limit of the fitted data range for Au data taken
from Ref. [3]. Results for various number of poles in the model are
given. Lines are guides for the eye. The maximum photon energy
ranges suited for the different number of poles are indicated in (a) by
vertical lines.

measured values. We show the resulting S values in Fig. 4(b)
for different numbers of poles taken into account. We can
see that with an increasing number of poles, the error S is
decreasing, as expected considering the increasing number of
parameters. Instead, increasing h̄ωN results in larger values of
S, since a model of a given number of parameters is used to
describe an increasing number of data.

When keeping only the ω = 0 pole, corresponding to an
Ohm’s law dispersion, the error is always above

√
2. This is

expected, as Ohm’s law is suited only to describe the dispersion
at photon energies well below the Drude damping, which is
about 0.1 eV for gold. Moving to two poles, representing the
Drude model, we see that the error stays below unity until
h̄ωN approaches the interband transitions, seen in Fig. 4(a) as
a region of increasing ε′′ above 2 eV. This shows that the Drude
model is well suited to describe the measured data, as long as
the influence of the higher energy electronic transitions can be
represented simply by a background constant ε∞. Adding the
first pair of Lorentz poles (L = 1), the effect of the interband
transitions can be described up to about 2.6 eV, where the
plateau in ε′′ commences. Adding the second pair of Lorentz
poles (L = 2), the effect of the interband transitions can be
described up to about 4.9 eV, where ε′′ starts to decrease.
Adding the third pair of Lorentz poles (L = 3) allows us to
adequately describe the full range of measured data up to
6.5 eV.
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FIG. 5. Error S for L = 2 and L = 3 on a gray scale as given as
a function of both the lower and upper photon energy limits of the
fitted data range for the Au data in Ref. [3]. The circle indicates the
range 1.24 ≤ h̄ω ≤ 3.1 eV used in Ref. [1].

Figure 5 shows the error S for L = 2 and L = 3, and both
lower and higher limits of the fitted range changing. Including
more data points results in higher errors, as seen by the gradient
of S towards the lower right corner. We can see that any range
of the available data can be described by the DL model with
L = 3 with errors S <

√
2. The region of interest used in

previous works [1,8], 1.24 ≤ h̄ω ≤ 3.1 eV, is also indicated
by red circles. Using the parameters of Ref. [1], corresponding
to the model with L = 2, we find S = 1.96, which is larger
than the value S = 1.0 we found (see Table II). This can be
attributed to the fact that in Ref. [1] the absolute error of
ε was minimized, not taking into account the experimental
errors. Such a minimization corresponds in our case to setting
	ε′ = 	ε′′ = 1 for all data points. Using these errors, both in
the definition of S and in the optimization of the parameters,
we find S = 0.019 for L = 2, while using the parameters of
Ref. [1] results in S = 0.028. This confirms the high quality
of our optimization method.

Finally, the model with L = 3 optimized for the full data
range is compared with the measured data in Fig. 6. The fitted
parameters are given in Table II. We see that the first two
Lorentz poles are similar to those in the L = 2 model used
for the limited range and shown in Fig. 3. To describe the full
range, an additional pole at higher energy, having �′

3 ∼ 7.3 eV
and a half-width of −�′′

3 ∼ 21.8 eV, is needed. This pole
describes the continuum of interband transitions, and takes
over the role of ε∞, which in this fit has a value below unity.
The weight of the pole is about ten times higher than for the
second pole, and the phase is close to −π/4. Fixing ε∞ = 1,
which is well suited for FDTD methods, the main difference
(see Table II) is a change in the high energy third pole.

VI. CONCLUSION

In conclusion, we have presented an optimization algorithm
to determine the parameters of a generalized Drude-Lorentz
model for the permittivity of materials. For L pairs of Lorentz
poles and D Drude poles taken into account, the developed
algorithm uses an analytic minimization over the 2L + D + 1
linear parameters of the model (the generalized conductivities
and high frequency value ε∞), and a gradient decent method
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FIG. 6. As Fig. 2, but for L = 3 and optimized for the full data
range of h̄ω given in Ref. [3], from 0.64 eV to 6.6 eV.

for determining the 2L + D nonlinear parameters of the model
(the Drude and Lorentz pole frequencies), with a suited
choice of the starting values, resulting in fast and reliable
determination of the best global fit.

