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ABSTRACT

Word embedding models such as Skip-gram learn a vector-space
representation for each word, based on the local word collocation
patterns that are observed in a text corpus. Latent topic models,
on the other hand, take a more global view, looking at the word
distributions across the corpus to assign a topic to each word oc-
currence. These two paradigms are complementary in how they
represent the meaning of word occurrences. While some previous
works have already looked at using word embeddings for improving
the quality of latent topics, and conversely, at using latent topics
for improving word embeddings, such “two-step” methods cannot
capture the mutual interaction between the two paradigms. In this
paper, we propose STE, a framework which can learn word embed-
dings and latent topics in a unified manner. STE naturally obtains
topic-specific word embeddings, and thus addresses the issue of
polysemy. At the same time, it also learns the term distributions
of the topics, and the topic distributions of the documents. Our
experimental results demonstrate that the STE model can indeed
generate useful topic-specific word embeddings and coherent latent
topics in an effective and efficient way.
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1 INTRODUCTION

Word embeddings, also known as distributed word representa-
tions, are a popular way of representing words in Natural Lan-
guage Processing (NLP) and Information Retrieval (IR) applications
[7, 22, 27, 35, 39]. Essentially, the idea is to represent each word
as a vector in a low-dimensional space, in a way which reflects
the semantic, and sometimes also syntactic, relationships between
the words. One natural requirement is that the vectors of similar
words are themselves also similar (e.g. in terms of cosine similar-
ity or Euclidean distance). In addition, in some models, several
kinds of linear regularities are observed. For example, in Skip-gram
[21], one of the most commonly used word embedding models,
analogous word pairs tend to form parallelograms in the space, a
notable example being vec(“man”) - vec(“king”) ~ vec(“woman”)
- vec(“queen”). Most word embedding models rely on statistics
about how often each word occurs within a local context window
of another word, either implicitly [22] or explicitly [27, 39].

Topic models, such as Latent Dirichlet Allocation (LDA) [5],
assign a discrete topic to each word occurrence in a corpus. These
topics can be seen as groups of semantically related words. In this
sense, like word embeddings, topic models can be viewed as models
for capturing the meaning of the words in a corpus. However, there
are several key differences between word embeddings and topic
models, which make them complementary to each other. First,
word embeddings are continuous representations, whereas topic
assignments are discrete. Second, word embeddings are learned
from local context windows, whereas topic models take a more
global view, in the sense that the topic which is assigned to a given
word occurrence (in the case of LDA) equally depends on all the
other words that appear in the same document. Several researchers
have already exploited this complementary representation between
word embeddings and topic models.
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On the one hand, topic models can be used to improve word
embeddings, by addressing the problem of polysemous words. Stan-
dard word embedding models essentially ignore ambiguity, mean-
ing that the representation of a word such as “apple” is essentially
a weighted average of a vector that would intuitively represent the
fruit and a vector that would intuitively represent the company. A
natural solution, studied in Liu et al. [19], is to learn different word
embeddings for each word-topic combination. In particular, they
propose a model called Topical Word Embeddings (TWE), which
first employs the standard LDA model to obtain word-topic assign-
ments. Regarding each topic as a pseudo-word, they then learn
embeddings for both words and topics. Finally, a given word-topic
combination is represented as the concatenation of the word vector
and the topic vector.

On the other hand, word embeddings can also be used to improve
topic models. For example, Nguyen et al. [26] suggest to model
topics as mixtures of the usual Dirichlet multinomial model and
a word embedding component. It is shown that the top words
associated with the resulting topics are semantically more coherent.
Word embeddings can also be used to help with identifying topics
for short texts or small collections. For example, Li et al. [16]
propose a model which can promote semantically related words,
identified by the word embedding, by using the generalized Polya
urn model during the sampling process for a given topic. In this
way, the external knowledge about semantic relatedness that is
captured by the word embedding is exploited to alleviate sparsity
problems.

While combining word embeddings and topic models is clearly
beneficial, existing approaches merely apply a pipeline approach,
where either a standard word embedding is used to improve a
topic model, or a standard topic model is used to learn better word
embeddings. Such two-step approaches cannot capture the mutual
reinforcement between the two types of models. For example,
knowing that “apple” occurs in two topics can help us to learn better
word embeddings, which can in turn help us to learn better topic
assignments, etc. The research question which we address in this
paper is whether a unified framework, in which topic assignments
and word embeddings are jointly learned, can yield better results
than the existing two-step approaches. The unified framework
we propose, named STE, can learn different topic-specific word
embeddings, and thus addresses the problem of polysemy, while at
the same time generating the term distributions of topics and topic
distributions of documents. Our hypothesis is that this will lead
both to more meaningful embeddings and more coherent topics,
compared to the current state-of-the-art.

