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Abstract 

During the last few years, rich-club (RC) organization has been studied as a possible brain-

connectivity organization model for large-scale brain networks. At the same time, empirical 

and simulated data of neurophysiological models have demonstrated the significant role of 

intra-frequency and inter-frequency coupling among distinct brain areas. The current study 

investigates further the importance of these couplings using recordings of resting-state 

magnetoencephalographic activity obtained from 30 mild traumatic brain injury (mTBI) 

subjects and 50 healthy controls. Intra-frequency and inter-frequency coupling modes are 

incorporated in a single graph to detect group differences within individual rich-club 

subnetworks (type I networks) and networks connecting RC nodes with the rest of the nodes 

(type II networks). Our results show a higher probability of inter-frequency coupling for ;ɷ–

ɶ1Ϳ, ;ɷ–ɶ2Ϳ, ;θ–βͿ, ;θ–ɶ2Ϳ, ;α–ɶ2Ϳ, ;ɶ1–ɶ2) and intra-frequency coupling for (ɶ1–ɶ1) and (ɷ–ɷ) for 

both type I and type II networks in the mTBI group. Additionally, mTBI and control subjects 

can be correctly classified with high accuracy (98.6%), whereas a general linear regression 

model can effectively predict the subject group using the ratio of type I and type II coupling 

in the ;ɷ, θͿ, ;ɷ, βͿ, ;ɷ, ɶ1), and ;ɷ, ɶ2) frequency pairs. These findings support the presence of 

an RC organization simultaneously with dominant frequency interactions within a single 

functional graph. Our results demonstrate a hyperactivation of intrinsic RC networks in mTBI 

subjects compared to controls, which can be seen as a plausible compensatory mechanism 

for alternative frequency-dependent routes of information flow in mTBI subjects.  

  

Keywords: Magnetoencephalography (MEG); mild traumatic brain injury (mTBI); cross-

frequency coupling; intrinsic networks; brain network models 
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Introduction 

 

While traumatic brain injury (TBI) is one of the most serious brain disorders, mild TBI 

(mTBI) is one of the most frequent, and accounts for almost 90% of all brain injuries (Levin et 

al., 1987; Len and Neary, 2011; Huang et al., 2014). The symptomatology of brain injury is 

characterized by headaches, fatigue, memory loss, sleep disturbances, loss of balance, 

seizures, depression, and visual and emotional disturbances (Huang 2014). It is estimated that 

5-20 percent of irremediable patients (Bharath et al., 2015) have symptoms that persist for 

one year or more after the injury (Huang et al. 2014). Based on these findings, a number of 

research groups have worked on developing robust biomarkers for highly accurate 

differentiation of mTBI patients from healthy controls using resting state 

magnetoencephalographic (MEG) recordings and functional brain connectivity analysis 

(Huang et al., 2009, 2014; Zouridakis et al., 2012; Antonakakis et al., 2016a; Dimitriadis et al., 

2015a, Mvula et al., 2017; Zouridakis et al., 2017). 

 In terms of brain communication, both structural and functional imaging studies have 

shown (van den Heuvel and Sporns, 2011, Palva and Palva, 2011; Vértes and Bellmore, 2015) 

that the highest amount of information flows within a backbone of the brain network 

consisting of a subset of main nodes, or hubs, known as rich club (RC) that often follows a 

small-world (SW) topology. The “W Ŷetǁoƌk ŵodel has ďeeŶ iŶǀestigated iŶ Alzheiŵeƌ͛s 

disease (Stam et al., 2007), schizophrenia (Micheloyannis et al., 2006), and autism (Liu et al., 

2008; Rubinov et al., 2010; Tsiaras et al., 2011), whereas the RC organization has been 

observed both in computer simulations (Senden et al., 2014) and human studies involving 

healthy subjects (van den Heuvel and Sporns, 2011; Bullŵoƌe aŶd “poƌŶs, ϮϬϭϮ; Mišić et al., 

2014), as well as brain ischemia (Fornito et al., 2012; van den Heuvel and Sporns, 2013; 

Crossley, Alawieh, Watanabe et al., 2015) and mTBI patients (Antonakakis et al., 2015). RC 

nodes play a significant role in communication and information integration among brain areas 

that are distinct and distant. Thus, it is important to explore how this integration of 

information is affected by various brain diseases and disorders (van den Heuvel and Sporns, 

ϮϬϭϭ; Mišić et al., ϮϬϭϰ; Bullŵoƌe aŶd “poƌŶs, ϮϬϭϮͿ. 

Functionally, the human brain consists of several specialized subsystems, each 

oscillating in a dominant frequency. Communication between a small and a larger system is 

facilitated via intra-frequency coupling, whereas communication between two larger 
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systems, whereby each system oscillates with its own prominent frequency, is realized via 

cross-frequency coupling (Canolty et al., 2006). A key feature of ongoing brain activity is its 

intrinsic coupling mode which exhibits multiple spatio-temporal patterns and supports rich 

information processing (Varela et al., 2001). There is significant evidence that these intrinsic 

coupling modes are negatively affected by brain diseases and positively reinforced by 

cognition and learning (Engel et al., 2013). 

 Important issues stemming from previous analyses on the study of mTBI  using  Granger 

causality (Zouridakis et al., 2012), phase synchronization (Dimitriadis et al., 2015b), cross-

frequency coupling (Antonakakis et al., 2015, 2016a, c), complexity  (Antonakakis et al., 

2016b), as well as brain activation patterns of both EEG and MEG at the sensor (Li et al., 2015) 

and source (Zouridakis et al., 2016; Li et al., 2017) levels relate to the following key questions: 

1) Is there a group difference in intra-frequency and inter-frequency coupling within the RC 

networks (type I network) and between the RC hubs and the rest of the brain network (type 

II network)? 2) If so, in which intra-frequency and inter-frequency intrinsic coupling modes 

does the ratio of probability distributions between the two types of networks show group 

differences? 3) Are the theoretical information exchange rate (IER), the weighted IER (WIER), 

and the ratio of probabilities between the two types of networks altered in mTBI? 4) Can the 

ratio of probability distribution of the prominent intrinsic coupling modes between the two 

types of networks discriminate the two groups? To address these questions, in the current 

study we explore both intra-frequency and inter-frequency coupling using resting-state MEG 

obtained from mTBI patients and healthy controls under the distinction of brain network 

nodes as RC and non-RC hubs. 

The present study is structured as follows: the next section describes the Experimental 

Procedures including the subjects and analysis methods, the subsequent section presents the 

analysis results, whereas the last section discusses advantages and limitations of the 

proposed methodology and describes further future improvements. 

