
This is an Open Access document downloaded from ORCA, Cardiff University's institutional

repository: http://orca.cf.ac.uk/101009/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Mu, Qing, Liang, Jun, Zhou, Xiaoxin, Li, Chuanyue and Li, Yalou 2017. Systematic evaluation for

multi-rate simulation of DC Grids. International Journal of Electrical Power and Energy Systems 93

, pp. 119-134. 10.1016/j.ijepes.2017.05.020 file 

Publishers page: https://doi.org/10.1016/j.ijepes.2017.05.020

<https://doi.org/10.1016/j.ijepes.2017.05.020>

Please note: 

Changes made as a result of publishing processes such as copy-editing, formatting and page

numbers may not be reflected in this version. For the definitive version of this publication, please

refer to the published source. You are advised to consult the publisher’s version if you wish to cite

this paper.

This version is being made available in accordance with publisher policies. See 

http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications

made available in ORCA are retained by the copyright holders.



Manuscript Details

Manuscript number IJEPES_2016_1809

Title Systematic Evaluation for Multi-rate Simulation of DC Grids

Article type Research paper

Abstract

With wide applications of power electronic devices in modern power systems, simulation using traditional
electromechanical and electromagnetic tools suffers low speed and imprecision. Multi-rate methods can enhance
efficiency of simulation by decreasing the scale of systems in small time-steps. However, the existing traditional
methods for multi-rate simulation suffer the problems of instability and simulation errors. These have hindered the
application of multi-rate simulation in power industry. Therefore theoretical evaluation on different multi-rate simulation
methods is crucial to understand the feasibility and limitation of the methods, and to contribute to overcome the
drawbacks of the traditional methods. In this paper, the multi-rate simulation performance based on two traditional
technologies and a Modified Thevenin Interface are evaluated to provide an overall feasibility of multi-rate algorithms
in the power simulation. The Modified Thevenin Interface is proposed to overcome the drawbacks in synchronization.
Three theorems are proposed and proved for theoretically analyzing the stability of the simulation methods. Error
analyses of the multi-rate methods are performed to identify the relationships between errors and simulation
conditions. Besides, the accuracy and efficiency performance in a practical project of VSC-MTDC shows the feasibility
and necessity by using multi-rate simulation. Through the theoretical analysis, the issues of stability and accuracy of
multi-rate simulation for the DC grids have been better understood, based on which an improved simulation algorithm
has been proposed to overcome these issues. Long-term system dynamics of large-scale systems containing DC grids
and fast transients of HVDC converters can be investigated simultaneously with high speed and sufficient accuracy.

Keywords Electromagnetic transient analysis, Power System Simulation, Parallel
Algorithm, Multi-rate Interface, Different Rates, Multi-terminal VSC-HVDC

Corresponding Author Qing Mu

Corresponding Author's
Institution

Cardiff University

Order of Authors Qing Mu, Jun Liang, Xiaoxin Zhou, Chuanyue Li, Yalou Li

Submission Files Included in this PDF

File Name [File Type]

cover_letter V2.doc [Cover Letter]

Review_IndV10.docx [Response to Reviewers]

multirate simulation for DC grid0508.docx [Manuscript File]

Highlights.doc [Highlights]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE
Homepage, then click 'Download zip file'.



Journal of Advanced Research

Cover Letter
Manuscript title: 

Systematic Evaluation for Multi-Rate Simulation of DC Grids

Short running title:

Evaluation for Multi-Rate Simulation

What does the current manuscript add to the existing knowledge? (Research Highlights)

1- Three theorems for the stability of three typical multi-rate simulation algorithms 

have been proposed and proved. 

2- The error of three typical multi-rate simulation algorithms has been modelled.

3- The backward synchronization for the Thevenin equivalent interface has been 

proposed to overcome the challenge of synchronization.

4- Three typical multi-rate simulation algorithms have been compared to illustrate 

that the modified Thevenin equivalent interface is the most stable and accurate.

5- The multi-rate simulation algorithm has been used in the studies of DC grids, 

which achieve the great improvement of the simulation speed.

We affirm that the submission represents original work that has not been published 

previously and is not currently being considered or submitted to another journal, 

until a decision has been made. Also, we confirm that each author has seen and 

approved the contents of the submitted manuscript. 

Signature (on behalf of all co-authors (if any))

Corresponding author 

Name: Qing Mu

Affiliation: Cardiff University

Tel.:+8618612425770

Fax:

E-mail address: muqing_zju@163.com

Submission date:  24th, Aug



Responses：
The authors would like to thank the reviewers for their constructive comments. The responses to 

each comment have been carefully prepared by the authors and are given as below. Corresponding 

modifications of the paper have also been indicated.

Reviewer 1:

The abstract can be revised to include more details of the proposed approach. Authors 
can improve the abstract by including the existing challenges, motivations and outcomes of 
the paper. Furthermore, it is suggested that authors add 1-2 sentences to motivate this 
study before stating the novelty of their work.

The abstract has been revised according to the suggestions.

The existing challenges and motivations are included in Abstract.

"However, the existing traditional methods for multi-rate simulation suffer the problems of 

instability and simulation errors. These have hindered the application of multi-rate simulation in power 

industry. Therefore theoretical evaluation on different multi-rate simulation methods is crucial to 
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1. An improved multi-rate method based on the Thevenin equivalent circuit, named Modified 

Thevenin Equivalent Interface (MTI), is proposed to overcome the issues of synchronization the in 

multi-rate simulation.

2. Three theorems have been proposed and proved to illustrate the stability characteristics of ITI, 

TLI and MTI.

3. The simulation errors using ITI, TLI and MTI have been analytically evaluated and the factors of 

these errors have been obtained.

4. The systematical analysis and comparisons of ITI, TLI and MTI have been performed.in terms of 

stability and accuracy.
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Fig. 1 Computation Time Comparison of different subsystem divivision types.

Furthermore, the figure has been explained in Line 10 from bottom, Page 18.

“The detailed comparison of different dividing schemes is illustrated in Fig. 18. The label in the axis 

of X represents the division type, (number of AC subsystems + number of DC subsystems). The 

PSCAD software runs about 1860s for 1s period of simulation as the computation time base.”
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theorem.

 The clear explanation of the assumptions is added in Line 6 from bottom, Page 11.

“The assumption of this theorem includes that:

 A system is divided into subsystems;

 Stable simulation can be achieved for the subsystems connected through TLI interface using 

the same time-steps for all subsystems, called a single rate, H. This means that the state transfer 
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norms less than 1.

 Different simulation time-steps, which are not larger than the single rate H, are used for 
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time-steps
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subsystems connected through TLI.”
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in the three theorems.

Quality of figures 8, 10, 11, 12, 13, 14, and 15 requires improvement. The font size 
should be justified with the text and clear to read.

Figures 6,7,8,10,11,12,13,14,15,16,19 and 20 are redrawn in the paper to improve the figure quality.

In order to make the conclusion section more clear, authors need to include the point-
by-point findings of this article. The current conclusion is written very wide and it is not easy 
to maintain the key findings.

The conclusion has been revised and the key findings have been listed.

“ The key findings of the study include

1. An improved method, Modified Thevenin Interface (MTI) is proposed to overcome the 

drawbacks in synchronization of the original Thevenin Interface.

2. Three theorems about ITI, TLI and MTI are proposed and proved in theoretically. From these 

theorems, it has been found that the stability of multi-rate simulation using these interfaces is only 

associated with the stability of single rate parallel simulation using these interfaces. The stability of 

MTI is only associated with the stability of the simulated case. Therefore, MTI performs higher 

stability and less limitation.

3. In terms of error analysis, the errors of ITI only depend on the delay introduced by the parallel 

algorithm, which are smaller than the errors of TLI.

4. The errors of TLI are dependent on the associated capacitor of TLI and the equivalent admittance 

of the subsystem from the interface.

5. The errors of the MTI are convergent and much smaller than the previous two.

Through the proposed theorems and methods, the accuracy and stability of the multi-rate parallel 

simulation of DC grids are able to be evaluated conveniently. Multi-rate simulation has been performed 

to analyze the practical project, Zhoushan MTDC in China, which presents high speed and accuracy. 

The suitable multi-rate simulation algorithm can be applied in the analysis of DC grids to achieve fast 

and accurate simulation results.”