From a technical point of view, there are two challenges that need
to be addressed. The first challenge concerns the representation
of topics with embedding vectors, and the mechanism by which
words are generated from such topics. Clearly, the commonly
used multinomial distribution is inappropriate in our setting. The
second challenge is to obtain the embedding vectors efficiently.
Because of the huge amount of parameters, the traditional Skip-
gram model exploits the Hierarchical Softmax Tree [23] or Negative
Sampling method to maximize the likelihood. When latent topics
are considered, however, this alone does not lead to a sufficiently
efficient method.
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To address the first challenge, we use a generating function
that can predict surrounding words, given a target word and its
topic. The probability that a given word is generated is based on
the inner product of a topic-specific embedding of that word and
a topic-specific embedding of the target word. This generating
function also allows us to identify the top-ranked words for each
topic, which is important for the interpretability of the model. To
address the second challenge, we design a scalable EM-Negative
Sampling method. This inference method iterates over every skip-
gram (i.e. each local context window), each time sampling the
corresponding negative instances. In the E-step, we evaluate the
posterior topic distribution for each skip-gram. In the M-step, we
update the topic-specific embeddings and the topic distribution
of the documents. We consider two variants of our model, which
make different assumptions on the consistency of topics among the
word pairs in a skip-gram.

We compare our model with existing hybrid models and perform
extensive experiments on the quality of the word embeddings and
latent topics. We also evaluate our performance on the downstream
application of document classification. The experimental results
demonstrate that our model can generate better word embeddings
and more coherent topics than the state-of-the-art models.

2 RELATED WORK

In traditional vector space models, individual words are encoded
using the so-called one-hot representation, i.e. a high-dimensional
vector with all zeroes except in one component, corresponding
to that word [1]. Such representations suffer from the curse of
dimensionality, as there are as many components in these vectors
as there are words in the vocabulary. Another important drawback
is that semantic relatedness of words cannot be modelled using
such representations. To address these shortcomings, Rumelhart
et al. [32] propose to use distributed word representation instead,
i.e., word embeddings. Several techniques for generating such
representations have been investigated. For example, Bengio et
al. [3, 4] propose a neural network architecture for this purpose.
Later, Mikolov et al. [21] propose two methods that are considerably
more efficient, namely Skip-gram and CBOW. This has made it
possible to learn word embeddings from large data sets, which has
led to the current popularity of word embeddings. Word embedding
models have been applied to many tasks, such as named entity
recognition [38], word sense disambiguation [8, 13], parsing [31],
and information retrieval [29].

Basic word embedding methods perform poorly for polysemous
words such as “apple” and “bank”, as the vectors for such words
intuitively correspond to a weighted average of the vectors that
would normally be associated with each of the individual senses.
Several approaches have been proposed to address this limitation,
by learning multiple vectors for each word, one corresponding to
each sense [28, 30, 33]. For example, Huang et al. [12] exploit global
properties such as term frequency and document frequency to learn
multiple embeddings via neural networks. Tian et al. [37] introduce
a latent variable to denote the distribution of multiple prototypes
for each word in a probabilistic manner. Neelakantan et al. [24]
propose a non-parametric way to evaluate the number of senses
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for each word. Bartunov et al. [2] also propose a non-parametric
Bayesian method to learn the required number of representations.

Note that our model is different from these models. First, the
aforementioned models consider the prototype vectors for each
word in isolation, intuitively by clustering the local contexts of
each word. This means that these models are limited in how they
can model the correlations between the multiple senses of differ-
ent words. Second, these models do not capture the correlations
between the prototypes of words and topics of documents. While
there are some word embedding models that do consider topics, to
the best of our knowledge no approaches have been studied that
exploit the mutual reinforcement between latent topics and word
embeddings. For example, Liu et al. [19] concatenate pre-trained
topic vectors with the word vectors to represent word prototypes.
Building on this idea, Liu et al. [18] combine topic vectors and word
vectors via a neural network.

In traditional topic models, such as LDA [5] and PLSA [11], a
document is represented as a multinomial distribution of topics, and
the topic assignment of a word only depends on that multinomial
distribution. In the Bi-gram Topic Model [40, 41], the topic of a
given word additionally depends on the topic of the preceding word.
Our model is related to this bi-gram model, in the sense that the
objective functions of both models are based on a similar idea.