 

 

 

 

 

Experimental Procedures 
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Participants and procedure 

Thirty right-handed mTBI patients (29.33 ± 9.2 years of age) (Levin, 2009) and fifty age- 

and gender-matched neurologically intact healthy controls (29.25 ± 9.1 years of age) 

participated in the study. The control group was drawn from a normative data repository at 

UTHSC-Houston, whereas the mTBI patients were recruited from three trauma centers in the 

greater Houston metropolitan area. Those centers were part of a larger study (Levin, 2009) 

supported by Department of Defense (DoD). mTBI was defined according to the guidelines of 

DoD (Assistant Secretary, 2007) and the American Congress of Rehabilitation Medicine (Kay 

et al., 1993). Demographic details about the mTBI patients are presented in the 

Supplementary Material, which includes all information provided by the clinicians. Previous 

head injuries, history of neurologic or psychiatric disorder, substance abuse, and extensive 

dental work and implants incompatible with MEG were used as exclusion criteria for the 

control group. The project was approved by the Institutional Review Boards (IRBs) at the 

paƌtiĐipatiŶg iŶstitutioŶs aŶd the HuŵaŶ ‘eseaƌĐh PƌoteĐtioŶ OffiĐial͛s ƌeǀieǁ of ƌeseaƌĐh 

protocols for DoD. All procedures were compliant with the Health Insurance Portability and 

Accountability Act (HIPAA). 

The MEG acquisition included ten minutes of resting-state activity for each subject lying 

on a bed with eyes closed, using a whole-head Magnes WH3600 system with 248 channels 

(4D Neuroimaging Inc., San Diego, CA). Data were acquired using a sampling rate of 1017.25 

Hz and online bandpass filters between 0.1–200 Hz. Five minutes of data were artifact 

contaminated (Dimitriadis et al. 2015a) and thus the rest five minutes were used in the 

current analysis. The original axial gradiometer recordings were transformed to planar 

gradiometer field approximations using the sincos method implemented in the software 

package Fieldtrip (Oostenveld et al., 2011). 

 

MEG Preprocessing   

Reduction of non-cerebral activity was based on an automated blind detection and 

elimination strategy applied to the raw MEG data, due to the lack of independent ocular and 

cardiac activity monitoring, using the Fieldtrip toolbox (Oostenveld et al., 2011) and MATLAB 

(The MathWorks, Inc., Natick, MA, USA). In particular, the following iterative procedure was 

applied to all datasets individually: First, correction of activity from bad MEG channels was 
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performed using interpolation (Oostenveld et al., 2011) on the four closest channels 

surrounding the bad one, whereas notch filtering was used to eliminate the effects of power 

line noise at 60 Hz. Second, blind detection of non-cerebral activity relied on Independent 

Component Analysis or ICA (Delorme and Makeig, 2004) and information theory metrics. 

Detection started using principal component (PC) analysis to eliminate external magnetic 

noise, whitening of brain activity, and reducing the dimensionality of the original data using 

principal component analysis. A threshold of 95% of the total variance (Delorme and Makeig, 

2004; Escudero et al., 2011; Antonakakis et al., 2015, 2016a) was used to select the optimum 

number of PCs. Then, the reduced number of PCs were fed to the Infomax algorithm (Delorme 

and Makeig, 2004) to identify the independent components (ICs). Subsequently, elimination 

of IC corresponding to artifactual activity was done using kurtosis, Rényi entropy, and 

skewness on the entire time course of each IC, separately for each subject. These values were 

normalized to zero-mean and unit-variance. Then, an IC was tagged as representing ocular or 

cardiac activity if more than 20% of kurtosis, Rényi entropy, and skewness were outside the 

range [-2, +2] (Escudero et al., 2011; Dimitriadis et al., 2013a; Antonakakis et al., 2015, 2016a). 

Additionally, we used the time course of each IC, its spectrum profile, and the topological 

distribution of the IC weights to further confirm if an IC was an artifact. Across subjects, the 

number of ICs removed was on average 6 out of 50 ICs. The artifact-free ICs were then used 

to reconstruct the MEG activity.  

 

Functional Connectivity Graphs 

To estimate intra-frequency and inter-frequency connections, the artifact-free 

multidimensional array X (sensors x time series) was filtered in six standard brain frequency 

rhythms/bands. In particular, for each subject, X was bandpass filtered in the ɷ ;Ϭ.ϱ – ϰ HzͿ, θ 

(4 – ϴ HzͿ, α ;ϴ – ϭϱ HzͿ, β ;ϭϱ – ϯϬ HzͿ, ɶϭ ;ϯϬ – 45 Hz), and ɶϮ ;ϰϱ – 80 Hz) using a fourth 

order two-pass Butterworth filter. This resulted in a multidimensional array, Xf, where f = ɷ, 

θ, α, β, ɶϭ, and ɶϮ. 

 Intra-frequency functional connectivity graphs (IFCG) were constructed using the 

non-linear metric mutual information (MI), which expressed the intra-frequency content 

between MEG time-series in a brain rhythm. In addition, cross-frequency interactions were 

explored by analyzing inter- or cross-frequency functional connectivity graphs (CFCG) based 

on phase-to-amplitude coupling (PAC) for the inter-frequency content within a single MEG 
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time series or between pairs of MEG time series. As a result of the IFCG and CFCG, the so-

called ICFCG was derived via surrogate analysis such as to reveal dominant intra-frequency or 

inter-frequency coupling modes for each pair of MEG sensors. The rich club organization 

showed statistically significant differences and separation of the two group based on the 

theoretical amount of information and probability density functions.  

 

IFCG — Mutual Information 

IFCG were constructed using MI revealing the interdependence between MEG time 

series Xf,i and Xf,j, ;i,j = ϭ … ϮϰϴͿ of Xf. The use of MI stems from information theory and offers 

several advantages, such as sensitivity to any type of dependence between the time series, 

including nonlinear relations and generalized synchronization, robustness to outliers, and 

measurement in bits. The mathematical definition of MI between two specific-band, artifact-

free, filtered sensor data arrays Xf,i and Xf,j is given by 

,௙ሺ݅ܩ�ܨܫ  ݆ሻ = )ܫ ௙ܺ,௜; ௙ܺ,௝) = ∑ ∑ ,ݖሺ݌ ሻݕ log ቆ ,ݖሺ݌ ሻቇ௫∈௓௬∈௒ݕ௬ሺ݌ሻݖ௭ሺ݌ሻݕ ሺ૚ሻ 

where Z = X୤,୧, Y = X୤,୨, pሺz, yሻ is the joint probability distribution function of Z and Y, 

respectively, and p୸ሺzሻ = ∑ pሺz, yሻ୷∈ଢ଼  and p୷ሺyሻ = ∑ pሺz, yሻ୸∈୞  are the marginal probability 

distribution functions of Z and Y, respectively (Tsiaras et al., 2011; Antonakakis et al., 2015). 

 

  CFCG — Cross-frequency Coupling 

In CFCG, PAC was used to reveal the relation of low- and high-pass frequency content 

within an MEG sensor or between pairs of MEG sensors for fc = ;ɷ, θͿ, …, ;ɶ1, ɶ2). In terms of 

PAC, the phase of low-frequency rhythm modulated the amplitude of a higher-frequency 

oscillation (Tort et al., 2008; Voytek et al., 2010; Xu et al., 2013). PAC was calculated between 

MEG seŶsoƌs ɍi and Xj ;i, j = ϭ … ϮϰϴͿ of a multidimensional array of time series X using MI. 