The literature survey (subsection 2 in the revised introduction section) in 
incomplete. It should include related articles about DC power system analysis methods 
[1][2][3], parallel/distributed methods to deal with DC power networks [4], and also the 
stability analysis of large scale power systems [5] Authors need to review the mentioned 
articles carefully in the literature survey section.  [1]. "Determination of the minimum-
variance unbiased estimator for DC power-flow estimation." IECON 2014-40th Annual 
Conference of the IEEE Industrial Electronics Society. IEEE, 2014. [2] . "Error Detection of 
DC Power Flow Using State Estimation." Smart Grids: Security and Privacy Issues. Springer 



International Publishing, 2017. 31-51. [3] "Sparsity-Based Error Detection in DC Power 
Flow State Estimation," IEEE International Electro/Information Technology Conference 
(EIT 2016 ), North Dakota, 2016. [4] "Distributed security constrained economic 
dispatch." Smart Grid Technologies-Asia (ISGT ASIA), 2015 IEEE Innovative. IEEE, 2015. [5] 
Vahdati, Pouya Mahdavipour, et al. "Hopf Bifurcation Control of Power Systems 
Nonlinear Dynamics Via a Dynamic State Feedback Controller--Part I: Theory and 
Modelling." IEEE Transactions on Power Systems (2016).

According to your constructive suggestion, the section of Literature review has been revised. 

References of the DC power flow, stability analysis of large-scale power system containing DC grids, 

the parallel DC network control have been included in the section 1.2 Literature review.

“DC grids, as an emerging technology, attract extensive studies. In [13], two multi-terminal DC 

modelling are studied in DC power flow using the Newton method. However, the operation modes of 

DC converters are too simple to present the practical situation. In [14], more general and detailed 

multi-terminal DC modelling in the sequential AC/DC power flow algorithm is proposed considering 

the power losses of the converters. The DC power flow method is simpler and faster than the Newton 

method. In [15, 16], a state estimation approach for linear problems is utilized in order to estimate the 

DC power flow. In [17], to remove the measure error, the sparse-based error detection technology is 

used to obtain the accurate DC power flow results. To manage DC network power, the distributed 

power dispatch method is proposed to replace the original centralized manner, which can greatly 

reduce the computation burden [18].

The transient study is another important aspect for large-scale power system containing DC grids. 

[19] proposed the MTDC modeling including DC lines, converters and DC controllers for transient 

study. In [20], the saturation of a generator is considered in the transient studies to investigate the 

bifurcation issues.

Electromagnetic simulation is still served as a major method for DC grid analysis [21]. The transient 

issues in DC grids, such as the DC controllers and IGBTs, belong to small time-scales, which can only 

be simulated using electromagnetic programs. Multi-rate parallel simulation is a suitable technology to 

analyze the DC grids and the interaction between a DC grid and a large-scale power system. The 

singular perturbation method is used to solve fast-slow systems [22]. However this method is not 
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because this method uses asymptotic solution which neglects fast transients of the systems.

In order to investigate the fast transient of DC grids, there are three major algorithms to perform the 
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Abstract—With wide applications of power electronic devices in modern power systems, simulation using traditional electromechanical 

and electromagnetic tools suffers low speed and imprecision. Multi-rate methods can enhance efficiency of simulation by decreasing the 

scale of systems in small time-steps. However, the existing traditional methods for multi-rate simulation suffer the problems of instability 

and simulation errors. These have hindered the application of multi-rate simulation in power industry. Therefore theoretical evaluation 

on different multi-rate simulation methods is crucial to understand the feasibility and limitation of the methods, and to contribute to 

overcome the drawbacks of the traditional methods. In this paper, the multi-rate simulation performance based on two traditional 

technologies and a Modified Thevenin Interface are evaluated to provide an overall feasibility of multi-rate algorithms in the power 

simulation. The Modified Thevenin Interface is proposed to overcome the drawbacks in synchronization. Three theorems are proposed 

and proved for theoretically analyzing the stability of the simulation methods. Error analyses of the multi-rate methods are performed to 

identify the relationships between errors and simulation conditions. Besides, the accuracy and efficiency performance in a practical project 

of VSC-MTDC shows the feasibility and necessity by using multi-rate simulation. Through the theoretical analysis, the issues of stability 

and accuracy of multi-rate simulation for the DC grids have been better understood, based on which an improved simulation algorithm 

has been proposed to overcome these issues. Long-term system dynamics of large-scale systems containing DC grids and fast transients of 

HVDC converters can be investigated simultaneously with high speed and sufficient accuracy.

Index Terms—Electromagnetic transient analysis, Power System Simulation, Parallel Algorithm, Multi-rate Interface, Different Rates, 

Multi-terminal VSC-HVDC
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NOMENCLATURE

Af/s Matrix A in the state-space modelling [A, B, C, D]

Acc Accurate Results

Bf/s Matrix B in the state-space modelling [A, B, C, D]

C Capacitor C in Fig.1(F)

Cf/s Matrix C in the state-space modelling [A, B, C, D]

CTLI Associated capacitor of the equivalent transmission line

Df/s Matrix D in the state-space modelling [A, B, C, D]

diag[0,In1] Diagonal matrix with the dimension of n1

e Exponent

evf Errors of voltages at the interface (p.u.)

F Constant associated with the system parameters

gf() Function to solve the open circuit voltages in the fast subsystem

Gf(s) Transfer function of the equivalent impedance of the fast subsystem

gs() Function to solve the open circuit voltages in the slow subsystem

Gs(s) Transfer function of the equivalent impedance of the slow subsystem

h Small time-step (μs)

H Large time-step (μs)

If Interface current source (A)

if Injected current of the interface in the fast subsystem (A)

Is Interface current source (A)

is Injected current of the interface in the slow subsystem (A)

ITI Ideal Transform Interface

k Step index in the simulation of the slow subsystem

K Constant associated with the system parameters

L1 Inductor L1 in Fig.1 (H)

L2 Inductor L2 in Fig.1(H)

m Times between H and h

MTI Modified Thevenin Equivalent Interface

R(m)
Constant associated with m, the times between the large time-step and 

slow time-step

T Simulation time instant in the slow subsystem (μs)

t Simulation time instant in the fast subsystem (μs)

TLI Transmission Line Interface

UfAA‘
Input variables of the interface sources in the state-space modelling of 

the fast subsystem

Ufint
Input variables of the equivalent internal sources in the state-space 

modelling of the fast subsystem

UsAA‘
Input variables of the interface sources in the state-space modelling of 

the slow subsystem

Usint Input variables of the equivalent internal sources in the state-space 



3

modelling of slow subsystem

Veqf(s)
Transfer function of Thevinen equivalent voltage sources of the fast 

subsystem

Veqs(s)
Transfer function of Thevinen equivalent voltage sources of the slow 

subsystem

Vf Voltage source of the interface branch in the fast system (V)

vf Voltage at the interface in the fast subsystem (V)

vf-Exp Expected voltage at the interface

Vfint Equivalent internal voltage sources in the fast subsystem

vf-ITI Voltages at the interface using the ITI interface

vf-TLI Voltages at the interface using the TLI interface

Vs Voltage source of the source branch in the slow system (V)

vs Voltage at the interface in the slow subsystem (V)

Vsint Equivalent internal voltage sources in the slow subsystem 

Xf State variables of the fast subsystem

Xs State variables of the slow subsystem

YfAA’
Output variables of the interface in the state-space modelling of the 

fast subsystem

YsAA’
Output variables of the interface in the state-space modelling of the 

slow subsystem

Z1 Characteristic impedance of the transmission line (Ω)

Zf Equivalent impedance of the interface branch in the fast system

Zs Equivalent impedance of the interface branch in the slow system

ρ Spectral radius of a matrix

Φ(m)
State transfer matrix of the entire coupled system within a large time-

step

Φ’(m) State transfer matrix of the entire coupled system using the single rate 

Φf(i)
State transfer matrix of the fast subsystem in ith small time-step within 

one large time-step

Φnon-int(m)
State transfer matrix of the entire coupled system without interpolation 

within a large time-step

Φs State transfer matrix of the slow subsystem within a large time-step

Φxnon-int(m)
State transfer matrix of the fast system without interpolation within  a 

large time-step

||Φ(m)||p
An arbitrary norm of the state transfer matrix of the entire coupled 

system
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1.  INTRODUCTION

1.1.  Motivation
In order to achieve the 202020 targets, the share of the renewable energy will rise greatly in different EU members [1]. A DC grid 

is an emerging transmission technology, which can provide flexible control to interconnect various renewable energies. A “super 

grid” to connect most of European countries shows the ambition in offshore wind power integration[2]. Simultaneous simulation of 

power electronics based DC systems and associated AC systems is a critical requirement for studies of DC grids, such as protection, 

stability and AC/DC interaction [3]. However, current tools for power system simulation perform less efficiently in this simultaneous 

simulation. Electromechanical simulation can hardly perform the transient in DC grids due to its large time-steps, although they are 

suitable for large-scale AC power systems[4]. Electromagnetics transient programs are able to simulate the detailed response in DC 

grids with a small time-step, but the simulation for AC/DC integrated systems with a small time-step will experience dramatically 

long time [5, 6].

