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Abstract:   

We investigated the dephasing and population dynamics of electron-hole (e-h) pairs and excitons 

in vapor-liquid-solid grown polytype wurtzite/zincblende (WZ/ZB) InP nanowires (NWs) using 

heterodyne four-wave-mixing (HFWM) in three-beam configuration at temperatures from 80 to 

270K. The photon energy of the femtosecond excitation pulses was varied to predominantly 

excite either mobile excitons and e-h pairs or indirect WZ/ZB excitons. The population dynamics 
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reveals a multi-exponential decay with time constants ranging over six orders of magnitude. The 

dynamics has been interpreted by a coupled rate equation model which considers wurzite and 

zincblende electron states, donor electron states, and band bending trapping holes to the surface. 

The model reproduces the essential features of the experimentally observed dynamics at different 

excitation energies, fluences, and lattice temperatures.  Intraband thermalization is reached 

within 5-50ps, after which the non-radiative recombination dominates the dynamics. Notably, the 

screenable surface band bending results in long lived spatially separated carriers, resulting in a 

photogenerated, spatially separated background electron and hole density important controlling 

the long-lived dynamics.  . 
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I. INTRODUCTION 

In recent years semiconductor nanowires (NWs) have attracted significant attention because of 

their electronic and optical properties such as their directed charge transport capabilities 1 and 

optical polarization sensitivities 2-4. Different synthetic approaches have been developed to 

fabricate NWs including the vapor-liquid-solid (VLS) growth 5-7, solution-liquid-solid (SLS) 

growth 8 and template based methods 9-11. Due to the small radial dimensions of the NWs the 

design of NW heterostructures is not limited by strain as in conventional planar molecular beam 

epitaxy (MBE) or metal-organic-vapor-phase-epitaxy (MOVPE) thus enabling the fabrication of 

a wide variety of radial heterostructures as e.g. GaAs/AlGaAs 7, GaAs/GaP 12 and InP/InAs 13 

core-shell NWs. Also axial NW heterostructures 7, 14 become feasible that comprise segments of 

different semiconductor material with nanometer thickness along the NW 15-17. Another 

interesting type of axial heterostructures uses alternating few nm short segments of the same 

chemical material but different crystal structure as e.g. in wurtzite/zincblende InP 18-20 and GaAs 

21 NWs revealing a type-II band alignment.  

This flexibility in NW design and growth has enabled novel device applications including 

NW lasers 10, 22, 23, light emitting and detection devices 2, 24-26, ultrahigh density transistors 27 

single-electron charging devices 28, 29 as well as single photon emitters 15, 30, 31 and detectors 32. 

However, due to their large surface-to-volume ratio the electronic and optical properties of 

semiconductor NWs are susceptible to surface states and defects. It is therefore important to 

understand the processes which determine the carrier relaxation and transfer dynamics in these 

novel nanostructures.  
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Time-resolved photoluminescence (TRPL) spectroscopy using time-correlated-single-

photon-counting (TCSPC) measures the dynamics of carrier transitions with a time resolution in 

the tens of picoseconds. TRPL measurements showed exciton recombination times faster than 80 

ps 7 for zincblende GaAs NWs and of ~1ns for GaAs/AlGaAs core-shell NWs at 20K 7, 33, 34 , 

revealing the influence of carrier trapping at non-radiative surface states which is reduced by 

passivation of the NW surface with a material of higher band-gap. InP NWs of both zincblende 

(ZB) 35, 36 and wurtzite (WZ) 36, 37 type instead show exciton decay times in the order of 1ns even 

without a core-shell structure due to a three orders of magnitude slower surface recombination as 

compared to GaAs. Even longer exciton recombination times have been observed in axial 

polytype wurtzite/zincblende (WZ/ZB) GaAs NWs (3-8 ns) 21 and in WZ/ZB InP NWs (about 

8ns) 18 which has been attributed to spatially indirect excitons across the WZ/ZB interfaces. 

Photoluminescence up-conversion experiments with a time resolution of about 200fs were used 

to measure the conversion times from electron-hole pairs in WZ sections to indirect WZ/ZB 

excitons in InP NWs under non-resonant excitation 38. The obtained conversion times increase 

with increasing NW diameter from 20 to 40ps for 50 to 160nm wide NWs. 

The nonlinear optical technique of four-wave mixing (FWM) is a powerful method to study 

coherent and incoherent carrier relaxation processes down to the femtosecond time-scale. FWM 

is excited by two or three mutually delayed pulses 39, typically with non-collinear wave vectors 

generating a diffracted non-linear response which can be directionally selected. While this 

method has been widely applied to two-dimensional (2D) and bulk semiconductors, FWM 

experiments on epitaxially grown or etched quantum wires (QWRs) have proven to be 

challenging due to a reduced signal and strong Rayleigh scattering. Only a few groups reported 

on directional selective FWM in t-shaped GaAs QWRs 40, in wet-chemical etched III-V 41-43 and 
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II -VI QWRs 44-46. The more advanced technique of heterodyne FWM (HFWM) 47 combines 

directionally selected FWM with a highly sensitive and selective heterodyne detection 48 

providing sufficient suppression of the Rayleigh scattering background.  

 

II.  EXPERIMENTAL 

A. Growth of InP Nanowires 

The polytype wurtzite-zincblende InP nanowires have been grown by the vapor-liquid-solid 

(VLS) technique 5-7 at a growth temperature of 450�(  and a V/III ratio of 300 on a fused silica 

substrate. As growth catalyst dispersed ~50nm diameter Au particles have been used resulting in 

tapered NWs with an average length of 4µm, a base diameter of 150 to 200nm and a tip diameter 

of ~40nm 49. The area density of the NWs on the silica substrate is ~4 NWs/µm2. 

High resolution transmission electron microscopy (HRTEM) micrographs reveal a high density 

of stacking faults resulting in WZ and ZB sections which appear as bright or dark segments, 

 

Figure 1: (a) and (b) high-resolution transmission electron microscope (HRTEM) images of a 

polytype WZ/ZB InP nanowire. Adjacent WZ and ZB sections are visible as bright and dark 

segments, respectively. 
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respectively (see Figs. 1 (a) and (b)). The WZ and ZB section sizes range from few 10nm to 1nm 

18, 38, 49. The WZ-ZB-WZ-ZB sequences define quantum wells for electrons and holes in the ZB 

and WZ segments, respectively, with varying confinement energies according to the length of the 

sections.  

 

B. Optical Characterization of InP Nanowires 

Prior to the HFWM experiments the NWs have been optically characterized by temperature- 

and intensity-dependent photoluminescence experiments 49 excited by a continuous-wave (cw) 

He-Ne laser at 1.96eV photon energy. A lens with a focal length of 125mm has been used to 

collimate the 2mm wide He-Ne laser beam (with Gaussian intensity profile) onto the sample 

resulting in an excitation area of 2�u10-5 cm2. The sample was held in a closed-cycle Helium 

cryostat at temperatures varied between 20K and 300K. The PL from the NW ensemble was 

spectrally analyzed by a monochromator and detected by a photomultiplier with a GaAs cathode.  