Nguyen et al. [26] propose a topic model named LFTM, which
generates vectors from a pre-trained word embedding, instead
of words. In this way, the model can benefit from the semantic
relationships between words to generate better topics. The Gaussian
LDA model from Das et al. [9], similarly associates with each topic
a Gaussian in the word embedding, from which individual word
vectors are sampled. Li et al. [16] propose a model which can
promote semantically related words (given a word embedding)
within any given topic. Note that the above models all rely on a
pre-trained word embedding. Li et al [17] propose a model which
learns an embedding link function to connect the word vectors and
topics. However, their model mainly focuses on the distributed
representation of each topic, instead of words, and generates topics
as an abstract vector, thus losing the interpretability of topics.

3 MODEL DESCRIPTION

In this section, we present the details of our model, which we call
Skip-gram Topical word Embedding (STE).

3.1 Representing Topics and Embeddings

Each word W is associated with an input matrix Uy and an output
matrix Vyy, both of which have dimension K x s, with K the number
of topics and § the number of dimensions in the word embedding.
The fact that Uy and Vyy are matrices, rather than vectors, reflects
our modelling assumption that a word W may have a different
representation under each topic.

As in standard topic models, a document will correspond to a
probability distribution over topics. In contrast to standard topics
models, however, topics in our case are more than probability dis-
tributions over words. In particular, for a document d and some
central word Wt under consideration, the probability of predicting
a surrounding word Wt+j depends on the topic of the word w¢. For
example, suppose that the central word is “apple”; if its topic relates
to technology, words such as “technology” might be predicted with
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high probability, whereas if its topic relates to fruit, words such as
“juice” might instead be predicted. In particular, we assume that the
probability of predicting the word Wt+j given the word wt under
the topic z is evaluated as follows:
P(We+jlwe; d) = p(We+jlwe; z)p(z[d) (1)
z

where the summation is over the set of all K topics, p(:|d) is the
topic distribution of the document d, and we assume that j is within
the window size.

We consider two variants, which differ in how the probability
P (Wt+jlwt,z) is evaluated. In the first variant, called STE-Same, we
assume that for each skip-gram (W¢+j; Wt ), the words Wi+j and Wt
belong to the same topic z:

) ‘N — D eXP(VWt+j:z ’th;z)
Pt weiz) = 4 wren exp(Vw:z - Uwy;z)
where A is the vocabulary of the whole corpus. Computing the value
P (W¢+jIwt;z) based on Eq. 2 is not feasible in practice, given that
the computational cost is proportional to the size of A. However,
similar as for the standard Skip-gram model, we can rely on negative
sampling to address this (see Section 3.2).
In the second variant, called STE-Diff, we assume that for each
skip-gram (W¢+j;Wt), the topic assignment Zt+j of word W+j is
independent of the topic assignment z¢ of word w¢. We then have:

()

p(Wt+j lwe; d) = P(We+j [We; Zt; Ze+j )P (Zt: Zt+j |d)
Zt=1 Zt+j:1
X X
= P (We+j [Wt; Zt; Ze+j )P (Ze [d)p (Z+j Id)
Zt=1 Zt+j=l

©)

The probability that the word Wt +j is generated, given the central
word Wt and the topic assignments Zt+j and z¢ is then evaluated
as follows:

eXP(VWt+j;Zt+j : UWt;Zt)

w’eN exp(VW'iZtJrj : UWt;Zt)

P(We+jIWe;Zt; Zt+j) = P 4)

Clearly, both variants have complementary advantages and draw-
backs. The STE-Same model will lead to more coherent topics, but
it will not allow us to measure the similarity between words across
different topics. The STE-Diff model, on the other hand, does allow
us to evaluate such inter-topic similarities, but the resulting topics
may be less coherent. In practice, we could of course also consider
intermediate approaches, where Zt+j = Zj is assumed to hold with
a high probability, rather than being imposed as a hard constraint.