Parallel computation in Electromagnetics transient simulation has been used for power system simulation, using the same time-

step and data exchanged every step [7]. A large-scale system can be partitioned into several sub-systems, each of which can run 

independently in a separate Central Processing Unit (CPU). Therefore, the total calculation time is only a portion of the original one. 

However, due to the limitation of data communication, CPU numbers can not be increased unlimitedly to speed up the simulation. 

Normally parallel computation for power system simulation uses 8-12 cores in a server or 4-6 cores in a PC [8]. An entire power 

system is too large to be simulated using the current parallel simulation technology with a single time step.

Different simulation rates can be used in parallel computation, which is called multi-rate parallel algorithm. Components of power 

system have their dynamics with different time constants naturally. Components in DC grids with small time constants, such as 

AC/DC converters, DC/DC transformers and DC breakers, must use small time-steps to capture precise responses, while the 

conventional AC elements, which have slow dynamics, can use a large time-step in order to make computation fast.[9].

Multi-rate parallel algorithms essentially divide a system into several subsystems, which are simulated with suitable time-steps, 

in order to improve simulation speed. Not only integrated AC/DC systems, but also industrial applications in thermal/electrical co-

simulation [10, 11], mechanical /electrical system co-simulation [12] can benefit from these algorithms.

1.2.  Literature survey
DC grids, as an emerging technology, attract extensive studies. In [13], two multi-terminal DC modelling are studied in DC power 

flow using the Newton method. However, the operation modes of DC converters are too simple to present the practical situation. In 

[14], more general and detailed multi-terminal DC modelling in the sequential AC/DC power flow algorithm is proposed considering 

the power losses of the converters. The DC power flow method is simpler and faster than the Newton method. In [15, 16], a state 

estimation approach for linear problems is utilized in order to estimate the DC power flow. In [17], to remove the measure error, the 

sparse-based error detection technology is used to obtain the accurate DC power flow results. To manage DC network power, the 

distributed power dispatch method is proposed to replace the original centralized manner, which can greatly reduce the computation 

burden [18].

The transient study is another important aspect for large-scale power system containing DC grids. [19] proposed the MTDC 

modeling including DC lines, converters and DC controllers for transient study. In [20], the saturation of a generator is considered 

in the transient studies to investigate the bifurcation issues.

Electromagnetic simulation is still served as a major method for DC grid analysis [21]. The transient issues in DC grids, such as 

the DC controllers and IGBTs, belong to small time-scales, which can only be simulated using electromagnetic programs. Multi-rate 

parallel simulation is a suitable technology to analyze the DC grids and the interaction between a DC grid and a large-scale power 

system. The singular perturbation method is used to solve fast-slow systems [22]. However this method is not suitable for power 
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electronics devices of which both fast and slow dynamics must be investigated, because this method uses asymptotic solution which 

neglects fast transients of the systems.

In order to investigate the fast transient of DC grids, there are three major algorithms to perform the parallel computation, which 

can be extended to multi-rate simulations, the Ideal Transform Interface (ITI) [23], the Transmission Line Interface (TLI) [7, 24]and 

the Thevenin equivalent interface [25, 26].

There are concerns over instability and errors of the existing parallel methodologies for multi-rate simulation [23], which could 

limit the application for simulation of DC grids.

1.3.  Contribution
This paper is to provide the systematic evaluation of the multi-rate simulation methods and investigate the stability and accuracy. 

The major contributions are listed as below:

1. An improved multi-rate method based on the Thevenin equivalent circuit, named Modified Thevenin Equivalent Interface 

(MTI), is proposed to overcome the issues of synchronization the in multi-rate simulation.

2. Three theorems have been proposed and proved to illustrate the stability characteristics of ITI, TLI and MTI.

3. The simulation errors using ITI, TLI and MTI have been analytically evaluated and the factors of these errors have been 

obtained.

4. The systematical analysis and comparisons of ITI, TLI and MTI have been performed.in terms of stability and accuracy.

1.4.  Structure of paper
. The rest of this paper is organized as follows. In Section II, the multi-rate simulation method ITI and TLI is presented, while an 

improved multi-rate method based on the Thevenin equivalent circuit, named Modified Thevenin Equivalent Interface (MTI), is 

proposed to make it more suitable for DC grid simulation. Section III presents the analytical evaluation of the stability of three multi-

rate simulation method. In Section IV, the analytical evaluation of the simulation errors of these multi-rate simulation methods is 

evaluated analytically. Section V presents a simulation study of different multi-rate simulation using the practical five-terminal 

MTDC as the test cases. Section V concludes the paper.

2.  MULTI-RATE SIMULATION METHODS

2.1.  Ideal Transform Interface (ITI)
A simple circuit, as shown in Fig.1, is used for analyzing multi-rate simulation algorithms.

R1

R2 L2

C

is

vf

if L1

R3

R4

vs

Rbrk Vs

iL1 iL2

vc

Fig. 1 Example System.

When the ideal transform interface is used [23]. The original circuit can be partitioned into two subsystems, fast and slow systems, 

as shown in Fig.2.
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vc R1

R2 L2

C

if

vf

is L1

R3

R4

vs

Rbrk Vsint

If Vs

iL1 iL2

Su s ste  : ast Su s ste  : Slo
Fig. 2 ITI interface method.

The interface current source, If, is equal to the injected current of Subsystem 2, is. The interface voltage source Vs is equal to the 

voltage of the current source in Subsystem 1, vf.

The subsystems are simulated with a small time-step, h, and a large time-step, H=mh, respectively. Data from a slow system to a 

fast system between different subsystems use the interpolation, and data from the fast system to the slow system is through a zero-

order holder [27].

The formula for If and Vs will be achieved as:

(1)

( ) ( )

( ) ( ) ( )

s f

f s s

V T H v T
H T t t TI t i T H i T

H H

 
     

where T is the simulation time instant in the slow system, and t is in the fast system, which is within the interval [T, T+H].

2.2.  Transmission Line Interface (TLI) 
The transmission line interface is a widely applied method of parallel computation in AC systems [23, 24]. When there is no real 

transmission line in some areas of a power system, an inductor is introduced as an equivalent transmission line to decouple the 

system.

The original circuit in Fig.1 is partitioned into two subsystems with an equivalent transmission line, which utilizes L1, as shown 

in Fig.3.

vc R1

R2 L2

C

if

vf

isL1

R3

R4

vs

Rbrk
Vsint

iL2

Subsystem 1: Fast Subsystem 2: Slow

VsVf

Z1 Z1

Z1

Fig. 3 TLI interface method.

The source branches, Vf, Vs and Z1, represent the equivalent circuits of TLI terminals. Z1 is the characteristic impedance of the 

transmission line, which is 2L1/H in this example.

Similarly, interpolation is used for data from the slow system to the fast system, and a zero order hold is used from the fast to 

slow system. The decoupling equations are obtained:

(2)
1

1 1

( ) ( ) 2 ( )

( ) ( ( ) 2 ( ) ) ( ( ) 2 ( ) )

s f f

f s s s s

V T H V T i T Z
H T t t TV t V T H i T H Z V T i T Z

H H

  
        

2.3.  Modified Thevenin Equivalent Interface (MTI)
The ITI and the TLI have induced the latency to realize decoupling, which causes errors of node voltages and currents between 

the two sides of the interface.

The Thevenin equivalent circuit interface can alleviate these errors [10, 11], as shown in Fig.4.
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vc R1

R2 L2

C

if

vf

is L1

R3

R4

vs

Rbrk Vsint

Vf Vs
iL1 iL2

Su s ste  : ast Su s ste  : Slo

Zf Zs

Fig. 4 MTI interface method.

Vf, Vs Zs, and Zf represent Thevenin equivalent circuits of the interface [25]. The Thevenin equivalent circuit method is commonly 

used in single rate simulation, where the interface equations are:

(3)
sin

( ) ( ( ))

( ) ( ( ), ( ))
s f f

f s s t

V t h g X t
V t H g X t V T

 
  

where Xf represents state variables in the fast subsystem, e.g. vc in this case; Xs represents state variables in the slow subsystem, 

iL1 and iL2 in this case; gf and gs are the functions to solve the open circuit voltages in the subsystems.