Specifically, Eq. (1) was used between the phases of low-frequency (fl) versions of the MEG 

sensors. First, the phase φfl,i of the low-frequency content of ɍi, extracted by Hilbert 

transform, was used as Z = φfl,I. The corresponding low-pass phase, computed by the 

amplitude Xfh,j of the high-frequency (fh) content of Xj, was used as Y = φfh,fl,j. More details are 

completely described in Supplementary Material. 
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ICFCG estimations 

The based FCG type, ICFCG (combination of IFCG and CFCG), was estimated using intra-

frequency and inter-frequency couplings. The ICFCG contains the dominant frequency mode 

(intra- or inter-) of each MEG sensor. In particular, the mathematical definition of this type of 

FCG is given by 

,ሺ݅ܩ�ܨ�ܫ  ݆ሻ = max௙௖=ሺఋ,�ሻ,…,ሺఊభ,ఊమሻ௙=ሺఋ,…,ఊభሻ ,௙ሺ݅ܩ݅} ݆ሻ, ,௙௖ሺ݅ܩ� ݆ሻ} ∀ ݅, ݆ = ͳ, … ,ʹ48 ሺ૛ሻ 

 

where ݅ܩ௙ is the IFCG and �ܩ௙௖ሺ݅, ݆ሻ is the CFCG including all frequency pairs (i.e., 15 

frequency pairs) and all frequencies (i.e., 6 frequencies) for each pair of MEG sensors.  

  

 

Surrogate analysis 

A surrogate data analyses was employed to identify significant intra- and inter-

frequency interactions which were estimated for every frequency and pair of frequencies, 

respectively, within and between the 248 sensors (Theiler et al., 1992). Thus, it was possible 

to determine (a) if a given MI value differed from what would be expected by chance alone, 

and (b) if a given non-zero MI value indicated synchronization that was, at least statistically, 

non-spurious. 

The null hypothesis H0 stated that the observed MI value came from the same 

distribution as the distribution of surrogate MI values for every sensor pair, frequency, and 

frequency pair independently. One thousand surrogate time-series MI(t) were generated by 

cutting at a single point at a random location and exchanging the two resulting time courses 

(Canolty et al., 2006; Aru et al., 2015). Repeating this procedure produced a set of surrogates 

with minimal distortion of the original synchronization dynamics and impact on the non-

stationarity of brain activity as compared to either merely shuffling the time series or cutting 

and rebuilding the time series in more than one time points. This procedure ensures that the 

observed and surrogate indices shared the same statistical properties. For each data set, the 

surrogate MI (SMI) was computed. We then determined a one-sided p-value expressing the 
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likelihood that the observed MI value could belong to the surrogate distribution, and 

ĐoƌƌespoŶded to the pƌopoƌtioŶ of ͞suƌƌogate͟ MIs ǁhiĐh ǁas higheƌ thaŶ the oďseƌǀed MI 

value (Theiler et al., 1992). MI values associated with statistically significant p-values were 

considered unlikely to reflect signals not entailing MI coupling. 

A similar procedure was adopted for CFCG and ICFCG. Regarding the ICFCG, we define 

the dominant type of interaction in intra-frequency and inter-frequency coupling by first 

correcting the p-value level (p) using Bonferroni correction ;IFCG:  p͛ = p/;ϲ fƌeƋueŶĐǇ ďaŶds), 

CFCG: p͛ = p/;ϭϱ fƌeƋueŶĐǇ paiƌsͿ aŶd ICFCG: p͛ = p/;21=(6 (intra-frequency) + 15 (inter-

frequency couplings)). This statistical thresholding scheme could result in three possible 

outcomes: 

1) only one p͛-value exceeded the threshold, in which case we assigned the related 

coupling mode (intra-frequency e.g., delta, or inter-frequency: e.g., delta-theta) to 

this pair of MEG sensors; 

2) more than two p͛-values exceeded the correction, in which case we assigned the 

one with maximum MI value to this pair of MEG sensors; or 

3) none p͛-value crossed the threshold, in which case we assigned zero to the particular 

pair of MEG sensors. 

 

Then, the false discovery rate (FDR) adjustment (Benjamini and Hochberg, 1995) was 

employed to control for multiple comparisons across all combinations of sensor pairs, 

independently for each frequency and frequency pair, with the expected proportion of false 

positiǀes set to Ƌ ≤ Ϭ.Ϭϭ. FiŶallǇ, oŶlǇ the sigŶifiĐaŶt ĐoŶŶeĐtioŶs ǁeƌe kept ǁith theiƌ MI 

weights while the rest were substituted with zeros. 

 

Topological Filtering 

Each of the brain connectivity graphs described — IFCG, CFCG, and ICFCG — resulted in 

a k x k matrix of connectivity values (k is the number of the MEG sensors) representing a fully 

connected, weighted, symmetric, directed FCG. To reduce the maximum number of possible 

connections in the FCGs (k=248 leads to k2 = 61504 possible connections) and allow only 

patterns with the most topologically significant connections to emerge, the actual 

connections were filtered using a data-driven topological thresholding scheme based on 

global information among the sensor links (Bassett et al., 2009; Dimitriadis et al., 2015a). We 
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applied this approach on each type of FCG for all subjects. The filtering procedure is described 

elsewhere (Dimitriadis et al., 2015a, Antonakakis et al., 2016a) and the corresponding 

software implementation is available online1. 

 

Rich Club Estimation 

The RC organization was estimated for all FCG types using the Brain Connectivity 

Toolbox2 (Rubinov and Sporns, 2010).  One thousand random networks preserving the degree 

distribution and sequence of the original network (van den Heuvel and Sporns, 2011) were 

geŶeƌated aŶd the ‘C ĐoeffiĐieŶt ǁas Đoŵputed foƌ eaĐh ƌaŶdoŵ Ŷetǁoƌk aŶd degƌee k. Ɍr
w 

was computed as the average RC coefficient over the random networks and the normalized 

‘C paƌaŵeteƌ Ɍn
w ǁas Đoŵputed as the ƌatio of Ɍw to Ɍr

w. The randomization process could 

be used to assess the statistical significance of the results through permutation testing (van 

den Heuvel and Sporns, 2011). In that ƌespeĐt, the distƌiďutioŶ of Ɍr
w yielded the null 

distribution of RC coefficients obtained from random topologies. Using this null distribution, 

Ɍw could be assigned a p-value from the percentage of random tests found to be more 

eǆtƌeŵe thaŶ the oďseƌǀed ‘C ĐoeffiĐieŶt Ɍw. All tests were performed at the FDR-adjusted 

p͛ leǀel of sigŶifiĐaŶĐe ;Benjamini and Hochberg, 1995) computed as p͛ = p/;ϴϬ suďjeĐts ǆ ϲ 

frequency bands) for the IFCGs, p͛ = p/;ϴϬ subjects x 15 frequency pairs) for CFCGs, aŶd p͛ = 

p/(80 subjects) for CFCGs. 