3.2 Algorithm Design

We need an inference method that can learn, given a corpus, the
values of the model parameters, i.e. the word embeddings Uy
and V\y:z corresponding to each topic z, as well as the topic dis-
tribution p(z|d) for each document d. Our inference framework
combines the Expectation-Maximization (EM) method with the neg-
ative sampling scheme. It is summarized for the STE-Same variant
in Algorithm 1. The inference method for STE-Diff is analogous. In
each iteration of this algorithm, we update the word embeddings
and then evaluate the topic distribution p(z|d) of each document.
To update the word embeddings, we iterate over each skip-gram,
sample several negative instances and then compute the posterior
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Algorithm 1 EM negative sampling for STE-Same

1: Initialize U, V, p(zjd)
2: for outiter = 1 to Max Out.iter do
3 for each documend in D do
4 for each skip-gramws+j;wti in d do
5 Sample negative instances from the distribution P.
6: Updatep(wi+jjwt;z), p(zxjd,wi+j;wy) by Eq. 9
and Eq. 6 respectively.
for in_iter = 1 to Max.n_iter do
UpdateU, V using the gradient decent method
W|th Eqg. 10 and Eq. 11

9: end for

10: end for

11: Updatep(zjd) using Eq. 8
12: end for

13: end for

topic distribution for the skip-gram. (Een we use the EM algorithm
to optimize the log-likelihood of the skip-grams in the document.
In the E-step, we use the Bayes rule to evaluate the posterior topic
distribution and derive the objective function. In the M-step, we
maximize the objective function with the gradient descent method
and update the corresponding embeddingg andW .

(Ee overall training objective measures how well we can predict
surrounding words, taking into account the topic distributions of
the documents. For each documehtgiven a sequence of words

w1, Wo; W, , the log-likelihoodL 4 is de€ned as follows.
Xa X _
Lg= logp(Wt+jjwt ;d) )

t=1 C.j C
N

wherecis the size of tBe training windows. (Ee overall log-likelihood
isthengivenbyL = 4 Lg.

In the E-step, the topic distribution for each skip-gramdihcan
be evaluated using the Bayes rule as:

g(Wtﬂ jz2:wt )p(z2jd) ©)
2 P(We +jjz; W) )p(zjd)

In the M-step, given the posterior topic distribution Eq. 6, the goal
is to maximize the following Q function:

X X X X
Q =
dt=lcjcz
x o X°
= n(d; we; We+j)
d fwi;wi+jgPy z
[log(zjd) + log(p (Wi +j jz; wi )]
wherePy is the set of the skip-grams id. n(d; w¢; wt+j) denotes
the number of the skip-grantw ;wi +ji in d. Using the Lagrange
multiplier, we can obtain therpdate rule @f(zjd), satisfying the
normalization constrains that , p(zjd) = 1 for each documerd:

fwg:weas g 2P NT; We Wi+ )P(Zid; Wi Wi+ )
p(zid) = Wy 9% T T i

p(Zde W Wi+j) =

p(zjd; wi; we+j)log(p(zjd)p (Wi +j jz; wt ))

@)

p(zjd; we; we+j)

(8)

fWﬁWHi 9Py n(d.Wt .W'[+j )
As already mentlonedF;t is not feasible to directly optimiizg; 7
andVy:z due totheterm 2 expMy:z Uw:z). Inspired by the
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negative sampling scheme, we therefore estimate the probability of
predicting the context wordp (Wi +j jwt ; z) as follows:

logp (Wt +j jwt; z) / log (th+j;z Uw¢;z)

X

+ Ew; pllog ( Vwi;z Uwy;z)] ®)
i=1

where (x) = 1=(1+ exp( x)) andw; is a negative instance which
is sampled from the distributiorP(:). Mikolov et al. R1] have
investigated many choices fd?(w) and found that the besP(w) is
equal to the unigram distributiordnigram(w) raised to the 34rd
power. We exploit the same seSing B{w) in [21]. Evaluating
logp(wt+jjwt ;z) for each term in the overall objective function,
we obtain the following gradients: Eerefore, the gradients of the
objective function with respect t&J andV can be formulated as
follows:

@ o (e Moz Unia)) Veer PEidwowd) (10)
LJ\Nt;Z
Q _ I
v = (waw Mwoz Uw:z)) U,z P(ZJd,Wt,WO) (11)
w0z
where
_ §:L' if w9s a word in the context window ofw;

= 12
W >0, otherwise (12)

(Ee di,erence between the updated rules bfandV and those in
the original Skip-gram model is that we maximi&éz, jd; wt ;Wi +j)
logP(W +j jwi ; z) instead ofog P(w +j jwt ) for each skip-gram. Eis
is in accordance with the fact that our model uses the topic distri-
bution to predict context words.