However, due to different rates, the slow subsystem requires the Vs(t+H), to calculate results for the next step, t+H, at the time of 

t. Obviously, Vs(t+H) ≠Vs(t+h). There is the same challenge for calculating Vf.

Traditional Thevenin equivalent interfaces assume that the mean between Vs(t) and Vs(t+H) is approximately equal to Vs(t+H) or 

Vs(t+h). Then, Vs(t+H) is substituted by the average value. But the existed issue on the accuracy and convergence should still be 

solved [28].

To surmount these obstacles in achieving the synchronization, an improvement proposed in this paper is to select proper history 

values to replace these state variables.

When the simulation goes to the time of t, the simulation in the subsystem with a small time step continues, however, for the large 

time step subsystem, the simulation will come back to the time of t+h-H and achieve an integration of H to get the result of t+h. In 

this case, Vs(t+h) is only required. A proper history time, t+h-H, is selected to make the slow subsystem compliant to the Thevenin 

equivalent source, Vs(t+h).

 Synchronization is thus achieved using accurate calculation based on the history value to avoid prediction which could cause 

unexpected errors and instability.

Rewriting (3), the decoupling equation will be obtained:

(4)
sin sin

( ) ( ( ))

( ) ( ( ), ( )) ( ( ), ( ))

s f f

f s s t s s t

V t h g X t
t T h T H t hV t h g X T V t g X T H V H

H H
T

 
         

The MTI algorithm can decouple a system at any electrical nodes without losing the accuracy and stability. Therefore, subsystems 

with converters, e.g. wind generators, FACTS and more complicated DC grids, can be separated and run with different time-steps.

3.  STABILITY ANALYSIS

As illustrated in Fig.5, a network can be partitioned into two sub-networks, interconnected to each other, through an interface, 

AA’. Sub-networks with fast dynamics and slow dynamics are represented by the subscript, f or s, respectively.

A

A’Fast Subnetwork

IfAA’(1)

VfAA’(1)

IfAA’(n)

Slow Subnetwork

VfAA’(n)

Vfint Vsint

R
ate C

onvertation

IsAA’(1)

VsAA’(1)

IsAA’(n)

VsAA’(n)

Fig. 5 Partition system for multi-rate simulation.

The state space of two sub-networks are given in (5) and (6):
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(5)

f int ' f int '

' f int ' f int '

T

f f f fAA fAA
T

fAA f f fAA fAA

X A X B B U U

Y C X D D U U

       
      



(6)

  
  

sint ' sint '

' int ' sint '

T
s s s sAA sAA

T
sAA s s s sAA sAA

X A X B B U U
Y C X D D U U

  


 



where Ufint=Vfint and Usint=Vsint are the input variables of each sub-network. UfAA‘ and UsAA‘ are the input variables from the interface. 

YfAA’ and YsAA’ represent output variables of subsystems.

By using the Backward Euler, the discrete type of equation (5) and (6) are obtained in (7) and (8),

(7)

1 1

int ' int '

' int ' int '

( 1) ( ) ( ) ( ) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

T

f f f f f fAA f fAA
T

fAA f f f fAA f fAA

X mk I hA X mk I hA h B B U mk U mk

Y mk C X mk D D U mk U mk

             
          

(8)

  
  

1 1

sint ' sint '

' sint ' sint '

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T
s s s s sAA sAA

T
sAA s s sAA sAA

X mk m I mhA X mk I mhA mh B B U mk m U mk m
Y mk m C X mk m D D U mk m U mk m

        


     
in which, k represents steps in the simulation.

For the stability analysis, the input variables inside each sub-network can be set as 0, which means Ufint and Usint are 0.

The stability of integration algorithms indicates whether or not errors will be accumulated during the integration [29], no matter 

if the system under study is stable or not. Stability is an important index of simulation accuracy, which can be determined through 

the system norms [30].

3.1.  Stability Analysis for ITI
3.1.1  State Transfer Matrix for ITI

Assuming that the input variables in the fast subsystem, UfAA‘, are the injected current through the interface, IfAA‘, and the input 

variables in the slow subsystem, UsAA’, is the voltages on the interface, VsAA‘. The output variables, YfAA‘ and YsAA’, are the VfAA‘ and 

IsAA‘, respectively. To be simplified, VsAA‘ is denoted as Vs and IfAA‘ is denoted as If.

 According to Fig.5, rewrite the decoupling equation (1) in the forms of discretion,

(9)
'

' '

( ) ( )

( ) ( ) ( )

s fAA

f sAA sAA

V mk V mk m
m i iI mk i I mk m I mk
m m

 
    

where i represent the ith steps between mk and m(k+1).

Considering the decoupling equation (9), the discrete equation can be rewritten:

(10)

1 1

'

'

'

( ) ( ) ( 1) ( )

( ( ) ( ))( ) ( )

( ) (( ( ) ( )))

f f f f fAA

s s sAA s

s f f fA

f

f fA

X mk i I hA X mk i I hA hB

C X mk D V mk

V mk i C X

m i iI mk
m m

m i iI mk m I mmk m ki
m m

D

 


      
 

   

 

 




(11)

1 1

'

'

'

( ) ( ) ( ) ( )

( ( )

( ) ( ) (

( ))

)

s s s s sAA

f f fAA

f s s sAA

f

s

X mk m I mhA X mk I mhA mhB
C X mk D

I mk m C X mk D
I

mk
m

V
k

      
 
   

There are m steps of simulation with a small time-step for the fast system, whose state transfer equation for the m th calculation 

is shown in (12), and one step of simulation with a large time-step for the slow system, whose state transfer equation is shown in 

(14).



9

(12)1

( 1) ( ) ( ) ( ) ' ( ) ( ) ( ) ( ) ( ) '
m

f s f s f f s f s
i

X k X k I k V k i X k X k I k V k


        

where the Φf(i) represents the transfer matrix in the ith small step within one large time-step, as below:

(13)

11 12 13 14( )
0f

A A A Ai I
    

where and .'11

1 1

12( ) ( ) /f f fAA sI hA IA hA hB i mCA    1

'13 ( ) ( )/f fAAI hA h mA B m i  '14

1

'( ) /f fAA sAAI hA hB i mDA 

(14)
( ) ( 1) ( 1) ( 1) ' ( ) ( ) ( ) ( ) 'f s f s s f s f sX k X k I k V k X k X k I k V k         

where Φs represents the transfer matrix of the slow system as below:

(15)

21

'

22

'

23

0 0 0

0

0 0

0 0
sAA

fAA

s
s

f

I
A A

C D

A
DC

 
 

  
 
  

where .
1 1 1

' f 23 ' '21 22( ) C ( ) ( )s sAA s s sAA fAAI mhA mhB I mhA A I mhA mh DA A B     

Combine (12) and (14), the transfer state equations of whole system can be obtained:

(16)
( 1) ( 1) ( 1) ( 1) ' ( ) ( ) ( ) ( ) ( ) 'f s f s f s f sX k X k I k V k m X k X k I k V k          

where Φ(m) represents the state transfer as below:

(17)
n1 n2

1

( ) [0,I ] [I ,0] ( )
m

s f
i

m diag diag i


    

And diag[0,In1] represents a diagonal matrix, n1 is the summary of the dimension of Xs, If and Vs, and n2 is the dimension of the 

dimension of Xf.

This matrix, Φ(m), fully represents the dynamics of this multi-rate simulation and is thus used to evaluate the algorithm stability.

3.1.2  Stability Theorem for Multi-rate without Interpolation
The norm of state transfer matrix determines the algorithm stability. The criteria [31] is that a system is stable, when

(18)p( ( )) || ( )|| 1m m    
where ||Φ(m)||p represents an arbitrary norm, ρ represents the spectral radius of a matrix.

Theorem 1:

If simulation of ITI using a single rate is stable, and the divided fast and slow subsystems are also asymptotically stable, then the 

multi-rate simulation algorithm without interpolation is stable as long as all the multiple rates are not larger than the single rate.

Proof:
Discretizing (5) and (6) in the large time-step, H=mh, and combining the decoupling equation (9) when i=m=1, a new state 

transfer function can be obtained:

(19)

1 1

' '

'

( 1) ( ) ( ) ( ) ( ) ( ))

( 1) ( ( ))

(f f f f fAA s s sAA s

s f f fAA f

X k I HA X k I HA HB C X k D V k
V k C X D Ik k

       
   

(20)

1 1

' '

'

( 1) ( ) ( ) ( ) ( ( )

( 1

( )

) ( ( )

)

)
s s s s sAA f f fAA

f s s sA

f

A s

X k I HA X k I HA HB C X k D
I k C X

I k
k D V k

       
   

Then, the following state transfer function can be derived,

( 1) ( 1) ( 1) ( 1) ' '( ) ( ) ( ) ( ) ( ) 'f s f s f s f sX k X k I k V k m X k X k I k V k          
where Φ’(m) represents the state transfer, whose norm should be less than 1, as below:

(21)

11 12 13 14

21 22 2

'

'

3

' ' ' '

0
'( )

0 0

0 0

|| '( )|| 1

sAA

fAA

s

f

D

A A A A
A

D

A A
m C

C
m

 
 

  
 
  

 
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where A21, A22, A23 is the same as (15) and A11’, A12’, A13’, A14’ is as below.