C. Heterodyne Four-Wave-Mixing Experiments 

The HFWM experiments were performed using Fourier-limited pulses of about 100fs 

duration at 76MHz repetition rate. In these experiments the NWs were transferred onto a quartz 

crystal substrate and embedded into a polystyrene (PS) layer of a few ten micrometers thickness 

by drop casting a 5% PS in toluene solution. The NWs were randomly oriented within the PS 

layer and tended to accumulate in small clusters leading locally to a higher density than on the 

fused silica substrate. They were then covered by a second quartz substrate and mounted into a 

cold finger nitrogen-flow cryostat, at temperatures down to T = 80K. The population dynamics 

of excitons and e-h pairs was studied by using three exciting pulses 1, 2 and 3 with different 

incident directions k1,2,3 and with zero delay (�W21 = 0) between the pump pulses 1 and 2 and 
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variable delay time �W31 of the probe pulse 3. The pulses are focused onto the NW sample to a 

beam diameter of 26µm. The spectral full-width�±at�±half-maximum (FWHM) of the exciting 

Gaussian shaped pulse intensity is about 11nm (19meV). The pulses were spectrally tuned from 

��exc = 830nm to 860nm center wavelength  in 10nm steps to excite the InP NWs. Pulses 1 and 2 

had equal fluences varied from 0.08 to 1.6���-��cm2 (each pulse), while the fluence of pulse 3 was 

kept at 0.17���-���F�P2. The FWM signal was detected along the direction k3+k2-k1 in a square 

configuration in transmission geometry. To enable heterodyne detection, the pulses were 

frequency up-shifted with acousto-optic modulators (AOMs) by frequencies �: 1�����Œ� �� �����0�+�], 

�: 2�����Œ�� � �� �����0�+�]��and �: 3�����Œ = 78.8MHz close to the repetition rate (�: rep�����Œ = 76MHz) of the 

laser. The linear pulse chirp at the sample due to the AOMs and other optics has been removed 

by pre-chirping in a grating based pulse compressor, as verified using a second order 

autocorrelation. The FWM signal in k3+k2-k1 direction having frequencies of �: S � �� �&0+�: 3+�: 2-

�: 1 plus integer multiples of �: rep is subsequently interfered in a beam splitter with a reference 

�S�X�O�V�H���Z�L�W�K���F�H�Q�W�H�U���I�U�H�T�X�H�Q�F�\�� �&0 and arrival time �Wref = 0 relative to the transmitted pulse 3. The 

resulting signal with frequency (�: S-�: rep�������Œ = 1.8MHz is measured by two high frequency 

photodiodes in balanced detection, amplified by a current preamplifier (Femto DHPCA-100) and 

analyzed by a lock-in amplifier (SR844) using integration times of about 100ms per point. 

Further details are given in the supplement of Ref. (50) 

The same HFWM setup was applied to study the dephasing of excitons in the NW ensemble 

by varying the delay �W21 between pulses 1 and 2 (with pulse 2 being fixed in time). The reference 

pulse was delayed by �Wref with respect to �S�X�O�V�H�� ������ �7�K�H�� �P�H�D�V�X�U�H�P�H�Q�W�V�� �Z�H�U�H�� �S�H�U�I�R�U�P�H�G�� �D�W�� ��exc = 

830nm (photon energy hc����exc = 1.493eV) and 840nm (1.476eV). To measure the photon echo, 

the delay range �Wref was scanned from -500 to 500fs around �W21 with 50fs steps. Pulse 3 was fixed 
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at a delay �W32 = 0.7ps ���I�R�U����exc = 830nm) and �W32 = 1.0ps ���I�R�U����exc = 840nm) after pulse 2. The 

resulting photon echo (PE) signal in direction k3+k2-k1 was measured as described earlier. The 

heterodyne detection scheme suppresses the Rayleigh scattering by typically 5 orders of 

magnitude in field, so that it is negligible compared to the shot noise. 

 

III.  RESULTS AND DISCUSSION 

We commence by discussing the temperture-dependent photoluminescence measurements, 

revealing localized indirect e-h pairs or excitons at the WZ/ZB interfaces in polytype InP NWs. 

Subsequently, we investigate the population dynamics and dephasing of e-h pairs and of 

electrons originating from ionized donors as well as relaxation processes of differently localized  

e-h pairs using HFWM in three-beam geometry. For a quantitative analysis of the HFWM data 

we use fits with a multi-exponential function and a rate-equation model describing the 

population dynamics of electrons and holes. 

A. Optical characterization of polytype WZ/ZB InP NWs  

Figure 2 shows PL spectra obtained from a polytype InP NW ensemble with an area density of  

about 4 NWs/µm2 at temperatures ranging from 20K to 210K on a logarithmic scale. The sample 

was excited with a laser at a wavelength of 633nm with an excitation intensity of about 8W/cm2. 

The PL spectrum at 40K shows two emission bands centered at 1.48eV (837nm) and at 1.445eV 

(857nm). The emission band at 1.48eV is attributed to weakly localized WZ A-excitons where 

electrons and holes are localized in ZB and WZ segments, due to the type-II band-alignment 18, 

38, 49. With increasing temperature above 60K, the A-exciton emission shifts to lower energy due  

to the temperature dependent band gap shrinkage 49 51. The emission band at about 1.445eV 

which is separated from the weakly trapped A-exciton band by about the LO-phonon energy of 
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42.5meV 52, 53 is attributed to an enhanced population of strongly localized indirect WZ/ZB 

excitons18, 54, 55 due to LO-phonon assisted relaxation. This interpretation is supported by 

determining the optical density of states (ODOS) of wurtzite A-excitons, ranging from weak to 

strong localization, from the PL. Assuming intraband thermal equilibrium , the ODOS is 

proportional to the product of the PL intensity and a Boltzmann factor �� ��exp E kT  as a function 

of emission energy E, as shown in Figure 3. The data are normalized in the flat ODOS region 

just above the WZ bandgap, at 1.50eV, as in this region the carriers are mobile and a thermal 

distribution can be expected. The increasing ODOS above 1.51eV is due to the B valence band. 

In this analysis we have for clarity corrected the energy for the temperature dependence of the 

wurtzite band gap by subtrating  a Varshni expression 2 ( )T T� D � E� � � � with parameters49 

4= 3.3 10 eV/K�D ���u  and = 225K�E . For sample temperatures below 80K, we used a carrier 

temperature T somewhat higher than the lattice temperature to reproduce the optical 

 

Figure 2: PL spectra at sample temperatures T ranging from 20K to 210K as labelled. The 

spectrum at 80K is highlighted. The excitation was at 633nm with an intensity of 8W/cm2. 
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density of states above the mobility edge. This temperature difference is due to non-complete 

thermalization of photoexcited carriers with the lattice during their lifetime, which is relevant at 

low temperatures when LO-phonons are not significantly occupied, and carrier-carrier scattering 

can still provide a thermalization of the mobile carriers56. With increasing temperature the 

phonon-scattering rate increases, resulting in a thermal carrier distribution above 130K as seen 

by the essentially temperature independent retrieved ODOS. The separate emission band due to 

the non-thermal population accordingly vanishes above 130K (see Fig. 2). At lower temperatures 

instead, the steeper slopes below 1.49eV show a sub-thermal population of excitons below the 

 

Figure 3: Optical density of states as a function of energy at temperatures ranging from 20 to 

160K as labeled. The exciton density spectrum at T = 80K is highlighted. The thermal band-

gap shrinkage was corrected as described in the text. Carrier temperatures which deviate from 

the lattice temperature are shown in parentheses. The red arrows indicate the excitation center 

wavelengths used in the HFWM experiments. 
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mobility edge. The spectra of the optical density show also the relative population enhancement 

about one LO-phonon energy below the mobility edge, which is attributed to LO-phonon assisted 

relaxation of electrons from the mobility edge into the indirect ZB sections. The assignment of 

the emission band at about 1.44eV as deeply localized WZ/ZB indirect excitons is consistent 

with its blue shift as a function of excitation intensity 49 attributed to state filling 18 and the space-

charge potential created by the indirect electron-hole density 57.  