X Xd

Letm = logp(wt +1jwy ;d) (13)
d t=1

Comparing the original likelihood of Bi-gram Topic Model (BTM){]
in Eq. 13 with ours, we can see the connection between our STE
model and BTM. Speci€cally the objective functions in Eqg. 5 and
Eqg. 13 share similar form. Both of them are related to the product
of conditional probabilities which predict the next word given the
preceding word no maSer skip-gram or bi-gram. Such connection
provides an insight for our model indicating that it is capable of dis-
covering good topics and identifying high-quality word embedding

vectors jointly.

3.3 Topic Generation

One important aspect of topic models is their interpretability, where
the semantic meaning of a topic can be naturally perceived by ex-
amining the top ranked words. In standard topic models, these
top-ranked words are simply those that maximigéwjz) for the
multinomial distribution associated with the considered togicin

our model, on the other hand, we can evaluate the probability of
p(wt+j jz;wy ) for each skip-gramwy ;w; +ji. Eerefore, we repre-
sent each topic as the ranked list of bi-grams. Each bi-gram is sorted
using Eqg. 9 and the top-ranked bi-grams are selected from the rank-
ing list. (Ee original time complexity of calculating(w; +1jz;wt )

isj j2 K,wherej jis the size of the vocabulary, i.e., around®10
To make it more eecient, we €rst collect all the bi-grams in the
corpus and evaluate the corresponding probabifitfv: +1jz; w; ).
Een the time complexity is reduced to be linear to the number of
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bi-grams. Note that in Eq. 9, we do not need to consider the part
related to the sampled negative instances for each bi-gram, i.e., the
summation expression, as we can assume it to be constant.

3.4 Folding-in for New Documents

Given a new documerd® our algorithm can infer the topic dis-
tribution of d° GivenU andV learned from the training process,
we €x the values o) andV, and then only updat@(zjd® using
Algorithm 1.

For each wordw in d° the posterior topic distribution ofw,
p(zjw;d9 can also be inferred. We consider that the topic distribu-
tion of w is related to not only its context words but also the topic
distribution of d® Eerefore, using the Bayes rule, we have:

logp(zjw;cw;d% / logp(zjd® + logp(ow jz;w;dY  (14)

wheregy, is the set of the context words afi. (Ee likelihood term
logp(cwjz;w;d% can be de€ned as the sum g p (Wt +j jwt ; 2),
wherew; +j belongs to the context words. (Ee probabilipywi +j jwt ; z)
can be computed in Eq. 9. e temfzjdY) is the corresponding
prior probability.

4 EXPERIMENTS

In this section, we present a detailed analysis of the performance of
our method. We €rst present a qualitative analysis of the learned
topic-speci€c embeddings. We then focus on evaluating the quality
of the word embedding on a standard word similarity benchmark.

Subsequently, we evaluate the quality of the identi€ed topics, fo-
cusing in particular on their coherence. Finally, as an example of a
downstream task, we analyze the performance of our model in a
document classi€cation task.

4.1 talitative Analysis

To illustrate the interactions between word embeddings and latent
topics, we visualize the results of our STE-Same and STE-Di, mod-
els in Figures 1a and 1b respectively. For this €gure, and in the
following experiments, we have used the Wikipedia dump from
April 2010 B4, which has previously been used for other word em-
bedding modelsId. We have chosen the number of topiés= 10.
e number of outer iterations and inner iterations are both set to
15. Ee dimension of the embedding vectors was chosen as 400, in
accordance with 19. For each skip-gram, we set the window size
to 10 and sample 8 negative instances followit33][ To generate
the visualization in Figure 1, we have used the t-SNE algoritt2f] [
applied to the vectors of the 500 most frequent words.

In Figure 1, each node denotes a topic-speci€c word vector. To
illustrate how polysemy is handled, we show labels for the word
\party", as an example of a polysemous word, and for the word
\government", as an example of a monosemous word. Ee labels
show both the word and topic index, separated by \#". In Figure 1a,
we can observe that our STE-Same model divides the whole space
into K disjoint subspaces, with each subspace representing a topic.
Within each subspace the words with similar meanings are close.
Note that the similarity of the words \government" and \party"
depend on the considered sense for the laSer word. Accordingly, we
see that \government" and \party" are close to each other in some
subspaces, but far apart in others. For example, in the subspace of
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Topic 0, the position of the word \party" is far from the position

of the word \government", which suggests that the meaning of
\party" under Topic O is not related to a political party. In contrast,
for Topics 4, 6 and 8, the vectors for \party" and \government" are
similar, suggesting that \party" in these spaces is regarded as a
political organization.

