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If the plasma membrane of a cell is able to delaminate locally from its actin cortex a cellular
bleb can be produced. Blebs are pressure driven protrusions, which are noteworthy for their ability
to produce cellular motion. Starting from a general continuum mec hanics description we restrict
ourselves to considering cell and bleb shapes that maintain approximately spherical forms. From
this assumption we obtain a tractable algebraic system for bleb formation. By including cell-
substrate adhesions we can model blebbing cell motility. Furt her, by considering mechanically
isolated blebbing events, which are randomly distributed over the cell we can derive equations
linking the macroscopic migration characteristics to the micros copic structural parameters of the
cell. This multiscale modelling framework is then used to provid e parameter estimates, which are
in agreement with current experimental data. In summary the const ruction of the mathematical
model provides testable relationships between the bleb size and cell motility.

I. INTRODUCTION

Cells are often produced away from the loca-
tions where they are needed [1{4]. In order to
ful�l their role, cells need to sense their environ-
ments and migrate to their target area. Migration
can occur passively through such mechanisms as
population pressure arising from cell proliferation
and loss, or through the global movement of ex-
tracellular matrix components akin to a conveyor
belt action [5{7]. Here, we are interested in how
active motion is generated via dynamic confor-
mational changes in cellular shape [8{10].

We focus our attention on exploring the in-
terplay between shape and motion in a speci�c
form of cellular deformation known as blebbing.
Blebs are cellular protrusions that occur when
the membrane delaminates from the actin cor-
tex [11]. This released membrane balloons out
into a hemispherical protrusion, which is driven
by the intercellular pressure being larger than the
extracellular pressure [12]. Over the course of
10-30 seconds the bleb's growth is arrested and
the bleb enters a stationary phase. During this
phase a cortex is reformed in the blebbed expan-
sion leading to a slower retraction phase of about
2 minutes, over which the membrane and cortex
are retracted back into the cell [13]. At this point
the blebbing cycle can begin again.

Blebs play an important role in a number of di-
verse processes in cellular biology, including mito-

sis and locomotion, and across a wide range of cell
types, such as tumour cells, embryonic cells and
stem cells [13{18]. Since the membrane is 
exible
blebs can take many forms. Here we focus of a
rather ubiquitous type that are highly rounded
and spherical (see Figure 1) [18{23]. Our present
investigation considers muscle satellite stem cells,
which use blebs to migrate along muscle �bres in
order to �nd and repair sites of muscle damage.
Critically, it has been demonstrated experimen-
tally that if satellite cell's blebs are too big, or
too small, the cell does not move e�ectively [24].

It should be noted that, since our results de-
pend on �xing the geometry of the problem to
be spherical, tubular and other bleb shapes [25]
are outside the scope of our applicability. Fur-
ther, we are assuming that the majority of the
blebs are mechanically isolated as seen in Figure
1. Other cells produce multiple small blebs con-
tinuously on top of one another [18], once again,
these are outside the scope of our results.

Blebbing, and the migration that it produces,
has received a lot of attention recently from the
mathematical modelling community and, thus,
there are a number of di�erent frameworks [20,
26] that span a huge range of complexity [27, 28].
Due to the blebbing process being so intricate it
is often necessary to use highly detailed models
in order to reproduce observed results. For exam-
ple, in previous studies we have shown that the
neck of a bleb must be highly controlled in order
to stop membrane excessively tearing away from
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FIG. 1. A blebbing muscle stem cell with 
uorescent
actin skeleton at two di�erent time points, illustrat-
ing the rounded form of the cells and blebs. Used
with permission from the Skeletal Muscle Develop-
ment Group, University of Reading. Scale bars 5 � m.

cortex [29]. Equally, the shrinking rates of the
membrane and cortex must be carefully tuned if
the cell is to complete its retraction stage [30].
However, if details about the neck region are not
needed then simpler models considering the mem-
brane and cortex as a composite material can be
used to approximate the full biological complex-
ity [31]. Moreover, due to the spherical shape of
the cell and blebs solid mechanical models of the
membrane and cortex can be simpli�ed by �x-
ing the geometry of the bodies and treating the
system as a set of coupled spherical caps [32].

In this paper we aim to derive a parsimo-
nious model that captures the generic features
of muscle satellite stem cell and link the observ-
able movement characteristics of this cell type
[13] back to a simple geometric description, al-
lowing us to predict parameter regions for vari-
ables that are di�cult to calculate experimentally
and to assess how cell properties impact on bleb-
bing motility. Critically, what we lose in terms
of accuracy is compensated for in terms of gen-
eralisability and simplicity. Our model consid-
ers a full three-dimensional blebbing cell that can
undergo multiple blebbing events over its entire
surface, as well as interact with and adhere to a

at two-dimensional substrate and, thus, gener-
ate movement. The motion occurs through the
production of point adhesions from the blebs and
the cell rolling onto the blebs during retraction.