 

B. Population dynamics of excitons and e-h pairs in WZ/ZB InP NWs 

To measure the population dynamics we used HFWM experiments with zero delay (�W21 = 0) 

between �³pump�´��pulses 1 and 2 and variable delay time �W31 of �W�K�H���³probe�´��pulse 3. We note that 

excitons in InP have a binding energy of about 5meV and are therefore mostly ionized in the 

investigated temperature range. We will use the term e-h pairs rather than excitons throughout 

when discussing the dynamics, meaning to include the bound exciton states. 

1. Excitation energy dependence  

The red arrows in the wavelength axis in Figure 3 indicate the excitation center wavelengths 

used in the HFWM experiments. The thick lines in Figs. 2 and 3 highlight the PL and optical 

density spectrum at 80 K at which the excitation energy dependence was measured. Figure 4 (a) 

shows the normalized HFWM traces for ��exc = 830nm (1.493eV), approximately M�' =10meV 

above the exciton mobility edge for different pump-pulse fluences �I1,2 (where fluence �I1 = �I2 

were varied synchronously) as labeled. The inset in Figure 4(a) shows the HFWM peak 

amplitude as a function of the fluence ratio �I1,2/�I0 , where �I0 = 1.6���-��cm2, which follows the 

expected linear dependence according to the signal being proportional to *
1 2 3E E E  with the fields 
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1,2,3E  of the pulses. The HFWM shows an initial decay over the first picosecond, followed by a 

non-exponential dynamics covering time constants from 5ps to several 10ns. With increasing 

pump fluences we observe generally an acceleration of the decay.  

 

Figure 4: Normalized HFWM amplitudes at T = 80K as a function of delay �W13 at excitation 

wavelengths �R�I�� ���D���� ��exc = 830nm, (b) 840nm, (c) 850nm, and (d) 860nm for different 

excitation fluences �I1,2 as labeled. The data for different fluences are vertically offset by 

multiples of 0.03 for clarity, see horizontal lines. The insets show the maximum HFWM 

amplitude versus excitation fluences �I1,2. Thick dashed black and dark yellow curves 

represent fits using the multi-exponential function given by eq. (1) as described in the text.  
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Figure 4 (b) shows the normalized HFWM traces for ��exc = 840nm (1.476eV),  corresponding to 

M�' = - 7meV (see arrow in Fig. 3). Compared to the dynamics for M�' = 10meV, we find a 

somewhat slower decay. Figure 4 (c) shows the data for ��exc = 850nm (1.458eV), corresponding 

to M�' = - 25meV. Here, the initial fast decay shows a minimum at about 100fs with a 

subsequent maximum at about 200fs. Figure 4 (d) shows the data for ��exc = 860nm (1.441eV), 

corresponding to M�' = - 42meV, one LO-phonon energy, below the mobility edge, resonant to 

deeply localized WZ/ZB indirect e-h pairs (see Figure 3). At this excitation energy we observe 

the longest decay times. The HFWM amplitudes as a function of ratio �I1,2/�I0 shown in the insets 

of Figure 4 (b) to (d) reveal similar or only slightly reduced values compared to the inset Fig. 4 

(a) despite the significantly reduced excitation density at lower excitation energies. We attribute 

this behavior to a reduced reabsorption of the HFWM signal, as the NWs are getting transparent 

at energies below the WZ band gap (compare Fig. 3), showing an approximately exponential 

decrease of the ODOS of about one order of magnitude per 20 meV. 

For a quantitative evaluation of the HFWM data we have fitted the traces with a multi-

exponential function with five time constants Ti and amplitudes Ai which is the minimum number 

to a achieve a good agreement with the experimental data. Note that the data covers 4 orders of 

magnitude between time resolution and range, and the five decay times are ranging over 5 orders 

of magnitude. The resulting order of magnitude difference between exponential decay times 

allows for a well-defined multi -exponential fit. We also included a �/-function with amplitude A0 

to model instantaneous non-resonant virtual transitions such as two-photon absorption, Kerr-

effect, and relaxation processes below the temporal resolution limit. We considered that the 

measured HFWM data is the convolution of the multi-exponential function with a Gaussian 

pulse intensity autocorrelation leading to a HFWM signal of 
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            (1) 

with TAC being the pulse intensity autocorrelation time. The pulses used are well described by 

Gaussian function, as seen in the spectrum (see Fig. 7). The term which includes the pulse 

repetition period TRep = (76 MHz)-1 considers the build up from previous pulses, and is relevant 

only for decay constants of the same order or longer than TRep.  

After fitting all data with free time constants, we found that we could consistently describe 

the data using fixed time constants T1 to T4 of 0.7ps, 5ps, 40ps, and 400ps. The dashed curves in 

Fig. 4 show the corresponding fits at lowest and highest pulse fluence. The obtained amplitudes 

Ai are shown in Figure 5 (a-d) for the different excitation wavelengths. Due to the complexity of 

the carrier dynamics including different scattering processes and a set of different states with 

different energies and decay rates, an attribution of time constants to individual processes is 

bound to be approximate. Notwithstanding, we propose here an interpretation, which will be 

backed up in the next section by simulations.  

The density of photoexcited carriers max / ( / )ehn hc�D�I �O�  at maximum pulse fluence 

max 02� I � I�  and excitation wavelength �O = 830nm was estimated by using the band-gap 

absorption coefficient of zincblende InP 58 of �D=1×104 cm-1 but considering the microscopic 

anisotropy of wurtzite InP which forbids optical transitions from the A-valence band (with 

symmetry 9�* ) to the conduction band (with symmetry 7�* ) for light that is polarized along the 

crystallographic �Öc -axis, along the NWs 59. This anisotropy reduces the optical absorption of the 

randomly oriented NWs by a factor of 2/3. Furthermore we consider the macroscopic anisotropy 
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which is associated with the shape of the InP NWs. The mismatch of the dielectric constants 

between the NW and its surrounding environment reduces the absorption coefficient by an 

additional factor of about 1/4 59. At highest pulse fluence (max�I �  3.2���-���F�P2) we find a resulting 

e-h excitation density of about 2×1016 cm-3.  

Due to the moderate density of photo-excited carriers, Auger recombination processes 60 are 

not expected to be the relevant mechanism for the observed non-exponential decay. We interpret 

the decay in Fig. 4 (a) and obtained amplitudes in Fig. 5 (a) as follows: The instantaneous 

contribution A0 (shown at 100fs) is assigned to non-resonant virtual processes. The time constant 

of 0.7ps is attributed to the relaxation of highly excited e-h pairs to the mobility edge via carrier-

carrier and LO-phonon scattering. With decreasing excitation fluence, carrier-carrier scattering is 

suppressed due to the reduced density of excited e-h pairs, which can be the origin of the 

observed reduction of amplitude A1. Processes relating to the time constant of 5ps are attributed 

to the relaxation of electrons from the mobility edge into ZB regions via acoustic and LO-

phonon emission. This process is responsible for the observed non-thermalized PL enhancement 

one LO-phonon energy below the mobility edge shown in Figs. 2 and 3. The InP NWs show a 

background n-doping 61 with a concentration of about 1016cm-3, resulting in a background 

electron density and corresponding ionized donors. Most of these electrons are expected to be 

trapped in the ZB sections due to the conduction band alignment. Intraband excitation of these 

electrons by the pump pulses leads to a modulation of the refractive index in the NWs giving rise 

to an additional HFWM signal. 
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The intraband excited electrons which have a large excess energy relax via carrier-carrier 

scattering and LO-phonon  emission towards the mobility edge on a timescale of less than 100fs, 

described by A0. Lateron, acoustic phonon assisted relaxation and thermalization will contribute 

to the HFWM amplitudes A1 and A2. The dynamics described by the time-constant of 40ps could 

be due to the thermalization of electrons between the spatially separated states such as WZ / ZB, 

or holes between mobile and surface states. Note that at a temperature of 80K a significant 