Onthe other hand, Figure 1b illustrates how STE-Di, generates a
more universal space in which word embeddings from di,erent top-
ics co-exist in this shared space. Words from di,erent topics with a
similar meaning are represented using similar vectors. In particular,
for monosemous words such as \government" the word vectors are
approximately the same. For the word \party", on the other hand,
we see three clearly distinct representations, only one of which
(party#2) is close to the vectors for \government". Moreover, we
found that \party#3" represents the semantic sense of community
because it is close to the word \organization" and the word \group".
(Ee representations of the word \party" from the other topics are
approximately the same. (Eey are close to the representations of
the word \summer" and the word \shout". It indicates that the word
\party" represents the meaning about the concept of human activity.

From the comparison between Figure 1a and Figure 1b, the STE-
Same model and the STE-Di, model can be regarded as two di,erent
paradigms derived from the treatment of topic consistency in a skip-
gram. (Ee advantage of the STE-Di, model over the STE-Same
model is that the STE-Di, model can support beSer the evaluation
of the similarity of words from di,erent topics. For example, the
senses of \party" under Topics 4 and 6 are very close to \government"
in the STE-Same model. However, when we evaluate the similarity
between \party#4" and \government#6", we €nd that the distance
cannot refect very well the word similarity. Nevertheless, this STE-
Same model can still achieve comparable performance with existing
models in the quantitative word embedding evaluation experiment
as presented in the next subsection. On the other hand, our STE-
Di, model can handle very well the evaluation of the similarity
of words from di,erent topics. (Ee reason is that it represents
every sense in a more universal shared space without gaps between
di,erent topics.

Table 1: ¥e most similar words identi€ed by the original
Skip-gram model and our STE-Di, model.

Model Words Similar Words
Skip-gram | apple macintosh, ios, juice
STE-Di apple#l peach, orange, juice
" | apple#2| macintosh, ipod, windows
Skip-gram| java sumatra, html, somalia
N java#l sumatra, somalia, sudan
STE-Di, java#2 html, lisp, jde
Skip-gram cell phones, viral, biology
STE-DI cell#1 | phones, technology, scanner
’ cell#2 viral, tumor, embryonic

Table 1 shows the nearest neighbours of some polysemous words,
according to the Skip-gram model and our STE-Di, model (using
cosine similarity in both cases). We observe that these nearest
neighbours for Skip-gram mix di,erent senses of the given words,
which is expected since Skip-gram does not address polysemy. For
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(a) STE-Same

(b) STE-Di,

Figure 1: Visualization of the word embeddings learned using STE-Same and STE-Di, with 10 topics. fe polysemous word
\party" and the monosemous word \government" are highlighted for the comparison.
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example, the nearest neighbours of \apple" are given as \macintosh",
\ios", and \juice", indicating the \company" and \fruit" interpreta-
tions of the word \apple" are mixed. In contrast, our STE-Di, model
can distinguish di,erent prototypes of polysemous words via the
latent topics. For example, the most similar words of \apple" under
Topic 1 are \peach", \orange" and \juice", which clearly corresponds
to the fruit interpretation. Under Topic 2, they are \macintosh",
\ipod" and \windows", clearly referring to the company interpreta-
tion.

4.2 Word Embedding Evaluation

Ee most common approach for evaluating word embeddings is to
assess how well the similarity scores they produce correlate with
human judgments of similarity. Although there are several word
similarity benchmark datasets, most do not provide any context
information for the words, and are therefore not appropriate for
evaluating models of similarity for polysemous words. Huang
et al. [L2 prepared a data set, named Stanford's Contextual Word
Similarity (SCWS) data set, which includes 2003 word pairs together
with their context sentences. (Ee ground truth similarity score
with the range [Q 10] was labeled by humans, according to the
semantic meaning of the words in the given contexts. We adopt
this benchmark data set for evaluating the quality of our word
embeddings.

We compare our results with the following baselines and state-
of-the-art methods, reporting the previously published results from
their papers.

TFIDF We consider two variants, TFIDF and Pruned TFIDF.
(Ee TFIDF method represents each word as a vector, captur-
ing the context words with which it co-occurs in a 10-word
window. Each context word is presented by the one-hot
representation and weighted via TF-IDF learned from the
training set. Ee Pruned TFIDF method proposed B[
improves the original TFIDF model by pruning the context
words with low TF-IDF scores.

Word embedding Eese baselines include the C&W method
proposed by 7] and the Skip-gram modeld1]. Note that
since neither of these methods considers polysemy, word
similarity is evaluated without regarding the context sen-
tences.