 

Comodulograms 

Comodulograms are matrices tabulating the probability distribution (PD-

comodulogram) of connections within a functional connectivity network associated with 

intra-frequency coupling (diagonal) and inter-frequency coupling (upper diagonal). To 

estimate the prominent type of interaction for each pair of sensors, across six (intra-) + 15 

(inter-) = 21 MI coupling strengths, a surrogate analysis was followed. PD-comodulograms 

were computed in the range between Ϭ.ϱ aŶd ϴϬ Hz, within and across the eight frequency 

bands studied, separately for each subject group and type of RC network, as described in the 

following sections.  

 

                                                           
1http://users.auth.gr/~stdimitr/software.html 
2 https://sites.google.com/site/bctnet/ 

http://users.auth.gr/~stdimitr/software.html
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Information Exchange Rate (IER) 

A novel measure to summarize the rate of information transfer among neural 

assemblies throughout the brain was adopted under the assumption that phase-to-amplitude 

coupling, or PAC, modes reflect processes for exchanging ͞paĐkets of Ŷeuƌal iŶfoƌŵatioŶ͟ 

among populations of neurons operating at different characteristic frequencies. The concept 

behind PAC iŶteƌaĐtioŶs ĐaŶ ďe iŶteƌpƌeted as the pƌoĐess of foƌŵiŶg ͞paĐkets of 

information,͟ iŶ ǁhiĐh higheƌ fƌeƋueŶĐǇ ďƌaiŶǁaǀes aƌe Ŷested ǁithiŶ the phase of slower 

rhythms. A specific number of cycles of the higher frequency oscillation can be incorporated 

within the phase of the slower frequency. This number is expected to reflect the amount of 

information that can be exchanged among neural oscillators operating at different 

characteristic frequencies. With this assumption, and based on the detected prominent cross-

frequency interactions, we adopted a previously introduced measure that aggregates the rate 

of information exchanged throughout the brain (Dimitriadis et al., 2016b): for each subject, 

we simply summed up the number of cycles of the higher frequency that could be included 

within the phase of the slower frequency. This index, which provides the ͞instantaneous͟ 

information exchange rate (IER), varies between 0 and 1 and is defined as follows, 

 

�ܧܫ = ∑ ∑ ௡�௠௕௘௥ ௢௙ ௖௬௖௟௘௦ܨܮ௡�௠௕௘௥ ௢௙ ௖௬௖௟௘௦ܨܪ
�

௝=ଵ
�

௜=ଵ ܰ �݋݂  = ʹ48 ሺ૜ሻ 

 

Since each of the detected PAC interactions is associated with a varying strength, or a 

MI level, we also introduced a ͞ǁeighted͟ version of the above index, which also ranges 

between 0 and 1 and is defined as follows (Dimitriadis et al., 2016b), 

�ܧܫܹ = ∑ ∑ ௡�௠௕௘௥ ௢௙ ௖௬௖௟௘௦ܨܮ௡�௠௕௘௥ ௢௙ ௖௬௖௟௘௦ܨܪ
�

௝=ଵ
�

௜=ଵ ∗  ሺ૝ሻ ܫܯ

The WIER magnitude can be interpreted as the co-modulations between lower and 

higher frequencies, with 1 reflecting the strongest PAC interaction. PAC value can be used as 

an indicator of how active a ͞channel͟ is between or within sensors for information exchange. 
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Network Features Related to the Dominant Type of Interaction 

Many possible network features can be extracted from brain networks based on 

different types of interaction in the RC organization. We estimated the distribution of RC hubs 

over several brain areas in both subject groups, and connectivity graph types, i.e., IFCG, CFCG, 

and ICFCG. Furthermore, by dividing the entire network into two subnetworks, i.e., the rich-

club subnetwork and the one composed of connections between RC nodes and the rest of the 

network, different features can be evaluated. Namely, the first or type I network is that with 

connections among RC nodes, while the second or type II network, is the one connecting the 

RC nodes to the rest of the network nodes. Afterwards, we estimated the ratio of type I 

network PD-comodulogram divided by the type II network PD-comodulogram based on 

ICFCGs.  

 

Exploration of Statistical Differences 

Statistical analysis was performed on the IER and wIER values as well as on the 

corresponding ratio of type I to type II network and on the ratio of type I to type II network 

PD-comodulogram to detect possible significant differences between the two groups. The 

statistical methods used included normality test and parametric and non-parametric pair-

wise tests and were similar to our previous study (Antonakakis et al., 2016a). The threshold 

for significance of the p-value was set to 95%. After FDR adjustment (Benjamini and Hochberg, 

1995) the new p͛ values where given by p͛ = p/Ϯ for IER, wIER, and their corresponding ratio 

of type I and II networks, and p͛ = p/Ϯϭ ;accounting for six frequency bands and 15 frequency 

pairs). 

 

Results 

Probability Distribution of RC Hubs over Brain Regions 

In an attempt to consistently estimate the spatial distribution of RC hubs over each 

group and FCG type (IFCG, CFCG, and ICFCG), we integrated their representation over distinct 

brain regions in both hemispheres (frontal, central, temporal, parietal, and occipital). In 

particular, we measured the discrete probabilities for RC hubs across regions, separately for 
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each subject, as the ratio of the number of RC nodes in a specific brain area to the total 

number of RC nodes detected for that subject.  

The corresponding averaged distributions are depicted across group and FCG type in 

Fig. 1. Regarding the IFCG-RC topology, RC hubs with higher probability density were detected 

in both groups over frontal and temporal regions bilaterally in all frequency bands (Fig. 1a) 

and with lower probability density value in the other regions. Significant differences (p<0.05, 

Bonferroni corrected, p͛<p/ϰϴ ;ϲ fƌeƋueŶĐǇ ďaŶds ǆ ϴ loďesͿ) were found in left tempo-

parietal regions in the ɷ aŶd β fƌeƋueŶĐǇ ďaŶds, and in the right frontal regions in the θ, α, β, 

aŶd ɶ1 bands. Similar distributions were found for CFCG-RC and IFCG-RC topologies for both 

groups as seen in Fig. 1b (p<0.05, Bonferroni corrected, p͛<p/120 (15 frequency bands x 8 

regions)). Most of the significant differences were seen in parieto-occipital regions in all 

frequency pairs. Finally, even though the ICFCG-RC of Fig. 1c looked similar to IFCG-RC, no 

significant differences were found. 
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Figure 1. Average distribution of RC nodes in mTBI and Control subjects for different types of functional 

connectivity graphs: A) intra-connections (MI – IFCG), B) inter-connections (CFC – CFCG), and C) intra – CFC 

connections (ICFCG). In the case of A) five inter-frequency pairs show classification accuracy higher than 90%. 