 

Figure 5: Amplitudes Ai of exponential decays with time constants Ti for different excitation 

fluences �I1,2 as labeled at a sample temperature of 80K, from fits of eq. (1) to the HFWM at 

excitation wavelengths ��exc of (a) 830nm, (b) 840nm, (c) 850nm and (d) 860nm. 
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redistribution of the PL towards thermalization is observed in Fig. 3. The longer time constants 

T4 of 400ps and T5 ranging from 10ns to 30ns should be beyond thermalization and thus related 

to recombination. This recombination is dominantly non-radiative, as can be seen by the about 

50 times reduction of the photoluminescence from 20K to 80K. Non-radiative recombination is 

typically explained by deep traps and described as monomolecular, especially in presence of a 

background doping providing a majority carrier type, electrons in the present case. The presence 

of a wide distribution of time constants for this process requires a spatial separation of the 

minority carriers, the holes, from the electrons. This can be provided by an upward band bending 

close to the nanowire surface due to negative surface charges 49, which leads to a spatial 

separation between holes at the NW surface and electrons in the NW center, with small 

wavefunction overlap and consequently small recombination rates, which is consistent with the 

low surface recombination velocity found in InP NWs 61. The relaxation time T5 decreases with 

increasing excitation fluence, which could be due to enhanced thermal activation of the surface 

trapped holes resulting from the screening of the band bending by the trapped hole density.  

Moving the excitation pulses to smaller energies, the inter-band transitions create dominantly 

indirect, localized electron-hole pairs of exponentially decreasing optical density (see Fig.3), and 

intra-band excitation of resident electrons becomes more important in the initial dynamics in the 

first 10-100ps before intra-band thermalization. 

 For M�' = - 7meV (Fig. 5b), the 0.7ps contribution is reduced, otherwise a similar dynamics 

is found. For M�' = -25meV (Fig. 5c), the excitation of indirect WZ/ZB e-h pairs in dominating, 

and the initial decay shows a minimum at approximately 100fs, which is attributed to the 

interband excitation of the resident electrons in the ZB trapping sites, blocking the probed 

transitions. Their intraband excitation results in an induced absorption, providing a HFWM 
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amplitude destructively interfering with the amplitude due to absorption bleaching by resonantly 

excited e-h pairs. At higher or lower M�'  this effect is likely of too low strength to be visible, 

due to the lower occupation or the lower transition strength, respectively. In these cases, the 

signal resulting from the intra-band absorption is predominantly a refractive index change 

(phase-modulation) which is in quadrature  to the absorption bleaching by resonantly excited e-h 

pairs consistent with the absence of the minimum. To take into account the effect of the resident 

electrons for M�' = -25meV we added an exponential function with negative amplitude A6 into 

eq. (1) and fixed its relaxation time to T6 = 50fs. The resulting fits for highest and lowest pump 

fluences are given as dashed curves in Fig. 4 (c).  For M�' = - 42meV (Fig. 5d), the excitation 

density of mobile e-h pairs is negligible. The observed initial dynamics is therefore created 

dominantly by non-resonant virtual transitions and intraband excitation of resident electrons in 

the ZB sections. The slower dynamics relates to the relaxation of the remaining interband 

excitation.  

 

2. Temperature dependence 

To study the role of phonon-assisted processes in more detail we performed additional 

measurements at sample temperatures of 150K, 210K and 270K. The excitation wavelength was 

adjusted for each temperature to compensate the temperature induced band gap shrinkage (see 

Fig. 2 and Ref.49). Figure 6 (a) shows the HFWM at 150K for ��exc = 850nm, M�'  ~ -13meV. A 

similar dynamics as for T = 80K, M�'  ~ -20meV is found, including the initial minimum 

attributed to the intraband excitation of the trapped electrons in the ZB sections. The occurrence 

of the minimum despite the about 10meV higher M�'   can be related to an increase of the 
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average trapped electron energy due to thermal activation. The maximum HFWM amplitude 

value (see inset in Figure 6 (a)) is slightly decreased compared to T = 80K, M�'  ~ -20meV (see 

inset of Fig. 4 (c)). Fig. 6 (b) shows the amplitudes extracted from Fig. 6 (a) using eq. (1) - their 

general interpretation remains as described earlier.  

The results for T = 210K and  ��exc = 860nm, M�'  ~ - 10meV, are given in Figure 6 (c,d). 

Due to the increased thermal activation of electrons from the WZ/ZB traps the induced 

absorption peak is not anymore noticeable. The long lifetimes T5 are reduced, and the maximum 

values of the HFWM signal are about half of those at 80K,  M�'  ~ - 7meV. (see Fig. 4(b))  

The results for T = 270K and M�'  ~ - 10meV are given in Figure 6 (e,f). The amplitude A5 

with long lifetime T5 is further reduced and the broadening of the spectral response leads to a 

further reduction of the maximum HFWM amplitudes. 
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Figure 6: Left: Normalized HFWM amplitudes at (a) T = 150K, (c) 210K and (e) 270K as a 

function of delay �W31 at excitation wavelengths �R�I�� ��exc = 850nm, 860nm and 870nm, 

respectively, for different excitation fluences �I1,2. The data for different fluences are 

vertically offset by multiples of 0.03 for clarity, see horizontal lines. The insets show the 

maximum HFWM amplitude versus excitation fluences �I1,2. Thick dashed curves represent 

fits using the multi-exponential function given by eq. (1). Right panel: Amplitudes Ai of 

exponential decays with time constants Ti at sample temperatures of (b) T = 150K, (d) 210K 

and (f) 270K for different excitation fluences �I1,2 as labeled, obtained by fitting the HFWM 

amplitudes with eq. (1). 
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C. Dephasing of excitons in WZ/ZB InP NWs 

To study the dephasing of excitons in the WZ/ZB NWs photon echo (PE) experiments were 

performed at M�'  of 10meV and -7meV. The total pump-pulse fluence 1 2�I �I �I�  � � was set to be 

0.64 and 1.6µJ/cm2, respectively. The density of photoexcited carriers was estimated by the 

overlap integral of Gaussian shaped excitation pulses (with center energy E0 and a FWHM of �û�( 

= 19meV) with the ODOS spectrum of InP nanowires obtained at T = 140K (from Fig. 3) where 

the photoexcited carriers are thermalized. The ODOS spectrum is shown as black line in Fig. 7 as 

a function of energy relative to exciton center energy EX = 1.483eV. The measured excitation 

pulse spectrum with center energy 1.476eV (840nm) as well as modeled Gaussian pulses at 

center energies 1.476eV (840nm) and 1.493eV (830nm) are given in Fig. 7 as a full grey and 

black dashed and dash-dotted curves, respectively. To distinguish the excitation of excitons from 

that of e-h pairs the optical absorption due to excitons was modeled with a broadened exciton 

resonance 2( ) sech (1.76( ) / )X X XE E E E�D �v �� �'  with a broadening �R�I�� �ûEX = 21meV shown as 

red curve in Fig. 6. The absorption of continuum states was modeled by convoluting the unit step 

function ( ( ))X bE E E�T � � � � with the exciton function shifted by the exciton binding energy of 
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5 meVbE �  resulting in a free carrier absorption ( ) 1 tanh(1.76( ( )) / )eh X b XE E E E E�D �v �� �� �� �'  

(green curve in Fig. 7). The total absorption spectrum of excitons and e-h pairs 

1 2( ) ( ) ( )X ehE c E c E�D �D �D� �˜ �� �˜  was then adjusted to match the ODOS spectrum as shown as a 

blue curve in Fig. 7. The remaining deviation at higher energies is due to the onset of the 

absorption due to the B-valence band and is not relevant for the excitation spectra used. 