1 1 1

'11 12 1 '3 14 '' '( ) ( ) C 0' ' ( )f f fAA s f fAA sAAI HA I HA HB I HA HB DA A A A       
Find a matrix Φx’(m) to make Φ’(m)= Φx’(m) Φs, then 

Φx’(m) is as below:

(22)

11 12 13 14' ' ' '
'( )

0
x x x x

x
A A A Am I

    

where .1

1

1 ( )' fx I HAA 

When the data exchange for the multi-rate simulation without interpolating and smoothing process, rewrite the decoupling 

equation (9) in the forms of discretion.

(23)
'

'

( ) ( )

( ) ( )
s fAA

f sAA

V mk V mk m
I mk i I mk

 
  

Using the similar derivation from (10) to (16), the state transfer, Φnon-int(m), matrix can be obtained:

(24)

11 12 13 14

21 22 23

i
'

'

nt

* * * *

0
( )

0 0

0 0
sAA

fA

non
s

Af

A A A A
A A A

m D
D

C
C



 
 

  
 
  

where A21, A22, A23 is the same as (15) and A11*, A12*, A13*, A14* is as below,

1 1

11 12
1

1 1

13

'

' '14
1

* * ((1 ) )

*

( ) C

(( )0 * 1 )

m
f fAA s

fAA sAA

m
m i

f
i

m
m i

f
i

I hA hBA A hA

A A h hB DA

  



  



  

 









Find a matrix Φxnon-int(m) to make Φnon-int(m)= Φxnon-int(m) Φs, then Φxnon-int(m) is as below:

(25)

11 12 13 14
int

* * * *
(m)

0
x x x x

xnon
A A A A

I
    

where 11 ( )* fx
mI hAA 

Comparing with the norm of Ax11* and Ax11’, when norm of Af is less than 1, which is the requirement of the stability in the fast 

subsystem, the norm of Ax11* is less than the norm of Ax11’. Also, the norm of Ax11* and Ax11’ will determine the norm of Φxnon-int(m) 

and Φx’(m), respectively.

Then, an inequality can be obtained:

(26)int|| ( )|| || '( )||xnon xm m  
Because Φ’(m)= Φx’(m)Φs and Φnon-int(m)= Φxnon-int(m)Φs, then the norm of Φnon-int(m) can be achieved as:

(27)int|| ( )|| || '( )|| 1non m m   
This proves the multi-rate integration method without interpolation is stable and the Theorem 1 is proved.

3.1.3  Stability Analysis for Multi-rate with Interpolation
The transfer matrix Φ(m) in (16) can be transferred to Φ(m)= Φx(m) Φs, then Φx(m) is given as below:

(28)

11 12 13 14(m)
0
x x x x

x
A A A A

I
    

where 11 m 1

f '

1

11
1

'( ) ) C( ((1 ) )f fAA fAf A

m
m i

x
i

A m iI hA hB DhA
m

   



  

Similarly to the previous section, if the norms of Ax11 are less than the norms of Ax11’, the norms of Φ(m) can be found less than 

Φ’(m) and less than 1, which means that the multi-rate integration method with interpolation is stable.

However, the norms of Ax11 can not be directly proved to be less than Ax11’, some tools can help to calculate the norm of Ax11 to 

evaluate the stability of the multi-rate simulation with interpolation in the cases. Normally, it is stable as well.
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In conclusion, with a large time-step and a small time-step, the stability of the multi-rate algorithm of ITI is better than the parallel 

computation of ITI with the single rate of the same large time-step. However, [23] indicates that the parallel computation of ITI with 

a single rate hardly keeps the stability, because of the artificial induced latency.

3.2.  Stability Analysis for TLI
3.2.1  State Transfer Matrix for TLI

As illustrated in Fig.3, Vf and Vs of the equivalent source branches of TLI are the input variables, UfAA‘ and UsAA‘, in fast and slow 

subsystems. The output variables YfAA’ and YsAA’ represent the , denoted as Yf and Ys for simplification.1( ) 2 ( )V mk m i mk m Z  

Rewrite the equation (2) in the forms of discretion,

(29)
( ) ( ) ( )

( ) ( )

f s s

s f

m i iV mk i Y mk m Y mk
m m

V mk Y mk m

    

  

Considering the decoupling equation (29), using the system equation (7) and (8), the discrete equations can be achieved. In fact, 

they are as same as (10), (11), except that Vf replaces If.

Similarly, deriving from (12) to (16), the state transfer matrix Φ(m) can be obtained, as below, to evaluate the stability of the 

TLI.

(30)

11

'

'

12 13 14

21 22 23 0
( )

0 0

0 0

TLI
s

f

sAA

fAA

A A A A
A A

C
D

D

A
m C

 
 

  
 
  

where A21, A22, A23 is the same as (15) and A11, A12, A13, A14 is,

1 1

11 12
1

1 1 1 1

13

'

' '14
1 1

'

( ) ((1 ) )

((1 ) ) ((1 )

C

)

m
m i

f
i

m m
m i m i

f

m
f fAA s

fAA fAA sAAf
i i

A A hA

A h

iI hA h B
m

A A hAm i ih B h B D
m m

  



    

 





  

  



 



 
3.2.2  Stability Analysis for Multi-rate Algorithm

Theorem 2:
If the simulation of TLI with a single rate is stable, and the divided fast and slow subsystems are also asymptotically stable, then 

the multi-rate simulation algorithm without interpolation is stable as long as all the multiple rates are not larger than the single 

rate.

The assumption of this theorem includes that:

 A system is divided into subsystems;

 Stable simulation can be achieved for the subsystems connected through TLI interface using the same time-steps for all 

subsystems, called a single rate, H. This means that the state transfer matrix in an equation, similar to (21), has the norms 

less than 1;

 Each subsystem is asymptotically stable, which means that the A11 and A22 in (30) have norms less than 1;

 Different simulation time-steps, which are not larger than the single rate H, are used for subsystems. Fast subsystems have 

small time-steps and slow subsystems have relatively large time-steps.

When the above assumptions are met, stable simulation can be achieved for the fast and slow subsystems connected through TLI.

This theorem can be proved using the similar procedure from (19) to (27).

For a similar matrix Ax11 in (31) can be achieved for the multi-rate TLI with interpolation in order to compare with A11 in (30).

(31)

11 m 1

f '

1

11
1

'( ) ) C( ((1 ) )f fAA fAf A

m
m i

x
i

A m iI hA hB DhA
m

   



  

Rewrite (31):
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(32)

1 m 1

f ' '

1 1

11
1

( (1 ) ((1 )( ) ) (I C ))f fAA fA

m

f f
i

A
i

xA hA hA m iI hA hB D
m

   


     

Normally, the stability of multi-rate algorithm is usually met by calculating the norm of Ax11.

In conclusion, For TLI, the stability of the simulation with different rates depends on the stability of the simulation with the single 

rate of a large time-step. However, [23] indicates that simulation of the TLI with a single rate always keeps stability.

3.3.  Stability Analysis for MTI
3.3.1  State Transfer Matrix for MTI

UfAA‘ and UsAA‘ represent the interface voltages at the two sides respectively. YfAA’ and YsAA’ represent the currents through the 

interface.

Rewrite the relationship of voltages and currents in the interface in the forms of discretion.

(33)
' '

' '

( ) ( )

( ) ( )
fAA sAA

fAA sAA

U mk U mk
Y mk Y mk


 

Using the system equations (7), (8) and (33) and removing the intermediate variables, UfAA‘, UsAA‘ and YfAA‘ and YsAA‘, the discrete 

equations can be rewritten:

(34)

( ) ( 1) ( ( ) ( ))

( ) ( 1) ( )

f ff f fs s s

s sf f ss s

m i iX mk i A X mk i A X mk m X mk
m m

X mk m A X mk m A X mk

       

     

where Aff=Af-dis-BfdisΔCfAf-dis, Afs=- BfdisΔCsAs-dis,

As-dis=(I-mhAs)-1, Ass=As-dis-BsdisΔCsAs-dis Asf=-BsdisΔCfAf-dis,

Af-dis=(I-hAf)-1, Bfdis=(I-hAf)-1hBfAA’, Bsdis=(I-mhAs)-1mhBsAA’

Similar, the procedure of multi-rate simulation is divided as m-1 steps of simulation with a small time-step for the fast system, 

whose state transfer equation is shown in (35), and one step of simulation for the entire system, whose state transfer equation is 

shown in (37).