The colorbar common for both groups denotes propability density. A black * indicates statistically significant 

diffeƌeŶĐes ;p͛<Ϭ.ϬϱͿ ďetǁeeŶ the tǁo gƌoups oǀeƌ a paƌtiĐulaƌ ďƌaiŶ ƌegioŶ. 

 

Comodulograms of Dominant Intrinsic Coupling Modes based on RC Subnetwork 

Figure 2 shows the PD-comodulogram matrices for connections within networks 

associated with intra-frequency (diagonal) and inter-frequency coupling (upper diagonal). The 

ratios of the type I to type II network comodulograms are shown in Fig. 2a and Fig. 2b, 

respectively, for the two groups. Namely, significant differences (p < 0.01, (p<0.05, Bonferroni 

corrected, p͛<p/21 – black ͚**͛Ϳ ǁeƌe oďseƌǀed in the ɷ, α, aŶd ɶ1 low frequency modulating 

phase and ɷ aŶd ɶ2 high frequency amplitude. Less significant differences (p < 0.05, Bonferroni 

corrected, p͛<p/Ϯϭ – black ͚*͛Ϳ ǁeƌe oďseƌǀed foƌ ɷ, θ, aŶd ɶ1 low frequency modulating phase 

and  ɶ1, β, aŶd ɶ1 high frequency amplitude. 

 

  

 

Figure 2. Ratio of comodulogram of  type I to type II network for control (left) and mTBI (right) subjects. The 

horizontal axis encodes the modulating phase of the lower frequency and the vertical axis reflects the modulated 

amplitude of the higher frequenĐǇ. DiffeƌeŶt Đoloƌs eŶĐode CFCG stƌeŶgth ďetǁeeŶ fƌeƋueŶĐǇ paiƌs; ďlaĐk ͚*͛ 
aŶd ͚**͛ deŶote statistiĐal sigŶifiĐaŶĐe leǀels of p͛< Ϭ.Ϭϱ aŶd p͛< Ϭ.Ϭϭ, ƌespeĐtiǀelǇ.  

 

Theoretical IER/WIER based on RC Subnetwork 

We defined the information exchange ratio (IER) as the sum of ratios between the 

amplitude of fH and the phase of fL to quantify the theoretical amount of information 
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exchanged among RC hubs according to the dominant coupling mode. Figure 3 presents the 

averaged values across each group of IER, WIER and their corresponding ratio of type I to type 

II networks (IERratio and WIERratio). The control group showed higher IER (Fig. 3a) and 

statistically significant WIER values (Fig. 3b) than the mTBI group. However, the IERratio and 

WIERratio metrics (Fig. 3c) were higher in the mTBI group compared to the control group.  

Overall, we found a hyperactivity within RC subnetwork (type I network) for mTBI 

subjects compared to controls, both in the IERratio and WIERratio metrics. This hyperactivity was 

seen in the ɷ fƌeƋueŶĐǇ band that modulated ɶ1 aŶd ɶ2, and in the ɷ, θ, α1 aŶd ɶ1 that 

modulated the ɶ2 band. 

 

 

 

Figure 3. Theoritical amount of information A) IER and B) WIER for type I and type II networks.  C) The averaged 

ratio of type I/type II for IER and WIER for mTBI and Control subjects. All comparisons (paired test linked by *) 

ƌeaĐh statistiĐal sigŶifiĐaŶĐe ;p͛: * < Ϭ.Ϭϱ; ** < Ϭ.Ϭϭ aŶd ***<Ϭ.ϬϬϭͿ. 
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Feature Extraction and Classification Performance  

In the current study, we tested the separation of the mTBI and control groups using only 

ICFCG-based features composed by PD-comodulogram matrices, IER/WIER values, and their 

corresponding IERratio and wIERratio. Laplacian scores (LS, He et al., 2005) were estimated 

through an iterative bootstrap procedure for estimating the cut-off threshold of the features 

(Dimitriadis et al., 2015a; Antonakakis et al., 2016a, b). Classification evaluation was followed 

by a 10-fold cross-validation evaluation of one hundred iterations. Two classifiers were used, 

k nearest neighbor (kNN; Horn and Mathias, 1990) and support vector machine (SVM, Cortes 

and Vapnik, 1995) to observe the stability of the results.  

Table 1 shows that the only surviving features following bootstrap thresholding were 

the PD-comodulogram values for frequency pairs ;ɷ, θͿ, ;ɷ, βͿ, ;ɷ, ɶ1Ϳ, aŶd ;ɷ, ɶ2).  

 

Table 1. Classification features after bootstrap thresholding: only the PD-comodulogram values for frequency 

paiƌs ;ɷ, θͿ, ;ɷ, βͿ, ;ɷ, ɶϭͿ, aŶd ;ɷ, ɶϮͿ suƌǀiǀed; a dash ͞-͞ is used foƌ featuƌes that did Ŷot suƌǀiǀe. 

            Feature 

Type 

Group  

PD-

Comodulogram 

IER wIER IERratio wIERratio 

Controls 0.00025 ± 0.0022 - - - - 

mTBIs 0.0001 ± 0.00091 - - - - 

 

Table 2 shows the classifier performance in discriminating the mTBI subjects from 

controls using the kNN and SVM classifiers and 10-fold cross-validation repeated 100 times. 

Ninety percent of the data were used for training and 10% for testing. Positive labels 

correspond to the control group and negative labels to the mTBI group. Higher classification 

accuracy (98.6%) was achieved by the SVM classifier compared to kNN (96.1%). Sensitivity 

and specificity values were also higher for the SVM than the kNN algorithm. In general, the 

SVM classifier reached higher performance values, but both were quite efficient in predicting 

the classification group. 
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Table 2: Classification performance of the k-nearest neighbor (kNN) and support vector machine (SVM) 

classifiers in separating mTBI patients from controls, based on 100 runs of a 10-fold cross-validation 

procedure. Ninety percent of the data were used for training and ten percent for testing. 

 Accuracy (%) Sensitivity (%) Specificity (%) 

kNN 96.1±0.5  96±0.006        96.3±1.5 

SVM 98.6±0.5    98±0.001 99.6±1.4 

 

To further visualize the separation of the two groups, a 3D visual representation was 

attempted using the Euclidian distance of the selected features among subjects (Fig. 4a).  

Then, multidimensional scaling was used to project the multidimensional feature space to 3D, 

and the convex hull of the resulting ICFCGs was estimated to better visualize the separation 

of subjects. In general, controls showed higher distance values than mTBI patients, and after 

3D projection, mTBI patients showed a larger volume (larger variance) than controls (Fig. 4b). 

 

 

  

Figure 4. A) Euclidean distance between classification features.  B) Convex hull to visualize the separation of the 

mTBI and Control groups, following multidimensional scaling and 3D projection of the ICFCG selected features 

(co-modulograms, IER, WIER, IERratio, and WIERratio). Label V denotes the convex hull volume for each group. 