At excitation pulses a�W�� ��exc = 830nm we find a ratio of the pulse overlap integral with 

excitons OX and e-h pairs Oeh to be OX/Oeh = 0.54, so that 35% of the generated pairs are 

 

Figure 7: Optical density of states (black line) as a function of energy relative to the center 

energy EX of the broadened exciton band. The red, green and blue curves are modeled 

exciton and continuum absorption and the resulting total absorption, respectively. Also 

shown is the spectrum of the excitation pulse at ��exc = 840nm (grey curve) as well as spectra 

of Gaussian model pulses at ��exc = 830nm and 840nm (dashed and dash-dotted curves). 
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excitons. Using the previous estimate relating a pulse fluence of 3.2 µJ/cm2 to a pair density of 

162 10�u  cm-3 (see section B.1.), a pulse fluence of 0.64 µJ/cm2 is then estimated to result in an 

exciton and e-h pair density of about 151.4 10�u cm-3 and 152.6 10�u cm-3, respectively. For ��exc = 

840nm we find an overlap integral ratio of OX/Oeh = 2.26, thus about 70% of photo excited pairs 

are excitons. Using the relative change of OX and Oeh �F�R�P�S�D�U�H�G�� �W�R�� ��exc =830nm, we find the 

density of excitons of 154.3 10�u cm-3 and e-h pairs of 151.3 10�u cm-3, at a pulse fluence of 

1.6µJ/cm2. Using these densities, we estimated the expected exciton dephasing time Tcoh using 

the relationship 

1 1
exp( / ( )) 1bg ac LO XX X Xeh eh

coh LO
T N N

T E kT
�J �J �J �J �J� �� �� �� ��

��
                         (2) 

In eq. (2) the dephasing rate bg�J  accounts for the background dephasing due to scattering of 

excitons with impurities and defects, and radiative decay, ac�J  is the acoustic phonon scattering 

parameter, LO�J  is the LO-phonon scattering parameter, the factor �� ��1exp( / ( )) 1LOE kT ����  

describes the thermal LO-phonon population with k being the Boltzmann constant and ELO being 

the LO-phonon energy. XX�J  is the exciton-exciton scattering parameter with XN  being the 

generated exciton density and Xeh�J  is the exciton-eh-pair scattering parameter with generated e-h 

pair density ehN . Using parameters 0.11bg�J � ps-1, 0.007ac�J � ps-1 K-1 and 21LO�J � ps-1 from 

measurements on GaAs quantum wells 62 and 41.6 10XX�J ���  � ucm3 s-1 and 31.6 10Xeh�J ���  � ucm3 

s-1 on undoped bulk GaAs 63 we expect dephasing times of cohT  = 330fs and 450fs for ��exc = 

830nm and 840nm at the applied pump fluences. 
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Figures 8 (a) and (b) show two-dimensional contour plots of the HFWM amplitude obtained 

from photon echo (PE) experiments as a function of time delay �W12 between pump pulses 1 and 2 

and of delay �W3ref of the reference pulse with respect to pulse 3. The delay of pulse 3 to pulse 2 

 

Figure 8: Two-dimensional contour plot of HFWM amplitudes obtained from of the PE 

experiment. (a)excitation wavelength of ��exc = 830nm, pump pulse fluence 1.6µJ/cm2 and (b) 

of ��exc = 840nm, 0.64µJ/cm2, on logarithmic color scales as given. The white line in the upper 

quadrant in Fig. 8 (a) indicates where a PE signal would be expected. 
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was �W23 = 0.7 ps �I�R�U����exc = 830nm and at �W23 = 1.0ps �I�R�U����exc = 840 nm to suppress non-resonant 

responses. For dephasing times comparable or longer than the pulse duration (100fs) a PE signal 

is expected in the upper quadrant as indicated by the white line in Fig. 8 (a). The virtually 

symmetric data at both excitation wavelengths shows that the dephasing time is significantly 

below 100 fs, inconsistent with the above estimated cohT . We attribute the observed faster 

dephasing to the scattering of excitons with the electron background density resulting from a 

donor concentration in the order of 1×1016 cm-3 61. Using Xeh�J  as given above, the background 

density results in a dephasing time of 60fs by exciton�±electron scattering, consistent with the 

measurements. Note that the broadening of about 21 meV in the absorption model corresponds to 

a dephasing time of about 60fs (FWHM = 2/ T ), consistent with the above estimate. The 

presence of background electrons is also affecting the population dynamics as discussed earlier.  

 

D. Modelling of the population dynamics 

Fitting the population dynamics with eq. (1), i.e. a sum of exponential decays, is a general 

way to extract the dominating time constants of the dynamics and their weight. However, it 

assumes exponential decays, which might not be capturing the specific physical process 

underlying the dynamics. For our data, taken at temperatures of 80K or higher, we note that 

recombination processes are dominated by electron-hole pairs due to thermal ionization of 

excitons, and the resulting recombination is bimolecular. To interpret the data in terms of the 

carrier dynamics, we have therefore developed a model including the essential ingredients of the 

system, which are sketched in Fig. 9 18 in terms of excitation (a) and relaxation (b) pathways, 

considering WZ and ZB sections, donors, and surface traps for holes. The pathways are captured 

in a coupled rate equation model. The model includes (i) optical excitation of electron-hole pairs 
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(ii) optical interband excitation, (iii ) intraband relaxation and activation respecting detailed 

balance, and (iv) bimolecular radiative and (v) monomolecular non-radiative hole recombination. 

The coupled rate equations are given by: 

�� ��

�� ��

�� ��
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(3) 

The densities of electrons are separated into fn , highly excited in the conduction band, mn , at 

the WZ band edge, Dn , bound to donors, and Tn , trapped in ZB sections. The densities of holes 

are separated into fp , highly excited in the valence band, and mp  at the WZ valence band edge 

and Sp  trapped at the NW surface (see Fig. 9 (b) on the left) due to band bending. We consider 

excitation pulses of power �� ��2 2( ) exp t 2
2

F
P t �V

� V � S
�  � � with a Gaussian broadening of full 

width at half maximum of 8ln 2 100 fs�V�  and the pulse fluence F. In the simulation we use a 

unitless F, moving the units into the coefficients, with F = 1 referring to the highest used pump-

pulse fluence 02 3.2�I � µJcm-2. The excitation density ,exc fn  is describing the interband 
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absorption at the excitation photon energy. fn  is furthermore populated by intraband absorption 

[WL2]from mn , Dn  and Tn , with a transition probability intra,cb�]  for F = 1, and in the same way 

populated from mp  and Sp with the probability intra,vb�]  for F = 1, as indicated in Fig. 9 (a). The 

electrons fn  and holes fp  relax with the rate fm�J  to the mobility edge as indicated in Fig. 9 

(b). Electrons mn  and holes mp  at the mobility edge are generated in pairs by optical excitation 

with the density ,mexcn . Holes mp  are also generated by optical excitation into donors Dn  and 

 

Figure 9: Schematic sketch of all considered (a) excitation and (b) relaxation/recombination 

paths used in the model as described in the text. 