We note that this is only one form of bleb mi-
gration. Indeed, blebbing cells have been seen
to be very good at expanding protrusions into,
and squeezing through, gaps, in order to navigate
crowded environments [19, 28]. However, this is
not seen in stem cell motion along muscle �bres.
Equally, other cells are seen to have large contact

surfaces [33] due to the cell spreading over the
substrate. Critically, from the movies of Collins-
Hooper et al. [13] not only do we see that mus-
cle stem cell motion remains extremely spheri-
cal throughout the migration, but also the mo-
tion appears to arise from a rolling phenomenon,
whereby the blebs pulling the cell in a given di-
rection [24]. Cells that bleb with long lobopodia,
or 
atter protrusions, are outside the scope of the
current model

We begin in Section II by introducing the gen-
eral solid mechanics formulation in terms of dif-
ferential equations on the domain of the mem-
brane. This formulation is simpli�ed in Section
II A to an analytical framework and extended in
Section II B to include adhesive coupling to a

at substrate. In Section II C we assume that
the blebs are uniformly random and derive re-
lationships for the probability density functions
detailing the stochastics of cell displacement due
to blebbing. These results are illustrated in Sec-
tion III, where we demonstrate the link between
experimental data of cellular motion and struc-
tural properties of the cell, before summarising
our �ndings in Section IV.

II. MODEL

We begin with a brief summary of the solid
mechanics model (see [29] for a more in depth
discussion) and then demonstrate how �xing the
geometry of the components to those of spherical
caps simpli�es the formulation. To aid the reader
a glossary table for the variable names and de�-
nitions is provided in Appendix A.

The fundamental set of equations de�ning the
axisymmetric geometry of the problem is

@y
@�

= � s cos(� ); (1)

@�
@�

= � s � s; (2)

@z
@�

= � � s sin(� ); (3)

@s
@�

= � s: (4)

The model is rotationally symmetric about the
z-axis and the azimuthal angle is denoted (see
Figure 2). The y and z variables are the Cartesian
coordinates of the solution con�guration, repre-
senting the shape of an unstressed Cartesian ref-
erence con�guration, (zrc ; yrc ), once it has been
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(a)

(b)

FIG. 2. Schematic diagram of stresses acting on the
membrane of the cell. (a) De�nition of adhesion
forces and geometric variables. (b) Adhesion forces,
surface tensions and cellular pressures de�ned on a
small section of the membrane. Variable de�nitions:
(zrc ; yrc ) - reference con�guration of the membrane;
(z; y) - solution position of the membrane; � - ref-
erence con�guration arc length; s - solution con�g-
uration arc length; � - angle normal to membrane
solution con�guration; F - Force vector produced by
adhesions; � - angle of adhesion action; ts and t  -
surface tensions;Pe and Pi - external and internal cell
pressures, respectively. For further details, see text.

pressurised by a pressure di�erence, �P. In our
case the initial reference con�guration is a sin-
gle sphere of radius� c, which will be broken into

spherical caps once blebs are allowed to occur.
The arc length, � , of the reference con�guration
(measured from the intercept of the reference con-
�guration with the z-axis) is used to parameterise
the system. The solution and reference con�gu-
rations are related via thearc length stretch ratio,
� s, (de�ned by equation (4)), which characterises
the local stretching of the body coordinates with
respect to arc length and theradial stretch ratio

�  =
y(� )

yrc (� )
; (5)

which measures the axisymmetric deformation.
Finally, � s (de�ned by equation (2)) and

�  =
sin(� )

y
; (6)

are the principal curvatures of an axisymmetric
surface along the arc length and along the az-
imuthal angle, respectively, where� is the normal
angle of the membrane.

Having de�ned the geometry, we de�ne the
force balances through the equations

@(yts)
@�

= � s (t  cos(� ) + F (� )Cy sin(� � � )) ;

(7)

� P = ( �  t  + � sts + F (� )C cos(� � � )) ;
(8)

where the surface tensions,ts and t  , are coupled
to the strains through large extension constitu-
tive laws,

ts = A

 

� 2
s + �

�
y

yrc

� 2

� (1 + � )

!

; (9)

t  = A

 

�� 2
s +

�
y

yrc

� 2

� (1 + � )

!

: (10)

The parameter � measures the relative extensibil-
ity of the membrane in the azimuthal and longi-
tudinal directions, whilst the parameter A char-
acterizes the elastic properties of the membrane
[34].

The adhesion force,F (� ) = jF (� )j, is given by
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F (� ) = �E (� )H (Ec � E (� )) ; (11)

E(� ) =
� q

(z(� ) � Rc cos(�=� c))2 + ( y(� ) � Rc sin(�=� c))2 � (� � Rc)
�

: (12)

The adhesions couple the material points of the
membrane and cortex, while the force is assumed
to act along the line connecting these two points.
The cortex is assumed to be a sphere of radius
Rc that is concentric with the reference con�g-
uration; thus, initially the adhesions are all con-
nected along the radial trajectories, normal to the
cortex. Although not explicitly modelled here,
cortical tension is, no doubt, an important factor
controlling the terminal size of the blebs. A con-
stitutive relationship linking cortex tension and
pressure could be added to the model to provide
an implicit account of cortex tension. However,
on account of not having such data we focus on
specifying the pressure directly.