 

A final validation step regarding the significance of the selected features was performed 

using logistic regression to investigate the group sensitivity with respect to the selected 

features. Using a general linear regression model of binomial distribution, we tested the linear 

equation of [݈ݐ݅݃݋ሺ݌ݑ݋�ܩሻ ≈ ͳ + ሺߜ, �ሻ + ሺߜ, ሻߚ + ሺߜ, ଵሻߛ + ሺߜ,  ଶሻ], where the dependentߛ

variable was Group (0, 1) and the independent variables were the PD-comodulogram values 
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for frequency pairs ;ɷ, θͿ, ;ɷ,βͿ, ;ɷ,ɶ1), aŶd ;ɷ,ɶ2) shown in Table 1. Table 3 summarizes the 

logistic regression results showing that the independent variables are the most significant for 

the predicting the group. The total number of observations was 80 (50 control and 30 mTBI 

subjects) with 75 error degrees of freedom, whereas the deviance of fit had 66.8 degrees of 

freedom with a statistically significant p-value < 0.001. Furthermore, p-values were 

statistically significant (p< 0.05) for all coefficient estimates, B; thus, all coefficients were 

informative and could not be rejected. Furthermore, the quite low p-value of the statistical 

comparison on the model (p-value = 1.09∙10-13) indicates that this model differs significantly 

from the constant model (݈ݐ݅݃݋ሺ݌ݑ݋�ܩሻ ≈ ͳ). The current logistic regression model strongly 

validates the results of the bootstrap approach regarding the selected features. 

 

Table 3. Logistic regression modeling; dependent variable: Group (Control: 0, mTBI: 1); independent variables: 

PD-comodulogram frequency pairs (ɷ, θ), (ɷ, β), (ɷ, ɶ1), and (ɷ, ɶ2); B: coefficient estimates; SE: standard error of 

B; t: t-statistic; and p: p-values of B.   

 

Variable B SE t p 

constant 169.64 76.19 22.26 0.026 

;ɷ,  θͿ 6942.1 2278.9 30.46 0.0023 

;ɷ,  βͿ 1163.7 537.03 2.167 0.031 

;ɷ, ɶ1) -338.53 112.35 -30.13 0.0026 

;ɷ, ɶ2) -174.36 77.056 -22.63 0.024 

 

  

Discussion 

 From the machine learning perspective, we observed a hyperactivity of the type I 

network compared to type II network in mTBI subjects. The corresponding levels for the 

control group are shown in Fig.3c, for the IERratio and WIERratio metrics. The hyperactivity is 

liŵited to the ɷ fƌeƋueŶĐǇ ďaŶd, ǁhiĐh ŵodulates θ, β, ɶ1, aŶd ɶ2 frequencies (Table 2). The 

proposed strategy of defining type I and II networks and the subsequent study of prominent 

intrinsic coupling modes using intra-frequency and inter-frequency estimates succeeded to 

uncover a hyperactivity for mTBI subjects within the RC module. This hyperactivity can be 

viewed as a compensatory mechanism that preserves information flow under network 

disruptions resulting from mTBI. Future follow-up studies should further validate whether the 
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proposed exploratory analysis could be useful for recovery mechanisms (Tarapore et al., 

2013) at the individual level of a mTBI patient. 

Our analysis introduced several innovative features that succeeded to not only 

differentiate the mTBI group from controls, but also explain their difference based on network 

analysis, using appropriate connectivity estimators for both intra-frequency and inter-

frequency intrinsic coupling modes. Notice that the two groups are matched in terms of age, 

but there might be other mismatch between the patient and control groups. The whole 

analysis procedure is summarized in the following steps: 

 Estimate functional brain networks within and between frequency pairs 

 Detect the dominant type of interaction for each pair of sensors 

 Estimate RC hubs based on the mixed functional connectivity graph for each subject 

 Define two subnetworks, within the RC hubs (type I) and between RC hubs and the 

rest of the network (type II) 

 Estimate the ratio of the PD-comodulograms from dominant types of interactions 

separately for the two types of subnetworks 

 Estimate the information exchange rate (IER/wIER) based on the dominant intrinsic 

coupling modes 

The novel results of our analysis include the following: 

 Classification of the two groups based on the PD-comodulograms reached an accuracy 

of approximately 99%. 

 Using linear regression analysis, we detected four cross-fƌeƋueŶĐǇ paiƌs ǁith ɷ as the 

dominant phase modulator and ;ɷ, θͿ, ;ɷ, βͿ, ;ɷ, ɶ1), ;ɷ, ɶ2) as the most significant 

features that can classify the two groups correctly. 

Considering that typical structural imaging alone might fail to indicate the development 

of mTBI, Huang and co-workers (Huang et al. 2009) proposed integrating MEG/MRI scans with 

DTI. They demonstrated the superiority of the bimodal approach over MRI and DTI alone in 

efficiently detecting mTBI by correlating MEG slow waves with fractional anisotropy in DTI 

and, thus, linking functional disturbances with specific cortical grey-matter areas. 

Interestingly, they also found that in some abnormal MEG recordings, ɷ ǁaǀes ǁeƌe Ŷot 

accompanied by changes in fractional anisotropy, indicating the superiority of MEG in 
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detecting mTBI, even in the absence of structural changes (Huang et al., 2009). Recently, we 

observed ɷ hǇpeƌaĐtiǀitǇ iŶ ƌight fƌoŶtal ďƌaiŶ aƌeas in mTBI subjects using a novel complexity 

index to analyze MEG activity (Antonakakis et al., 2016b). 

Many other analysis procedures applied to both EEG (e.g., Arakaki et al., 2017) and MEG 

(e.g., Zouridakis et al., 2017) recordings have reported altered functional connectivity in mTBI, 

which, in some cases, was correlated with the severity of the disease (Castellanos et al., 2010; 

for a review see Talavage et al., 2016). Adopting Granger causality as a connectivity measure, 

Zouridakis and co-workers (Zouridakis et al., 2012) reported that brain networks of mTBI 

patients exhibited fewer long-range connections compared to healthy controls, a few weeks 

after mTBI. Two more recent studies demonstrated the sensitivity of resting-state MEG 

recordings to detect abnormal connectivity in TBI (Tarapore et al., 2013) and mTBI (Da Costa 

et al.,2014), while a strong correlation between structural and functional features has been 

ƌeǀealed ďetǁeeŶ ɷ ǁaǀes ;MEGͿ aŶd aǆoŶal iŶjuƌǇ ;DTIͿ ;HuaŶg et al., ϮϬϬϵ, 2014; Mvula et 

al., 2017). Along similar lines, recent studies have detected hyper-synchronization in mTBI 

subjects in the ɷ band (Dunkley et al., 2015; Li et al., 2015). Furthermore, Li et al. (2015) 

demonstrated an over-activation of intracranial sources iŶ ŵTBI iŶ ɷ, θ, aŶd loǁ α frequency 

bands compared to controls. Analysis of evoked potentials and ongoing MEG activity obtained 

from mTBI patients and controls across three repeat sessions scheduled approximately two 

and four weeks apart from the initial session showed that working memory processing in mTBI 

subjects does improve over time (Arakaki et al., 2017); however, functional brain connectivity 

patterns do not recover at the rate that we might have expected (Zouridakis et al., 2016). 