Comparing our results with previous literature [1], we find
that the weighted error is improved by a factor of two for the
same number of poles. For gold, we find that the Drude model
is sufficient up to photon energies of 2 eV, one additional pair
of Lorentz oscillators up to 2.6 eV, two up to 4.9 eV, and three
up to 6.5 eV. We provide parameters for more materials in
the Appendix, including a recent dataset for monocrystalline
gold [11].

The optimization program implementing the described
algorithm is provided [12] for modeling any measured data
for the refractive index or permittivity. The data presented
in this work are available from the Cardiff University data
archive [13].
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APPENDIX: RESULTS FOR SILVER, COPPER, AND
SINGLE-CRYSTALLINE GOLD

Here we show the results of the fit of the DL model for other
materials. As in Fig. 4 of the main text, we use a variable upper
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FIG. 7. As Fig. 4 but for silver.

limit h̄ωN of the optimization range and show the resulting S

values for different numbers of poles. In Fig. 7 we show results
for silver using the data from Ref. [3], having the lower photon
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FIG. 9. As Fig. 4 but for gold using data from Ref. [11]. We show
a dashed line at 2% relative error as a guide to a satisfactory fit.

energy limit at h̄ω1 = 0.64 eV. Ag has interband transitions
above 4 eV. We find that the Drude model is sufficient up
to photon energies of 2.4 eV, one additional pair of Lorentz
oscillators up to 3.7 eV, two up to 4.0 eV, three up to 4.7 eV,
and four up to a value above the upper limit of 6.6 eV.

In Fig. 8 we show results for copper using the data
from Ref. [3], having the lower photon energy limit at
h̄ω1 = 0.64 eV. Cu has interband transitions above 2 eV. We
find that the Drude model is sufficient up to photon energies of
1.9 eV, one additional pair of Lorentz oscillators up to 2.2 eV,
two up to 4.7 eV, and three up to 6 eV.

TABLE III. As Table II, but for the data [3] for Ag and Cu and
for the data [11] for Au, corresponding to the full fit range shown in
Figs. 7, 8, and 9, respectively.

Material Ag Cu Au Au
L 4 4 3 4

ε∞ 0.77259 12.294 1.1584 0.83409
γ (eV) 0.02228 0.07044 0.02321 0.02334
σ (eV) 3751.4 1137.9 3155.3 3134.5

�′
1(eV) 3.9173 2.1508 2.1339 2.6905

�′′
1(eV) −0.06084 −0.23449 −3.4028 −0.16645

σ ′
1(eV) 0.09267 0.95283 12.0 −0.01743

σ ′′
1 (eV) 0.01042 −0.12983 −5.5574 0.3059

�′
2(eV) 3.988 4.6366 2.6319 2.8772

�′′
2(eV) −0.04605 −0.68811 −0.33701 −0.44473

σ ′
2(eV) −0.0015342 0.97953 1.0547 1.0349

σ ′′
2 (eV) −0.062233 0.48395 0.53584 1.2919

�′
3(eV) 4.0746 4.9297 4.0803 3.7911

�′′
3(eV) −0.63141 −4.6932 −0.99872 −0.81981

σ ′
3(eV) 1.4911 −61.583 −1.3103 1.2274

σ ′′
3 (eV) 0.40655 35.021 2.7819 2.5605

�′
4(eV) 4.6198 8.8317 – 4.8532

�′′
4(eV) −2.8279 −0.2679 – −13.891

σ ′
4(eV) 4.2843 −12.186 – 9.85

σ ′′
4 (eV) 4.2181 5.1474 – 37.614

h̄ω1(eV) 0.64 0.64 0.1 0.1
h̄ωN (eV) 6.6 6.6 6.0 6.0
N 49 49 69 69
S 1.2684 1.0956 0.01151 0.00826

In Fig. 9 we show results for gold using the newer
experimental data from Ref. [11]. This data does not provide
the experimental error. We therefore have chosen here to
minimize the relative error instead, using 	ε = ε in Eq. (7).
We see a similar behavior as for the data from Ref. [3], see
Fig. 4. The parameters fitted for the full spectral range shown
in Figs. 7, 8, and 9, with L = 3 and 4, are given in Table III.
The model parameters for the data presented in Figs. 7, 8, and
9 are available in Ref. [13].
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