(35)

( ) ( 1)

( ) ( ) ( )

( ) ( )

f f

s f s

s s

X mk i X mk i
X mk i X mk
X mk m X mk m

     
             

where Φf(i) represents the transfer matrix in the ith step among a large time-step, as below:

(36)

( )

0

ff fs fs
f

i m iA A Ai m m
I

 
  
 
 

(37)

( ) ( 1)

( ) ( )

( ) ( )

f f

s s s

s s

X mk m X mk m
X mk m X mk
X mk X mk m

     
             

where Φs represents the transfer matrix of the slow system:

(38)

0

0

0 0

ff fs

s sf ss

A A
A A

I

 
   
  

The whole system can be derived for its state transfer matrix, represented by Φ(m),

(39)

1

1

( ) ( )
m

s f
i

m i



  

3.3.2  Stability Analysis
Theorem 3:
If the original system is asymptotically stable, and the divided fast and slow subsystems are also asymptotically stable. Then 

simulation using proposed MTI algorithm is stable.
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Proof:
Let Aff and Ass be the discrete state matrix of the fast system and the slow system respectively, the norm of Aff and Ass is less than 

1, therefore according to (36), the norm of Φf(i) is less than 1.

Meanwhile, the state matrix of the original system can be obtained through eliminating the variable UsAA’ and YsAA’, represented 

by A.

(40)

1 1

' '

1 1

' '

( ) ( )

( ) ( )

f fAA f s f fAA f s sf f

ssAA f s f s sAA f s ss

A B D D C B D D CX X
XB D D C A B D D CX

 

 

                    




Also, suppose A(m), which can be factorized as below.

(41)

1 1

' '

1 1

' '

( )
(

( )0

0 ( ) )
)

(

f fAA f s f fAA f s s

sAA f s f s sAA f s s

A B D D C B D D CI AmI mB D D C mA mB D D C
A m

 

 

                
A(m) is used as the state matrix of a new system. Since the original system absolute stable, all eigenvalues of the A has the negative 

real part. Then, all eigenvalues of the A(m) has the negative real part. It deduces that the new system is absolutely stable.

h is chosen as the unified time-step for this new system, the discretized state transfer matrix is obtained as below:

(42)

 

 

'

'

'

'

( 1) ( )

( )

( 1) ( )

( )

f f dis fAA dis f f dis f

fAA dis s s dis s

s sAA dis f f dis f

s dis sAA dis s s dis s

X k A B C A X k
B C A X k

X k B C A X k
A B C A X k

  

 

 

  

    
  
   
   

And 
1

' ' ' '( )s sAA dis fAA sAA f fAA disC B D D C B 
    

The state transfer matrix is Φs11, whose norms is less than 1.

(43)
11

ff fs
s

sf ss

A A
A A

 
  

 
This matrix is found to be just the sub-matrix of Φs in (38). Thus the norms of Φs is less than 1.

Follow that,

(44)

1

1

( ) ( ) 1
m

s f
i

m i



   

Hence, the MTI algorithm is stable as long as the original system is stable.

3.4.  Stability Evaluation
In this part, the stability of the example system in Fig.1 will be studied to verify the proposed theorems of ITI, TLI and MTI.

The norm of the systems in both the multi-rate simulation and the single-rate simulation using large time-steps were calculated 

using the eigenvalue method for various circuit parameters, as shown in Fig.6-8. The comparison involves three interfaces. The dash 

line is the boundary of stability, as the legend of “ref”.

Considering ITI, the norms of the system in the single-rate simulation are always larger than the multi-rate simulation. This 

verifies the Theorem 1. Also, the multi-rate method of ITI is stable, as long as ITI parallel simulation with a single-rate is stable. 

However, although the original system is stable, ITI parallel simulation with a single-rate becomes unstable when the norms exceed 

the "ref" value, as shown in Fig.6(a) and 7(a). This is due to artificial time delay between subsystems [14].

Considering TLI, the norms of the system in the single-rate simulation are always larger than in the multi-rate simulation. This 

verifies the Theorem 2. In most cases, the TLI is stable. However, the transmission line can also reduce the stability of simulation, 

compared with lumped inductors.

Among three multi-rate method, the stability of MTI is always the most stable under all conditions. Because no simplification is 

required in the MTI, the stability of this method is just slightly lower than the original simulation, and higher than the previous two 

methods. This verifies the Theorem 3. 
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Fig. 6 Stability evaluation using various connected inductors.

0.98

1

1.02

N
o
rm

0.996

1

1.002

0.998
TLI_Single

TLI_Multi

ref

0.94

0.98

1

0.96

ref

MTI_Single

MTI_Multi

ITI_Single

ITI_Multi

ref

1E-55 10 15

L2(H)

1E-55 10 15

L2(H)

1E-55 10 15

L2(H)

     (a) ITI                    (b)TLI                   (c)MTI

Fig. 7 Stability evaluation using various inductors L2 in the network with a large time-step.
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Fig. 8 Stability evaluation using various capacitors in the network with a small time-step.

4.  ERROR ANALYSIS

This section evaluates factors influencing errors of the multi-rate simulation. These include time-steps, interface inductor and 

parameters in both small and large time-step networks.

4.1.  Decoupling Interface errors
For ITI, the equivalent circuit is shown in Fig.9 (a).

Veqf(s)

if

vf

is

vs

Is Vf

Fast Slow

Gf(s) Gs(s)

Veqs(s)

(a) ITI

if

vf

isL1

vs

iL1

Fast Slow

Gf(s)

Veqf(s)

Gs(s)

Veqs(s)

if

vf

is
L1

vs

iL1

Fast Slow

Gf(s)

Veqf(s)

Gs(s)

Veqs(s)

CTLM

(b) TLI
Fig. 9 Thevenin Equivalent Circuit.

where Veqs(s) and Veqf(s) represent the Thevinen equivalent sources of the subsystems, and Gs(s) and Gf(s) are the impedance in 

the equivalent sources.
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Because there are the induced latency in ITI as below,

(45)

( ) ( )e

( ) ( )e

Hs
s s

Hs
f f

I s i s
V s v s





 
 

The voltage, vf, in the interface can be derived as below,

(46)
2 2

( )e ( ) ( )e ( )

( ) e ( ) ( )e ( )

Hs Hs
eqs f eqf s

f ITI Hs Hs
s f s f

v s G s v s G s
v

G s G s G s G s

 

   
 

Alternatively, the expected result is as below,

(47)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

eqs f eqf s
f Exp

s f s f

v s G s v s G s
v

G s G s G s G s  
 

The time-step H is always small, so that the e-2Hs
 is close to 1, it can be assumed that 

(48)
2 2( ) e ( ) ( ) ( ) e ( ) ( )Hs Hs

s f s f s fG s G s G s G s G s G s     
Therefore, the error can be obtained as below,

(49)

| | |e 1|
f

f ITI f Exp Hs
v

f Exp

v v
e

v
  




  

For TLI, an inductor is used as an equivalent transmission line. The difference between the original circuit and the circuit with a 

transmission line is shown in Fig.9 (b), where the associated capacitor of the equivalent transmission line is CTLI, which is the can 

be obtained , CTLI =H2/L1.

The voltage in the interface for the original system and the circuit with TLI interface can be obtained:

(50)

2

1 1 1

2

1 1

( )( ( )) ( )( ( ) ( ))

( ) ( ) ( ) ( ) ( )

eqs f eqf s TLI s
f TLI

s TLI s f s f TLI

v s L s G s v s G s L s L C s G s
v

G s L s L C s G s G s G s G s sC

   


   

(51)

1 1

1 1

( )( ( ) L s) ( )( ( ) L s)

( ) ( ) L s ( ) ( ) L s

eqs f eqf s
f Exp

s f s f

v s G s v s G s
v

G s G s G s G s

 
 

   

Because the time-step H is very small, and the L1CTLI = H2 are close to 0,

(52)

2

1 1 1
2

1 1

1

( ) ( ) ( ) L s

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

s TLI s s

s TLI s f s f TLI

s f s f TLI

G s L s L C s G s G s
G s L s L C s G s G s G s G s sC

G s L s G s G s G s sC

   
   

   

Therefore, the error can be obtained as below,

(53)1

( ) ( )
| | | |

( ) ( ) ( ) ( )f

f TLI f Exp s f TLI
v

f Exp s f s f TLI

v v G s G s sC
e

v G s G s L s G s G s sC
 




 

  

The error is dependent on the associated capacitor, and the configuration of the internal circuits affects the error as well. Stability 

analysis indicates that the errors of the ITI and TLI can only be evaluated when the simulation is stable.