(a)

(b)
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trapped states Tn  in the ZB sections with excitation densities 
0,D ,D(1 / )exc exc D Dn n n n�  � � and 

,Texcn , respectively. Donor state saturation was taken into account by the factor 
0

(1- / )D Dn n  

with 
0Dn  being the donor density in the nanowires. Holes are captured at the NW surface (Sp ) 

via diffusion and subsequent acoustic or LO-phonon emission with rate 
0

(1 / )pS pS S Sp p� J � J�  � �

The saturation of surface charges by holes was taken into account by the factor 
0

(1- / )S Sp p

with 
0Sp  being the saturation density of captured holes. The relaxation of electrons mn  into Dn  

or Tn  via acoustic or LO-phonon emission and carrier-carrier scattering is considered by the 

rates (1 ( ) / )mD mT ph m m scn p n�J �J �J� � �� �� , where scn  is the density at which carrier-carrier 

and phonon-assisted scattering are comparable. Corresponding thermal activation processes 

respecting detailed balance are added, with rates 3/2
0( / ) exp( / )Dm ph DT T kT� J � J� ���' , and 

2 exp( / )Tm ph T kT� J � J� ���'  respectively, where D�'  and T�'  denote the donor binding energy 

and average localization energy of electrons in ZB sections, respectively. The factor 

3/2
0( / ) phT T �J  in rate Dm�J  with 0T  = 80K and 8.5ph ph� J � J�  models the effective density of 

states in the conduction band as a function of temperature (the density of donor states is 

independent of temperature) and the prefactor 8.5 is adjusted to provide detailed balance between 

electrons mn  in the conduction band with the effective mass of 18 0.073 me  and neutral donors 

Dn  at a background donor concentration of 1x1016 cm-3. The factor 2 in the rate Tm�J  models the 

volume ratio of WZ to ZB sections which is approximately 1:2. Trapped holes Sp  are thermally 

activated to the valence band with a rate 
0

5 exp( (1 ) / )Sp pS S S Sp p kT� J � J� ���' ��  where the factor 
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5 takes into account a surface band bending which affects ~20% of the total NW volume. S�'  is 

the trapping energy of holes at the surface. The density dependence of the trapping energy 

0
(1 )S S Sp p� ' � �  is modeling the screening of the surface band bending with a saturation density 

of 0Sp . The saturation of Tn  has been neglected, motivated by the expected high density of 

states in the ZB sections of the nanowires compared to the excitation densities used. We consider 

the bimolecular radiative recombination of mn , Tn , and Dn  with mp  using the rates 

3/2
0( / )m m T T� J � J��� , 3/2

0( / )T T T T� J � J���  and D�J , respectively. The factor 3/2
0( / )T T ��  in the rate m�J  

(with T0 = 80K) models the band-band radiative lifetime considering momentum conservation 

during radiative recombination of electrons and holes 64. A bimolecular radiative recombination 

of mn  with surface holes Sp  is taken into account using rate 

0

3/2
0( / ) exp( (1 ) / )m m S S ST T p p kT� J � J��� ���' ��  differing from the bulk rate by the reduced 

thermal occupation of electrons at the surface due to the band bending. The non-radiative decay 

between mobile electrons mn  and holes mp  due to volume defects has been considered by rate 

nr�J . It is assumed to be monomolecular in the holes considering that due to the high n-doping, 

the hole trapping by the defects is expected to be the rate limiting process (see Fig. 9(b)). Since 

the excitation energies in the experiments are smaller than the band gap of the ZB sections, the 

direct excitation of e-h pairs in the ZB sections was neglected.  

Any deviation of densities ( ), ( ), ( ), ( ), ( ), ( ), ( )f m D T S m fn t n t n t n t p t p t p t  from quasi-

equilibrium values , , , , , ,f m D T S m fn n n n p p p  (with 0f m fn p p� � �| ) causes a change of the 

susceptibility R Ii�F �F �F�  � � where the real part accounts for changes of the phase of the 

transmitted field, while the imaginary part changes the amplitude. The quasi-equilibrium values 
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depend on the lattice temperature and on the repetition frequency of the exciting laser pulses and 

were therefore determined considering the repetition rate of 76 MHz used in the experiments. 

The resulting HFWM amplitude is given by 

                     
| ( ) ( ( ) ) ( ( ) )

( ( ) ) ( ) ( ( ) ) ( ) |
FWM fe f me m m D D D

T T T S S mh m m fh f

E B C n t C n t n C n t n

C n t n C p t C p t p C p t

� �� �� �� ��

�� �� �� �� �� ��
                                 

(4) 

with complex constants , , , , , ,fe me D T P mh fhC C C C C C C  which account for the relative 

contribution of the various electron and hole dynamics types. For simplicity we assume that 

(besides TC ) all constants are solely imaginary and caused by Pauli-blocking, while TC  

represents changes of the refraction index and thus is real. The factor B determines the overall 

magnitude of the calculated amplitude trace with the experimental data.  

For the calculations the relaxation rates 120psf�J ��� , 10.14psph�J ���  as well as the 

bimolecular recombination rates 8 1 31.25 10 s cmm�J � � � ��  � u , 8 1 32.5 10 s cmD�J � � � ��  � u  and 

10 1 35 10 s cmT�J � � � ��  � u  have been kept constant for all excitation wavelengths and pulse 

fluences. The bimolecular rate m�J  corresponds to an exponential decay time of 1ns at 20K at a 

hole concentration of 16 31 10 cm���u  compatible with earlier time-resolved measurements at low 

temperature 36, 37, 49. The rate T�J  corresponds to an exponential decay time of 200ns at a hole 
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[WL4]concentration of 16 31 10 cm���u  which is compatible with recent time-resolved measurements  

revealing lifetimes up to 100ns at 20K49 and with the long decay time T5 obtained in section 

III.B.1. For rates Dm�J  and Tm�J  the binding energy of 7D� ' �  meV 65 and an average trapping 

energy 25T� ' �  meV consistent with the observation of induced absorption (see Fig. 3 (c)) were 

chosen. The total donor concentration was set to 
0

16 31 10 cmDn ���  � u . The saturation density of 

trapped surface holes was assumed to be 
0

15 34 10 cmSp ���  � u . Intraband transition probabilities 

intra,cb�]  and intra,cb�]  were taken to be 0.05 for all excitation wavelengths. For the rate Sp�J  a 

trapping energy of 200S� ' �  meV was used, providing surface trapping even at 270K which is 

 

Figure 10: Quantum yield as a function of temperature (full blue circles) obtained from the 

normalized spectrally integrated PL intensity from Fig. 2. The squares show the derived rates 

nr�J  for temperatures 80, 150, 210 and 270K using eq. (3). The inset shows the total photon 

emission rate for temperatures as labeled, as function of time after excitation. 

0 500 1000 1500 2000
0.01

0.1

1

20 50 200100

0.01

0.1

1

 80 K
 150 K
 210 K
 270 K

to
ta

l P
L

decay time [ps]

qu
an

tu
m

 y
ie

ld
 

temperature [K]

0

2

4

6

8

10

12

non-radiative rate [ns
-1]



32 
 

important obtain the observed long lifetimes T5 at high temperatures. The non-radiative rate nr�J  

due to volume defects was determined matching the time-integrated photon [WL5]emission 

�� ��D D T T m m m m m m m Sn n n n p n p dt�J �J �J �J �J�� �� �� ���³ , calculated with eq. (3), to the measured 

temperature dependence of the spectrally integrated PL intensity evaluated from Fig. 2. A 

quantum yield of near unity was assumed for the PL at 20K. The experimentally observed 

temperature dependence of the quantum yield is shown as blue full circles in Fig. 10. The red 

squares in Fig. 10 show the derived rates nr�J  for temperatures 80, 150, 210 and 270K. The 

calculated total photon emission rate �� ��D D T T m m m m m m m Sn n n n p n p�J �J �J �J �J�� �� �� ��  at low incident 

pump fluence (F = 0.1) is given in the inset of Fig.10 at temperatures as labeled, as function of 

time after excitation. 

 

 Table 1: Values of all parameters used to calculate the HFWM decay curves with eq. (3) and (4) 

at different excitation wavelengths, excitation fluences and temperatures as described in the text. 