In two of our recent studies, we demonstrated effective discrimination of mTBI patients 

from controls by combining brain networks and machine learning techniques using phase-

locking estimators (Dimitriadis et al., 2015a). In a follow-up analysis focusing on inter-

frequency coupling (Antonakakis et al., 2016a), mTBI demonstrated lower integration and 

weaker local and distant connections compared to controls (see also a review by Rapp et al., 

2015). Furthermore, in a dynamic fashion of the inter-frequency coupling, mTBI showed 

higher segregation and slower micro state transitions and complexity compared to controls 

(Antonakakis et al, 2016b, c).    

Many recent neuroimaging studies have suggested that both structural and functional 

brain connectivity networks exhibit "small-world" characteristics, whereas recent studies 

based on structural DTI data have also revealed a "rich-club" organization of brain networks. 
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Rich-club hubs of high-connection density tend to connect more often among themselves 

compared to nodes of lower density (van den Heuvel et al., 2013). In a recent study, we 

adopted an attack strategy to deduce the dominant type of network model (in terms of RC or 

SW organization) that best describes MEG resting-state networks for control and mTBI 

subjects (Antonakakis et al., 2015). RC nodes play a significant role in the information flow 

among anatomically distant brain subsystems that oscillate in a prominent type of interaction. 

For that reason, cross-frequency coupling plays a key role on the integration of the brain 

functionality (Antonakakis et al., 2016a; Dimitriadis et al., 2015b, c, 2016a, b). Thus, it seems 

necessary to focus on how this integration is affected by various brain diseases and disorders, 

taking into account the dominant types of interactions in the brain (Dimitriadis et al., 2015c, 

2016b) but also the subdivisions of the functional brain network based on its RC organization 

(ǀaŶ deŶ Heuǀel aŶd “poƌŶs, ϮϬϭϭ; Mišić et al., ϮϬϭϰ; Bullŵoƌe aŶd Sporns, 2012). 

In our previous studies, we estimated intra-frequency functional brain networks for 

both mTBI and control groups (Dimitriadis et al., 2015a), while for the first time cross-

frequency interactions were explored in a more recent mTBI study (Antonakakis et al., 2016a). 

Here, we detected the dominant type of interaction for each pair of MEG sensors and then 

the functional brain network was divided into two subsystems, namely, RC hubs and non-RC 

hubs. We then estimated the ratio of probability distribution of dominant intrinsic coupling 

modes within the RC hub subnetwork and between the RC hubs and the rest of the network. 

This stratification of the functional brain networks with the incorporation of dominant 

intrinsic coupling modes succeeded to discriminate mTBI from healthy controls with 

considerable success. Comparing with related recent results, Dimitriadis et al., (2015a) 

examined the metric of relative power but with low percentage of mTBI detection, while 

Antonakakis et al., (2016b) achieved more accurate classification results at the level of 97.5% 

using the complexity index and statistical differences in the same network areas (Fig. 1). The 

present study attempts to go beyond classification, towards a neuro-functional modeling of 

mTBI effects. Additionally, by adopting a general linear regression model of binomial 

distribution, we showed that using as independent variables the ratio of four frequency pairs, 

ǁith ɷ as the phase modulator, i.e., ;ɷ, θ), ;ɷ, βͿ, ;ɷ, ɶ1), and ;ɷ, ɶ2), could accurately predict 

the subject group (dependent variable). This demonstrated a hyperactivity and an increased 

rate of information exchange within the RC hub in mTBI subjects, which can be interpreted as 
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a compensatory mechanism of the injury. It seems that this hyperactivity within the RC 

subnetwork is ɷ-phase mediated and can be interpreted as a mechanism for balancing of loss 

of connections and the reduction in the theoretical exchange of information can be expressed 

through IER and wIER metrics in the mTBI subjects. 

The current sensor-level MEG analysis provided significant results and, thus, a future 

analysis at the source level is necessary to confirm the current findings, possibly by combining 

structural and functional data to estimate brain source connectivity (Martín-Buro et al, 2016). 

We expect that because of the negligible effects of head conductivity (Hämäläinen et al., 

1993) on MEG recordings, the outcomes might be similar. An important improvement of our 

analysis would be the adoption of a dynamic functional connectivity scheme (Dimitriadis et 

al., 2009, 2010a, 2012a, b, c, 2013b, 2015c; Pang et al., 2016) summarized in functional 

connectivity microstates (Dimitriadis et al., 2013b, c, 2015b, d) and network microstates 

(Dimitriadis et al., 2013b, c, 2015b; Antonakakis et al., 2016c) which can provide more 

accurate results on a millisecond basis. Moreover, we plan to study the repertoire and the 

temporal variability of dominant intrinsic coupling modes in the two subject groups to further 

understand the effects of mTBI via graph theory at resting state (Dimitriadis et al., 2016b). 

Along this direction, we are attempting to link functional with structural networks and 

features form fractional anisotropy to behavioural data (Mvula et al., 2017), as well as to 

access sensitivity of functional states and their coupling to the recovery period (Tarapore et 

al., 2013; Arakaki et al., 2017). 
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1. Patient demographics 

The current study is part of a larger mTBI project (Levin, 2009) supported by the 

Department of Defense (DoD). The subjects included in this analysis included a group of 30 

right-handed patients with mTBI (29.33 ± 9.2 years of age) from the DoD project and a group 

of 50 age-matched neurologically intact controls (29.25 ± 9.1 years of age) drawn from a 

database that was being assembled as a normative data repository at UTHSC-Houston. The 

definition of mTBI used followed the guidelines of DoD (Assistant Secretary, 2007) and the 

American Congress of Rehabilitation Medicine (Kay et al., 1993). Mild TBI subjects were 

recruited from the Emergency Departments (EDs) of two Level 1 trauma centers and one Level 

III community hospital in a large ethnically diverse southwestern metropolitan area. Subjects 

were recruited by healthcare professionals (RN, MD, EMT-P) who had clinical experience with 

brain injury patients, knowledge of research, and excellent interpersonal and problem-solving 

skills. Screening occurred through review of data in the EDs electronic healthcare system 

(EHS), consultation with ED staff, and subject interviews. Special permission was obtained 

from the institutional IRBs to administer the Galveston Orientation and Amnesia Test (GOAT) 

(Levin et al., 2008) prior to obtaining informed consent to identify cognitive impairment that 

would preclude provision of informed consent. All subjects showed GOAT scores of 75 or 

greater and so have provided informed consent. 