For the MTI, the external circuit is exactly represented using Thevenin equivalent circuit, and no artificial simplification is 

involved in the method. Therefore, errors of MTI are much smaller than the previous too.

Also, Errors evaluation can be obtained as below [32]:

(54)( ) ( ) ( )FHke kH R m KHe R m KH 
where ||R(m)|| is a constant for a given m. K and F are constants, which can be calculated with the system parameters. k represents 

the kth steps in the simulation.

This indicates that the maximum simulation errors within a simulation stage are limited and can be reduced as long as H, the large 

time-step, is small enough. And also, along with the time constants of the subsystems increase, K and F may increase to enlarge the 

errors, but the detailed evaluation of K and F is still required.
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4.2.  Error Evaluation
The accuracy of the example system in Fig.1 will be studied to verify the theoretical analysis of errors of the ITI, TLI and MTI. 

The error evaluation for various conditions is illustrated in Fig.10 to 15. The dark lines represent simulation errors, while the grey 

line represents expected errors in theory for ITI and TLI, and as expected errors of MTI are exceedingly small, which are not shown 

in figures.

The results of increasing the large time-step are shown in Fig.10. The errors of ITI in Fig.10(a) increase due to the increased delay 

as proved in (49) and are approximately proportional to the increase in the large time-step. The trends of expected errors (ITI_Exp) 

and simulation errors (ITI) are the same, although there is about 20% difference between them. The errors of TLI in Fig.10(b) 

increase due to the increased associated capacitor, CTLI, as proved in (53). They are large than ITI, and the expected errors (TLI_Exp) 

are coincide with the simulation ones (TLI). The errors of MTI in Fig.10(c) are much less than others, only being lower than 0.03%.

Increasing of a small time-step doesn’t affect the errors, as shown in Fig.11, as the artificial delay of ITI and the associated 

capacitor of TLI are not increased. The simulation errors of ITI and TLI are close to their expected errors. Errors of MTI have no 

increment.

As shown in Fig.12, higher errors could be found for signals with higher frequency. s in formulas of errors, (49) and (53), is 

determined by the frequency. A little difference between the simulation errors and the expected error exists. Simulation errors of TLI 

increase with the same rate of expected errors. The errors of MTI increases, still being smaller than 0.01%.

Increasing in the interface inductance L1 in Fig.1 can increase the associated capacitor of TLI to increase the errors, as shown in 

Fig.13, but it doesn’t affect the errors of ITI. Besides, The errors of MTI increase, reaching around 0.015%.
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Fig. 10 Error evaluation using various large time-steps.
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Fig. 11 Error evaluation using various small time-steps.
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Fig. 13 Error evaluation using various connected inductors.
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Fig. 14 Error evaluation using various inductors in the network with a large time-step.
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Fig. 15 Error evaluation using various capacitors in the network with a small time-step.

Increasing of the inductor L2 in Fig.1 can increase the time constant in the large time-step subsystem, while the capacitor C1 can 

increase the time constant in the small time-step subsystem. The results, as shown in Fig.14 and Fig.15, show the expected errors of 

ITI and TLI are close to the simulation errors, which means the errors of evaluation are sensible.

4.3.  Unstable Case Study
The accuracy consists of two parts: error range induced by modelling simplification at each step and error accumulation 

throughout simulation which is defined as the stability of a simulation algorithm. Errors using the MTI are much smaller than using 

the ITI and TLI, because the MTI does not need simplification. In addition, the MTI is more stable than the ITI and TLI, so that the 

rate of error accumulation of MTI is slower than the other two methods for an unstable case. Therefore, the simulation accuracy of 

the MTI is always higher than the ITI and TLI.
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Although the stability of the MTI has not been proved for unstable systems, simulation using the MTI for unstable systems is 

acceptable, because the MTI achieves smaller errors than the ITI and TLI which have already been widely used for practical 

applications.

In order to study the performance of the MTI for unstable systems, the example system has been modified to become unstable. 

The detailed parameters are listed in Appendix C.
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Fig. 16 Error evaluation of an unstable system. (a) interface current; (b)error rates

In Fig.16, the original system is unstable, and the interface current, if , is increasing with oscillation. The MTI curve and the 

accurate result (Acc) are in agreement in Fig.16(a). The ITI and TLI can generate larger errors. The error rate (the difference between 

the accurate results and multi-rate results divided by RMS of the accurate results) is illustrated in Fig.16(b). The error rates of the 

ITI and TLI increases as the simulation proceeds, while the error of the MTI almost doesn't increase. The results with the MTI follow 

the accurate results well, although the system itself is unstable.

5.  CASE STUDY

Although a linear system was used in theoretical analyses of multi-rate algorithms, the proposed multi-rate algorithm can be used 

for practical nonlinear systems with acceptable small errors, which are verified in this section.

This paper makes use of the multi-rate simulations to study the Zhou Shan Multi-terminal HVDC (MTDC) [33], as show in 

Fig.17.

The local AC power system, as shown in, includes 28 buses and 1 generators, the topology of DC system consists of 5 AC/DC 

converter stations connect AC system to DC system. Modular Multi-level Converters (MMC) are replaced by two-level converters, 

in order to avoid the influence of the complex modelling of MMC upon the evaluation.

It is noticed that only the TLI and MTI are studied, except ITI, which has experienced instability, as discussed in section III.

5.1.  Simulation Speeds
The multi-rate simulation was carried out in Advanced Digital Power System Simulator (ADPSS). The original test system is 

divided into 6 subsystems. 5 DC subsystems with the boundary of grey dash lines are simulated with a small time-step, 2μs. One AC 

subnetwork with the boundary of deep dash lines is simulated with a large time-step, 50μs, as shown in Fig.16.

The detailed comparison of different dividing schemes is illustrated in Fig. 18. The label in the axis of X represents the division 

type, (number of AC subsystems + number of DC subsystems). The PSCAD software runs about 1860s for 1s period of simulation 

as the computation time base. When the system is divided into a fast system (DC) and a slow system (AC), the computation time for 

1s period of simulation decreases to 273s using the TLI or 294s using the MTI. Thus, the rate of speed-up reaches 6.33 (1860/294) 

for MTI. When the system is divided into more subsystems with small time-steps, a higher rate of speed-up is obtained, which can 

be up to 64. However, if there are more than 6 subsystems, the speed of simulation improves insignificantly through increasing 

subsystems with small time-steps. Therefore, the dividing scheme is optimized, which has 5 DC subsystems and 1 AC subsystem.

When using multi-rate algorithms for real-time simulation, the costs of hardware, e.g. racks, processors or FPGAs, can be greatly 
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reduced for simulating large systems with more power electronics converters and with smaller time steps [34].
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0

10

20

30

40

50

60

70

80

90

0

50

100

150

200

250

300

350

1+1 2+1 1+3 1+5 2+5 1+6
Division Type (AC+DC)

Time of TLI Time of MTI

Speedup of TLI

Speedup of MTI

S
im

u
la

ti
o

n
 T

im
e
(s

)

S
p

e
e
d

u
p

Fig. 18 Computation Time Comparison of different subsystem divivision types.

5.2.  Accuracy Evaluation
The accuracy evaluation is to compare simulation results between non-partitioned system with a single time-step of 2μs and the 

partitioned system with different rates of 2μs and 50μs, as shown in Fig.19-20.
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Fig. 19 Responses of the system with TLI.
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Fig. 20 Responses of the system with MTI.

In Fig 19 to 20, the first row represents the DC voltage of CS1, and the second row is the AC voltage of CS2. The errors expressed 

as a percentage are analyzed in frequency domain. It shows that all of errors are less than 1%. And the errors in the fundamental 

frequency are less than 0.03%. Comparing errors of the TLI and the MTI, the MTI has smaller than half of the errors of the TLI, thus 

the MTI is more accurate than the TLI.

6.  CONCLUSION

With wide applications of IGBT-based power electronic devices in modern power systems, multi-rate simulation, as an expecting 

simulation technology, shows necessity for the simulation of large-scale power systems. This paper addresses the difficulties of using 

the multi-rate simulation.