Wavelength: 

Temperature: 

830 nm 

80 K  

840 nm 

80 K 

850 nm 

80 K 

860 nm 

80 K 

850 nm 

150 K 

860 nm 

210 K 

870 nm 

270 K 

,exc fn [cm-3] 0.4x1016  0.1x1016 0 0 0 0.1x1016 0.1x1016 

,mexcn [cm-3] 1.6x1016 1.1x1016 0.2x1016 0 0.7x1016 1.1x1016 1.1x1016 

,Dexcn [cm-3] 0.4x1016 0.37x1016 0.08x1016 0 0.26x1016 0.37x1016 0.37x1016 

,Texcn [cm-3] 0.15x1016 0.15x1016 0.15x1016 0.06x1016 0.15x1016 0.15x1016 0.15x1016 

intra,vb�]  0.05 0.05 0.05 0.05 0.05 0.05 0.05 

intra,cb�]  0.05 0.05 0.05 0.05 0.05 0.05 0.05 

fm�J [ps-1] 20 20 20 20 20 20 20 

ph�J [ps-1] 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
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pS�J [ps-1] 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

nr�J [ns-1] 0.83 0.83 0.83 0.83 5.9 11.1 16.7 

m�J [s-1cm3] 1.25x10-8 1.25x10-8 1.25x10-8 1.25x10-8 1.25x10-8 1.25x10-8 1.25x10-8 

D�J [s-1cm3] 2.5x10-8 2.5x10-8 2.5x10-8 2.5x10-8 2.5x10-8 2.5x10-8 2.5x10-8 

T�J [s-1cm3] 5x10--10 5x10--10 5x10--10 5x10--10 5x10--10 5x10--10 5x10--10 

feC  5.2i 5.2i 5.2i 5.2i 5.2i 5.2i 5.2i 

meC  2.0i 2.0i 2.0i 2.0i 2.0i 2.0i 2.0i 

DC  1.3i 1.3 1.3i 1.3i 1.3i 1.3i 1.3i 

TC : F = 1 

F= 0.6 

F = 0.1 

0.1 

0.2 

0.6 

0.2 

0.4 

0.8 

0.2 

0.4 

0.8 

0.2 

0.6 

1.0 

0.5 

0.7 

0.9 

0.5 

0.7 

0.9 

0.7 

1.0 

1.2 

SC  0.8i 0.8i 0.8i 0.8i 0.8i 0.8i 0.8i 

mhC  0.8i 0.8i 0.8i 0.8i 0.8i 0.8i 0.8i 

fhC  5.2i 5.2i 5.2i 5.2i 5.2i 5.2i 5.2i 

 

Figures 11 (a) to (d) show a comparison of model calculations (dashed lines) with 

experimental traces at T=80K obtained at different M�'   and pulse fluences as labeled. For M�'

=10meV (Fig. 11 (a)) the excitation density was divided into 16 3
,f 0.4 10 cmexcn ���  � u  and 

16 3
,m 1.6 10 cmexcn ���  � u  at maximum pulse fluence F = 1. 
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To estimate the excitation of donor bound transition a band was introduced to the absorption 

model described in chapter C with a FWHM of 21meV at 1.481eV using an excitation density of

16 3
,D 0.4 10 cmexcn ���  � u  at F = 1. For the excitation density of WZ/ZB e-h pairs a value of  

16 3
,T 0.15 10 cmexcn ���  � u was used, determined from the ODOS (see Fig. 6) integrated up to 

15meV below the gap energy. The resulting HFWM amplitude using 5.2feC i� , 2.0meC i� , 

 

Figure 11: Comparison of calculated HFWM traces (dashed black lines) obtained from eqs. 

�������� �D�Q�G�� �������� �Z�L�W�K�� �H�[�S�H�U�L�P�H�Q�W�D�O�� �G�D�W�D�� ���I�X�O�O�� �O�L�Q�H�V���� �D�F�T�X�L�U�H�G�� �D�W�� �H�[�F�L�W�D�W�L�R�Q�� �Z�D�Y�H�O�H�Q�J�W�K�V�� ���D���� ��exc = 

830nm, (b) 840nm, (c) 850nm and (d) 860nm at various excitation fluences �I1,2/�I0 as 

labeled.  
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1.3DC i� , 0.8SC i� , 0.8mhC i� , 5.2fhC i�  and 0.1TC �  is shown in Fig. 11 (a) as dashed 

line,, for pulse ratios �I1,2/�I0 = 1, 0.6 and 0.1. In these calculations all parameters described above 

as well as the proportionality factor B were kept the same with the exception of TC  which was 

increased from 0.1 to 0.2 and 0.5, respectively, to achieve agreement with the experimental data. 

A summary of the parameters used in the simulations is given in table 1. For  M�' =-7meV (see 

Fig. 11 (b)) we used 16 3
,f 0.1 10 cmexcn ���  � u , 16 3

,m 1.2 10 cmexcn ���  � u , 16 3
,D 0.37 10 cmexcn ���  � u 

according to the spectral overlap of the excitation pulse. The excitation density of 

16 3
,T 0.15 10 cmexcn ���  � u was kept constant. The C parameters were kept the same as M�'

=10meV  except for TC  which was changed to 0.2, 0.4 and 0.8 for F = 1, 0.6, 0.1, respectively. 

The dashed lines in Fig. 10 (b) show the resulting HFWM amplitude curves for different pump 

pulse fluences as labeled. For M�' =-20meV (see Fig. 11 (c)) we used ,f 0excn � ,

16 3
,m 0.2 10 cmexcn ���  � u , 16 3

,D 0.08 10 cmexcn ���  � u and 16 3
,T 0.15 10 cmexcn ���  � u according to 

the spectral overlap of the excitation pulse. The C parameters were kept the same as M�' =-

7meV. For M�' =-42meV (see Fig. 11 (d)) we used ,fexcn , ,mexcn  and ,Dexcn  equal to zero and 

16 3
,T 0.06 10 cmexcn ���  � u according to the reduced overlap of the excitation pulse with the 

ODOS tail. The C parameters were kept the same as M�' =-20meV  except TC  = 0.2, 0.6 and 1.0 

was used for F = 1, 0.6, 0.1, respectively.  

We find a general agreement of the calculated HFWM curves with the experimental data. 

Remaining deviations in the dynamics at delays above 30ps are attributed to the consideration of 

only one type of trapped ZB electrons described by the average localization energy 25T� ' �  meV. 
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A more realistic consideration of a distribution of trapping sites with varying trapping energies 

and transition rates creating a distribution of decay times would likely remedy these deviations. 

However, the concurrent increase in the number of fit parameters would reduce the clarity of the 

results.  

The coupled rate equations (3) allow analyzing the dynamics of densities 

, , , , , ,f m D T S m fn n n n p p p . Figure 12 (a,b) and (c,d) show an example of the calculated differences 

of carrier densities from their equilibrium values and the density rates for M�' =10meV at 

maximum pulse fluence �I1,2/�I0 = 1 and at lowest fluence �I1,2/�I0 = 0.1, respectively 

We discuss the results starting with �I1,2/�I0 = 1. The relaxation of the free electrons and holes 

is so fast that they relax within the excitation pulse duration to the mobility edge, and no 

significant free density builds up. The electrons at the mobility edge mn , relax within the first 

picoseconds into the donor Dn  and trapped ZB states Tn . This decay corresponds to T1 of 0.7 ps 

of the multi-exponential fit (see eq. (2)) to the population dynamics shown in Fig. 5. The 

corresponding rates mD mn�J  and mT mn�J  are shown in Fig. 12 (b) as dashed cyan and blue lines. 