Topic models e €rstmodel, named LDA-S, represents each
wordw in a document as the posterior topic distribution,
namely,p(zjw) wherep(zjw) / p(wjz)p(zjd). CEe second
model, named LDA-C, additionally considers the posterior
topic distribution of the surrounding context words, as
follows:

Y
p(zjw;c) / p(wjz)p(zjd)
w02c
wherec is the set of the context words of.

Multiple prototype models  Eese methods represent each
word sense as a €xed length vector. One representative
work, proposed by Huang et al1f], exploits global proper-
ties of the corpus such as term frequency to learn multiple
embeddings via neural networks. Tian et aB7 intro-
duce a latent variable to denote the distribution of multiple
prototypes for each word in a probabilistic manner. Liu

p(wYz) (15)
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et al. [L9 propose a model called TWE, which concate-
nates the pre-trained topics with the word embeddings for
representing each prototype.

We present the related parameter seSings as reported in the pre-
vious papers 12 19 37. For Pruned TFIDF, top 200 words with
the highest scores are preserved. For the modeBifj,[each word

is assumed with 10 prototypes. Followindg9, the number of
topics of LDA-S, LDA-C and TWE is 400. Note that the size of
each embedding vector in TWE is 8009, which consists of 400-
dimension word embedding and 400-dimension topic embedding.
Ee parameter seSing of our STE model is the same as described in
Section 4.1.

For all the di,erent representations, the word similarity is evalu-
ated using cosine similarity. However, for the multiple prototype
based methods, as well as for our STE model, two di,erent variants
are considered:

AvgSimC Given a wordw and its associated context words
cw, we can infer the posterior topic distributiop(zjw; ¢y ; d)
according to Eq. 14. (Een the averaged similarity between
two words (vj ; wj) over the assignments of topics is com-
puted as:

X
AvgSimQwi ;wj) =

X
P(2i jwi; Ow; )P(Zj jWj ; Cw; )
Zj Zj

Cqu\Ni 3 Zi 1UWJ 1 Zj )

whereU (wj; zj ) is the embedding vector afj under the
topicz and cog) is the cosine similarity.

MaxSimC In this case, we instead evaluate the similarity
between the most probable vectors of each word. It is
de€ned as:

MaxSim@wi ;wj) = SimUw; ;z; ;Uw;;z; )

wherez = arg max (p(zjw;c)).

Following previous work, we use the Spearman correlation coef-
€cient as the evaluation metric. (Ee results are shown in Table 2.
(Ee STE model performs comparably to the state-of-the-art TWE
model, and outperforms the baseline methods. TWE also exploits
both topics and embeddings. However, the vectors in the TWE
model have twice as many dimensions as those in our model, since
each word is represented as the concatenation of a word vector and
a topic vector. (Ee STE-Di, variant outperforms STE-Same, for
both the AvgSimCand MaxSimCranking measures. While STE-
Same can generate more coherent topics as indicated in Section 4.3,
this comes at the price of slightly less accurate word vectors, which
is not unexpected.

It is interesting to note that the original Skip-gram model can
still achieve satisfactory performance. We observe that the words
in the SCWS data set are mostly monosemous words. Particularly,
among 2003 word pairs in this data set, there are 241 word pairs
containing the same word within a word pair. One may expect that
such identical words have di,erent senses leading to a low ground
truth similarity score. However, only 50 of them have the ground
truth similarity score less than 5.0. It indicates that the proportion
of the challenging polysemous words in this data set is quite small.
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Table 2: Spearman correlation p X 100 for the SCWS data set.

Model Similarity Metrics | p X 100
C&W Cosine Similarity 57.0
Skip-gram Cosine Similarity 65.7
TFIDF Cosine Similarity 26.3
Pruned TFIDF | Cosine Similarity 62.5
LDA-S Cosine Similarity 56.9
LDA-C Cosine Similarity 50.4
Tian AvaSimC 65.4
Tian MaxSimC 63.6
Huang AvaSimC 65.3
Huang AvaSimC 58.6
TWE AvasSimC 68.1
TWE MaxSimC 67.3
STE-Same AvasSimC 66.7
STE-Same MaxSimC 65.5
STE-Diff AvasSimC 68.0
STE-Diff MaxSimC 67.7

4.3 Topic Coherence

In our model, topics can be interpreted by looking at the top-ranked
bi-grams according to Eq. 9. To evaluate how coherent these topics
are, we have applied our model to the training set of the 20News-
groups corpus. The 20Newsgroups corpus’ is a collection of 19,997
newsgroup documents. The documents are sorted by date and split
into training set (60%) and test set (40%). The data is organized,
almost evenly, into 20 different newsgroups, each corresponding to
a different topic. Some of the newsgroups are very closely related
to each other, however. The categories of this corpus, partitioned
according to subject matter. are shown in Table 3. As text prepro-
cessing, we have removed punctuations and stop words, and all
words were lowercased.