Inclusion criteria for the mTBI subjects included age 18-50 years, injury occurring within 

the preceding 24 hours, presence of a head injury (documented in medical records and/or 

verified by witnesses), Glasgow Coma Scale (GCS) (Teasdale & Jennett, 1974) score 13-15, loss 

of consciousness <30 minutes including 0 minutes, post-traumatic amnesia <24 hours 

including 0 minutes, and a negative head computed tomography (CT) scan. Exclusion criteria 

included a score on the Abbreviated Injury Scale (AIS) >3 for any body part, history of 

significant pre-existing disease (e.g., psychotic disorder, bipolar disorder, post-traumatic 

stress disorder (PTSD) diagnosed by a psychiatrist or psychologist, past treatment for alcohol 

dependence or substance abuse), blood alcohol level >80 mg/dL at the time of consent, 

documentation of intoxication, left-handedness, and contraindications for MRI (including 

claustrophobia and pregnancy). Previous head injury requiring hospitalization or ED 

treatment was also an exclusion criterion. The demographics of mTBI subjects and the 

location of injury are given in Table S3. 

 The normative data repository included neurologically intact right-handed adults 

recruited from the University of Texas Medical School (UTMS) population (medical students 

and fellows). Handedness was assessed using the Edinburgh Handedness Inventory (Oldfield, 

1971). Participants were screened, using self-report, for medication affecting the 

neurophysiological activity of the brain, as well as metallic implants, such as dental crowns, 

which affect the MEG evoked fields. Previous head injury, history of neurological or 

psychiatric disorder, substance abuse, and extensive dental work and implants incompatible 

with MEG were exclusion criteria for the control subjects. The project was approved by the 

Institutional Review Boards at the participating institutions and the Human Research 
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Protection Officials review of research protocols for DoD. All procedures were compliant with 

the Health Insurance Portability and Accountability Act (HIPAA). 

 

Table S3. Subject demographics, location, and mode of impact (MOI) for the mTBI group. 

Subject 

ID  

Age at 

injury 
Gender Primary MOI 

Primary MOI 

Type 

Primary MOI 

Location 

1 21.7 M 
Auto 

Pedestrian 

Laceration - no 

sutures 
Head 

2 22.1 M Motor Vehicle Tenderness Head 

3 43.1 M Motor Vehicle Tenderness Head 

4 34.6 M 
Fall Raised 

Surface 
Abrasion Head 

5 42.3 F Assault Bruising Head 

6 20.3 M Motor Vehicle Bruising Head 

7 24.0 F ATV 
Laceration - no 

sutures 
Head 

8 24.9 M Sports-related 
Laceration - with 

sutures 
Head 

9 24.4 F Motor Vehicle Bruising Head/Face 

10 43.7 F Motor Vehicle Tenderness Head 

11 36.3 M Blow to Head Tenderness Head 

12 49.1 M Motorcycle Contusion Head 

13 43.3 F Fall Standing 
Laceration - no 

sutures 
Head 

14 23.3 F Fall Standing 
Laceration - with 

sutures 
Head 

15 33.4 M 
Fall Raised 

Surface 

Laceration - no 

sutures 
Head 

16 27.3 M 
Auto 

Pedestrian 
Tenderness Head/Face 

17 49.8 F 
Fall Moving 

Object 

Laceration - with 

sutures 
Head 

18 25.3 M Fall Abrasion Head 

19 27.7 M 
Fall Moving 

Object 
Abrasion Head 

20 20.5 M Motor Vehicle Bruising Head 

21 27.0 F 
Auto 

Pedestrian 
Bruising Head 

22 22.6 F Motor Vehicle Contusion Head 

23 34.8 M Assault Contusion Head 

24 20.3 M Sports-related Contusion Head/Face 

25 43.8 F Fall Standing Contusion Head 

26 28.8 F Motor Vehicle Contusion Head 

27 27.8 M Assault Contusion Head 

28 24.7 F Assault Contusion Head 

29 22.8 F Assault Contusion Head 

30 19.3 M Assault Contusion Head 
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2. Phase to Amplitude Coupling 

 

Given a multidimensional array of time series X, PAC was calculated for the data from 

each sensor Xi and between pairs of sensors ɍi and Xj, ǁith i, j = ϭ … Ϯϰϴ, using mutual 

information (MI) (Tsiaras et al., 2011; Bullmore et al., 2011). First, we extracted the low-

frequency phase (fl,i) of the i-th component φ௙�,௜ and the high-frequency amplitude (fh,j) of the 

j-th component Afh,j using the Hilbert transformation (HT) (Claerbout, 1985). More specifically, 

fh covered frequencies from θ to ɶ2, whereas fl varied from ɷ to ɶ1. The cutoff frequency of the 

lowpass filter was higher than the cutoff of the highpass, so that the two filtering operators 

preserved a common bandpass interval. Since the power spectrum of Afh,j preserved only a 

small portion of the very high frequencies, we bandpass filtered it to match the frequency 

range of φ௙�,௜. Then, the phase of Afh,j, denoted by φ୤h,୨୤l,୧
, was extracted by a second HT. Finally, 

the estimation of PACfc was performed through Eq. (1), where Z = φ୤l,୧, Y= φ୤h,୨୤l,୧
, and fc = (fl,fh) 

= [(ɷ,θͿ, …, ;ɶ1, ɶ2)].   

To compute the Cross Frequency Functional Connectivity Graphs (CFCG) - PAC values, 

we used the HT to estimate the phase (φ௙,௜) and amplitude (�௙,௜) of every �௙,௜, separately in 

each frequency band using 

 φ௙,௜ = tan−ଵ ቌ݉ܫ ቀ��(�௙,௜)ቁ�݁ ቀ��(�௙,௜)ቁቍ                               ሺͳሻ 

 

and 

 �௙,௜ = ଶ(ሺ�௙,௜ሻ��)݉ܫ√| + �݁(��ሺ�௙,௜ሻ)ଶ|             ሺʹሻ 

  

where ImሺΗΤሺΧ୤,୧ሻሻ and Re(ΗΤሺΧ୤,୧ሻ) are the imaginary and real parts of ΗΤሺΧ୤,୧ሻ, 

respectively. We then applied a band-pass filter to A୤,୧ using the same filter parameters used 

to extract X୤l,୧, which resulted in a new time series, A୤୦,୤l,୧. A second HT was then used to 

extract the phases of the fl-filtered f୦ሺ୦୧୥୦ሻ amplitude envelope ሺφ୤୦,୤l,୧) (Voytek et al., 2010). 

The estimation of PAC between the phase of low frequency fl,φ୤l,୧ and the amplitude of the 

high frequency f୦,φ୤୦,୤l,୧  between two sensors X୧ and X୨, is given by Eq. (1) in the main text, 

where Z = φ୤l,୧ and  Y = φ୤୦,୤l,୧. 
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