After about 1ps, mn  is sufficiently depleted so that the Dn  thermally activate into mn  and then 

relax into Tn . Thermal equilibrium in the conduction band, between mn  , Tn , and Dn , is reached 

after about 10 ps as can be seen by the merging rates mD mn�J and Dm Dn�J  , and of mT mn�J and Tm Tn�J

, creating detailed balance. At about 5ps, the surface trapped holes come into thermal 

equilibrium with the mobile holes, as can be seen by the merging of the trapping rate pS mp�J  and 

thermal activation rate Sp Sp�J . The surface hole density Sp   is close to the saturation densityS0p

. After intraband thermal equilibrium is established, the dynamics is dominated by the 

recombination of mobile holes. The non-radiative recombination is dominating (solid red line), 
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as dictated by the low quantum yield of about 2% at this temperature. The radiative 

recombination is dominated by the electrons in the ZB sections and the donor states, consistent 

with the observed PL spectrum (see Fig.2).  The decay reduces the trapped hole density, which 

reduces the screening, and consequently decreases the thermally excited mobile hole density 

exponentially. This dramatically reduces the recombination for times above a nanosecond.  

 

Figure 12: Calculated dynamics of ( ), ( ), ( ), ( ), ( ), ( ), ( )f m D T S m fn t n t n t n t p t p t p t  for T=80K 

and an excitation wavelength of ����� ������0nm at (a) an excitation fluence �I1,2/�I0 = 1 and (c) at 

�I1,2/�I0 = 0.1 using eq. (3). The corresponding density rates are given in (b) and (d), 

respectively. Processes of excitation (dash-dotted), relaxation (dashed), thermal activation 

(dotted), and recombination (solid), are given as labelled.  
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Turning now to the results for �I1,2/�I0 = 0.1 shown in Fig. 12 (c,d), the initial dynamics up to 

about 5ps shows a reduced decay rate due to the reduced carrier-carrier scattering. Importantly, 

since the photoexcited hole density mp  is smaller than the saturation density of surface holes 
0Sp  

the thermal activation is slower due to the larger activation energy, leading to a hole 

thermalization only after about 50ps. The subsequent population dynamics on the nanosecond 

time scale is again governed by the non-radiative recombination between mobile electrons and 

holes, fed by thermal activation of trapped electrons Tn  and holes Sp . It is slower due to the 

reduced screening of the surface trapping potential.  

[WL7]For excitation below the mobility edge, at M�' =-7, -20, and -42meV, the population 

essentially remains the same but the decay rates are reduced due to the reduced inter-band 

excitation density. Fig. 13 (a) and (c) show as example the dynamics of densities at fluences 

�I1,2/�I0 = 1 for M�' =-7 and -42meV, respectively, revealing decreasing initial decay rates of mn  

and mp . The reduced screening of the surface trapping potential leads to an increased hole 

thermalization time of 100ps for M�' = -42meV and provides a slower recombination dynamics.  
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The temperature dependence of the modeled dynamics is shown in Figures 14 (a) �± (c) giving 

the calculated HFWM amplitude and the experimental data obtained at 150K, 210K and 270K. 

 

Figure 13: As figure 12, but for ���� � �� ����0nm (a,b���� �D�Q�G�� �D�W�� ���� � �� ����0nm (c,d) at an excitation 

fluence �I1,2/�I0 = 1 
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[WL9]Besides using the determined non-radiative rates nr�J , as a function of temperature (see Fig. 

 

Figure 14: Comparison of calculated HFWM (dashed black lines) obtained from eqs. (3) 

and (4) with experimental data (full lines) at temperatures (a) T = 150K, (b) 210K, (c) 

270K and various excitation fluences �I1,2/�I0 as labeled.  
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all other relaxation and bimolecular rate constants were kept equal to the T = 80K calculations. 

For T = 150K we used ,f 0excn � , 16 3
,m 0.7 10 cmexcn ���  � u , 16 3

,D 0.26 10 cmexcn ���  � u and 

16 3
,T 0.15 10 cmexcn ���  � u according to the pulse overlap with the exciton and donor transition 

bands. In addition parameter TC  was adjusted to 0.5. At 210K and 270K we have M�'  ~ - 

10meV , so that we used the same excitation densities and imaginary C parameters were used as 

for M�'  ~ - 7meV at T = 80K. The TC  values were adjusted to 0.5 at T = 210K and to 0.7 at T = 

270K. (A summary of the used parameters is shown in table 1). As mentioned earlier the 

consideration of a distribution of ZB electrons with varying trapping energies and transition rates 

would likely lead to a better agreement between the calculation and the experimental data. The 

calculations also reproduce the data at lower pump pulse fluences (see Figs. 11 (a) �± (c) for F = 

0.6 and 0.1) using the same parameters as for F = 1 but increasing TC  values as shown in table 1. 

The resulting densities , , , , , ,f m D T S m fn n n n p p p  at different temperatures are shown in Fig. 

15 (a) and (c) for a fluence of �I1,2/�I0 = 1 for 150K and 270 K and the corresponding rates are 

given in Fig. 15 (b) and (d). The main temperature dependence is a shortening of the 

thermalization times due to the faster thermally activated rates, yielding about 10ps for electrons 

and holes at 150K, and 5ps at 300K.   Due to the large trapping energy of the surface holes, 

which can be screened by the surface hole density, the longer dynamics remains remarkably 

independent on temperature, as there is an equilibrium density of surface holes established by the 

pulse repetition rate, which screens the trapping energy and thus modifies the thermally activated 
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population of mobile holes, to adjust the average decay rate to match the average excitation rate. 

 

IV.  CONCLUSIONS 

We studied the dephasing and population dynamics of e-h pairs in polytype InP nanowires 

using three-beam HFWM, for excitation densities in the 1015-1016 cm-3 range and temperatures 

from 80K to 270K. The population dynamics shows processes with time constants spanning the 

full measured range of timescales, from 100fs to 100ns. With increasing excitation density the 

faster components in the sub-nanosceond range get more prominent.  The dynamics has been 

interpreted by a coupled rate equation model which considers wurzite and zincblende electron 

 

Figure 15: As Fig. 12, but for T = 150K,  ���� � �� ����0nm (a,b) and �7� �� �������.���� ���� � ��870nm (c,d) 

and an excitation fluence �I1,2/�I0 = 1.  
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states, donor electron states, and band bending trapping holes to the surface. Intraband scattering 

rates respecting detailed balance are used, and screening of the band bending. Bimolecular 

recombination leads to interband relaxation, and is separated into radiative and non-radiative 

processes using non-radiative rates taken from the measured temperature dependent quantum 

yield. The model reproduces the essential features of the experimentally observed dynamics at 

different excitation wavelengths, pump-pulse fluences and lattice temperatures.  Important 

conclusions are that intraband thermalization is reached within 5-50ps, after which the non-

radiative recombination dominates the dynamics. Notably, the screenable surface band bending 

results in long lived spatially separated carriers, having a density which self-adjusts to balance 

the time-averaged excitation and recombination rates. In experiments with high repetition rates, 

often used in the literature, this provides a photogenerated, spatially separated background carrier 

density important for the measured dynamics.  The model can be used and expanded in the future 

to interpret the carrier dynamics of similar structures. Using the amplitude and phase of the 

FWM data would result in a better separation of the difference processes, and an explicit fit of 

the model to the data could retrieve the free parameters in a more reliable fashion. 

Photon echo experiments at T = 80K reveal an exciton dephasing time of less than 100fs, 

while a time of several hundred fs is expected. We attribute this shorter than expected dephasing 

time to exciton-carrier scattering which is consistent with the typical donor concentration in 

these InP NWs in the order of 1x1016 cm-3 61. 
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