Table 3: The categories of the 20Newsgroups corpus.

comp.graphics

. . | rec.autos sci.crypt
comp.os.ms-windows.misc . .
. rec.motorcycles sci.electronics
comp.sys.ibm.pc.hardware .
rec.sport.baseball sci.med
comp.sys.mac.hardware .
rec.sport.hockey sci.space

comp.windows.x

talk.politics.misc
talk.politics.guns
talk.politics.mideast | soc.religion.christian
talk.religion.misc

. alt.atheism
misc.forsale

To evaluate the generated topics, we use a common topic coher-
ence metric which measures the relatedness between the top-ranked
words [6, 36]. The intuition is that topics where the top-ranked
words are all closely semantically related are easy to interpret, and
in this sense semantically coherent. Following Lau et al. [14, 25],
we use the pointwise mutual information (PMI) score as our topic
coherence metric. PMI has been found to strongly correlate with
human annotations of topic coherence. For a topic z, given the
top-ranked T words, namely, W1;Wg; - - - ;W , the PMI score of the

http://qwone.com/ jason/20Newsgroups/
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Table 4: Topic coherence evaluation using the PMI metric
with different numbers of top words.

T=5|T=10|T=15|T=20

BTM 0.014 0.036 0.041 0.048
STE-Same | 0.180 0.110 0.107 0.102
STE-Diff | 0.015 0.067 0.058 0.054

topic Z can be calculated as follows:
PMI-Score(z) > 1 P (Wi wj)
-Score(Z) = 08 ——— o~
1<i<j<T P(wi)P (wj)

(16)

where P (Wj;wj) repreggnts the probability that words wj and wj
co-occur and P(Wj) = P (Wj;w). We compute the average PMI
score of word pairs in each topic using Eq. 16. The average score of
all the topics is computed. The higher the value, the better is the
coherence. Newman et al. [25] observed that it is important to use
another data set to evaluate the PMI based measure. Therefore, we
use a 10-word sliding window in Wikipedia [34] to estimate the
probabilities P (wj;wj).

We compare our STE model with the Bi-gram Topic Model
(BTM) [40] which predicts the next word given the topic assign-
ments as well as the current word. Note that our STE model and
LDA are not directly comparable because LDA can only output
unigrams as topics.

All models are trained on the training set of the 20newsgroups
corpus. The number of topics was set to 20 for all models, which is
the same as the number of categories in the 20Newsgroups corpus.
For our model, 400-dimensional word vectors were used. To extract
the top-ranked words, we first learn the topic-specific word embed-
dings Uy and Vi and then use Eq. 9. Only bi-grams with frequency
greater than 5 are considered. For the BTM model, we use the
default setting of hyper-parameters provided by the package 2, i.e.,
a =50:0, =0:01,andy = 0:01.

The average PMI scores with different numbers of top-ranked
words are shown in Table 4. We can see that our STE model gen-
erally improves the coherence of the learned topics. Compared
with BTM, our STE model incorporates the semantic relationship
between words which is learned from word embeddings to improve
the quality of topics. Compared with the variant STE-Diff, the
STE-Same model can produce more coherent topics as presented in
Figure 1.

Table 5 shows the top 10 bi-grams of the topics identified by
the STE-Same model. We can observe that many topics are corre-
sponding to categories from Table 3. For example, the top-ranked
bi-grams of Topic 1, such as the terminology phrase “remote sensing”
and the name of the company, “mcdonnell douglas”, indicate that
Topic 1 is related to the category “sci.space”. Similarly, most of the
top-ranked bi-grams of Topic 5 are medical terms, such as “mucus
membrane” and “amino acids”. The top-ranked bi-grams of Topic 6
are the names of some famous baseball and hockey players, such as
“brind amour”® and “garry galley”, indicating that Topic 6 is asso-
ciated to the categories “rec.sport.baseball” and “rec.sport.hockey”.
Among others, we also observe a connection between Topic 4 and

Zhttp://mallet.cs.umass.edu/topics.php
Shttps://en.wikipedia.org/wiki/Rod_Brind’Amour
*https://en.wikipedia.org/wiki/Garry_Galley
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