The key findings of the study include

1. An improved method, Modified Thevenin Interface (MTI) is proposed to overcome the drawbacks in synchronization of the 

original Thevenin Interface.

2. Three theorems about ITI, TLI and MTI are proposed and proved in theoretically. From these theorems, it has been found that 

the stability of multi-rate simulation using these interfaces is only associated with the stability of single rate parallel simulation using 

these interfaces. The stability of MTI is only associated with the stability of the simulated case. Therefore, MTI performs higher 

stability and less limitation.

3. In terms of error analysis, the errors of ITI only depend on the delay introduced by the parallel algorithm, which are smaller 

than the errors of TLI.

4. The errors of TLI are dependent on the associated capacitor of TLI and the equivalent admittance of the subsystem from the 
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interface.

5. The errors of the MTI are convergent and much smaller than the previous two.

Through the proposed theorems and methods, the accuracy and stability of the multi-rate parallel simulation of DC grids are able 

to be evaluated conveniently. Multi-rate simulation has been performed to analyze the practical project, Zhoushan MTDC in China, 

which presents high speed and accuracy. The suitable multi-rate simulation algorithm can be applied in the analysis of DC grids to 

achieve fast and accurate simulation results.
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8.  APPENDIX

8.1.  Parameters of Zhoushan MTDC
Some parameters of VSC-MTDC in Fig. 17 on the large case study are listed as below, the detailed information refers to [33].

Transmission Lines: Line 1=46km, Line 2=17km, Line 3=39km, Line 4=32.3km R=0.0192ohm/km, L=0.24mH/km, C 

=0.2961uF/km.

Converters: 

Zhoushan (CS1) (VQ mode), V=±200kV, Q=60MVar Capacitor=432uF; Leakage reactance= 14.098%; MVA rating = 450MVA

Daishan (CS2) (PQ mode), P=-200MW, Q=60MVar; Capacitor= 432uF; Leakage reactance= 14.98 %; MVA rating = 350MVA

Qushan (CS3) (PQ mode), P=80MW, Q=20MVar; Capacitor= 108uF; Leakage reactance= 14.8 %; MVA rating = 120MVA

Yangshan (CS4) (PQ mode), P=80MW, Q=20MVar; Capacitor= 144uF; Leakage reactance= 14.8 %; MVA rating = 120MVA

Shensi (CS5) (PQ mode), P=80MW, Q=20MVar; Capacitor= 144uF; Leakage reactance= 14.8 %; MVA rating = 120MVA

Topology of Converters:

Is

PI

θ

PI PI PI

PLL

DQ
ABCPWM

vd vq

ia ib ic

id iq

idref iqref
Edref

Qref

Q

V
Ed

Current Lim Current Lim

Filter

C2

C1

(a)

(b)

Iord

Control 
Mode

Inner Regulator Inner Regulator

Outer Regulator

Outer Regulator

Controller parameters for CS1 to CS5: 

Id/Iq inner Loop Ti= 0.1075 Kp= 0.6907; Ed Outer loop Ti=0.2 Kp=2; Vac Outloop Ti=0.4 Kp=2;

Filter: R=10Ω L=3H

8.2.  Parameters of Power Systems in ZhouShan MTDC
Infinite Bus:

Vbase Vac Phase R L

230kV 0.991244p.u. -26.415037 0.002p.u. 0.02p.u.

AC Transformer:
Station MVA rating Voltage Leakage Reactance Resistance

LiangJia 360MW 236/20 0.018610*2 0.000295*2

Penglai1 180MW 230/230 0.041950*2 0.000515*2
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Penglai2 180MW 230/230 0.041950*2 0.000515*2

Penglai_B1 72MW 230/37 0.026650*2 0.000570*2

Penglai_B2 72MW 230/37 0.026650*2 0.000570*2

Penglai_115 180MW 226/115 0.003001*2 0.000290*2

Load Condition
Station Rating Voltage (p.u.) Active Power (p.u.) Reactive Power (p.u.) MVA Base kV Base 

ZhouBei 0.9715 0.6195 0.1405 100 230.00

LiangJia 1 0.21 0.1 100 20.0

Penglai_115 0.94335 0.3280 0.16400 100 37.0

Penglai_B 0.961 0.47710 0.15760 100 115

Shengjia 0.9804 0.2301 0.2454 100 115

Qushan 0.9638 0.20530 0.0492 100 115

Shensi 0.97125 0.2616 0.4013 100 115

Gen Model (LiangJia_GEN)
Power Rating 300MW V RMS 20kV

Stator resistance 0.001p.u. Leakage inductance 0.174 Inertia constant 5.269s

Xd(p.u.) 1.86 Xd’(p.u.) 0.229 Xd’’(p.u.) 0.174

Xq(p.u.) 1.75 Xq’(p.u.) 0.382 Xq’’(p.u.) 0.174

Td0’ 8.6s Td0’’ 0.044s

Tq0’ 0.96s Tq0’’ 0.074s

Governing and Turbines(Type 1)
Valve Position  Up limit 1 Valve Position Down limit 0.01 Opening Rate Limit 1.0

Closing Rate Limit -1.0 Dead band 0.001 Speed Relay 0.1s

Coefficient of Speed governor 20 Time constant of main inlet volumes and steam chest 0.2s Time constant of reheater 10s

Fraction of HP 0.333

Excitation Systems (Type 1)
Amplifier 10 Time constant 0.01s Maximum of field voltage 21.5p.u.

Minimum of field voltage -21.5p.u. Time constant of excitation 0.1s Proportional coefficient of excitation 1.0

Coefficient of Speed governor 20 Compensation Coefficient 0.001

Line Parameters (MVA Base = 100MVA)
Where CZ is the abbreviation of Z_Changzhou, YD is abbreviation of Z_Yidu, PL is the abbreviation of Z_Penglai, ZB is the 

abbreviation of Zhoubei, LJ is the abbreviation of Z_Liangjia, CS represents the converter station, SJ is the abbreviation of Shengjia, 

QS is the abbreviation of Z_Qushan, SS is the abbreviation of Z_Shensi.

R+ (p.u.) L+ (p.u.) C+ (p.u.) R0 (p.u.) L0 (p.u.) C0 (p.u.) RMS (kV)

CZ-YD 1 0.0017 0.0129 0.0299 0.0129 0.0375 0.0204 230

CZ-YD 2 0.0017 0.0129 0.0299 0.0129 0.0375 0.0204 230

CZ-PL 0.0058 0.0276 0.0327 0.0385 0.0713 0.0222 230

CZ-ZB 0.0015 0.0111 0.0190 0.0110 0.0324 0.0129 230

YD-LJ1 0.0013 0.0097 0.0167 0.0096 0.0284 0.0113 230

YD-LJ2 0.0013 0.0097 0.0167 0.0096 0.0284 0.0113 230

ZB-LJ 0.0019 0.0145 0.0248 0.0143 0.0423 0.0169 230

ZB-CS1 0.0075 0.0295 0.0000 0.0458 0.0706 0.0000 230

PL-CS2 0.0075 0.0295 0.0000 0.0458 0.0706 0.0000 230

PL_115-SJ 0.0399 0.0691 0.1195 0.1367 0.0926 0.0813 115

PL_115-QS1 0.0081 0.0303 0.0432 0.0483 0.0707 0.0294 115

PL115-QS2 0.0081 0.0303 0.0432 0.0483 0.0707 0.0294 115

SJ-CS4 0.0035 0.0145 0.0000 0.0219 0.0355 0.0000 115

QS-SS 0.0360 0.0591 0.1195 0.1177 0.0756 0.0813 115

QS-CS3 0.0075 0.0295 0.0000 0.0458 0.0706 0.0000 115

SS-CS5 0.0025 0.0095 0.0000 0.0150 0.0223 0.0000 115

8.3.  Parameters of the unstable case study
Parameters of the circuit

R1 5000Ω R2 1Ω
R3 4Ω R4 -0.76Ω
Rbrk 0.1Ω
C 30F L1 0.3H

L2 0.03H LTLI 0.2H

Vs sin(1*2πt)V
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Highlights

 Three theorems for the stability of three typical multi-rate simulation algorithms 

have been proposed and proved. 

 The error of three typical multi-rate simulation algorithms has been modelled.

 The backward synchronization for the Thevenin equivalent interface has been 

proposed to overcome the challenge of synchronization.

 Three typical multi-rate simulation algorithms have been compared to illustrate 

that the modified Thevenin equivalent interface is the most stable and accurate.

 The multi-rate simulation algorithm has been used in the studies of DC grids, 

which achieve the great improvement of the simulation speed.