The adhesions are modelled as piecewise
Hookean springs with spring constant � [35].
Note that � is measured per adhesion; thus, it
is multiplied by an adhesion concentration,C, to
provide a force per unit area, which opposes the
pressure gradient. Note that the force is linearly
related to the extension up until a critical exten-
sion, Ec, beyond which we assume that the ad-
hesions break. This is enforced by the Heaviside
function H (Ec � E (� )) in equation (11). Finally,
as the membrane evolves the adhesions will move
and, thus, � is the angle along which the force is

directed, where

tan( � ) =
y(� ) � Rc sin(�=� c)
z(� ) � Rc cos(�=� c)

: (13)

A. Geometric enforcement

Enforcing the geometric constraint that the
shell remains spherical throughout greatly sim-
pli�es these equations. Substituting the expres-
sion (z; y) = ( r c cos(� ); r c sin(� )) into equations
(1)-(13) we quickly �nd that the system reduces
to:

� s = � � =
1
r c

; (14)

� s = � � =
r c

� c
; (15)

ts = t � = A(1 + � )

 �
r c

� c

� 2

� 1

!

; (16)

� =
�
� c

; (17)

F = � (r c � � c); (18)

r c (� P � F C) = 2 ts: (19)

Whence, we �nd the radius of the initial spherical
solution, r c0, in terms of the parameters: C� ,
the adhesion strength density; � P0, the initial
pressure di�erence;� c the reference radius;� , the
relative extensibility of the membrane and A, the
membrane sti�ness, via equations (16), (18) and
(19),

r c0 =
(C�� c + � P0) � 2

c +
q

(C�� c + � P0)2 � c
4 + 8A (1 + � ) (C�� 2

c + 2A (1 + � )) � 2
c

2C�� 2
c + 4A (1 + � )

: (20)

Note that because membrane can only stretch 4%
before lysis occurs [36] we expectr c0 � � c. Using
equations (16), (18) and (19), once again, we can

provide the linear estimate, with respect to � =
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r c0=� c � 1 � 1,

r c0 � � c

�
1 +

� P0� c

C�� 2
c + 4A (� + 1) � � P0� c

�
;

(21)
which makes the parameter dependencies much
more obvious. Note that, although the denomi-
nator can be set to zero through judicious choice
of parameter values, in the case we are consider-
ing

C�� 2
c + 4A (� + 1) � � P0� c (22)

and, hence, no singularity develops. It should
also be noted that inequality (22) also suggests
that the radius is approximately linear in � P0.

From this we can calculate the initial volume of
the spherical cell,V = 4 �r 3

c0=3, in terms of � P0
and other parameters. During blebbing the total
volume contained within the blebs and main cell
body remains constant. Thus, the pressure dif-
ference, � P, is used as a Lagrange multiplier, en-
forcing requirement. Speci�cally, as a bleb grows
the internal pressure is released, decreasing �P.
In turn, this reduction in pressure reduces the
volume of the cell body, as well as the maximum

size to which the bleb can grow, to ensure that
the volume constraint is satis�ed.

Equations (14)-(19) are also true for spher-
ical caps, so, we can extend the system be-
yond the initial simple spherical cell to include
blebbed states, where the cell and bleb are cou-
pled through the global pressure di�erence and
volume constraint. Note that by extending the
system to include blebs, not only do we need to
specify the radius of the cell and the bleb,r c and
r b, respectively, but we also need to specify the
cell and bleb neck angles that connect the two
components (see Figure 3). It should be noted
that although the equations, as derived here, take
into account any number of blebs, later we will
restrict the model to single, mechanically isolated
blebs. More generally, given a cell of radiusr c,
from which the i th bleb expands with a neck an-
gle of � ci , we de�ne the reference con�guration
radius of the bleb to be� bi , the solution radius of
the bleb to be r bi , and the bleb neck angle to be
� bi , (see Figure 3). Finally, de�ne a setA, to con-
tain the indices, i , of the active blebs, i.e. blebs
that have not been fully retracted. From these
de�nitions we derive the following system:

V =
4
3

�r 3
0 = Vc +

X

i 2 A

Vbi ; (23)

Vc =
4
3

�r 3
c �

X

i 2 A

�
3

r 3
c (1 � cos (� ci ))

2 (2 + cos (� ci )) ; (24)

Vbi =
�
3

r 3
bi (1 � cos (� bi ))

2 (2 + cos (� bi )) ; (25)

r c sin (� ci ) = r bi sin (� bi ) ; 8i 2 A; (26)

2
r c

A(1 + � )

 �
r c

� c

� 2

� 1

!

+ C� (r c � � c) =
2

r bi
A(1 + � )

 �
r bi

� bi

� 2

� 1

!

; 8i 2 A: (27)

Equation (23) de�nes the volume constraint as
given by components in equations (24) and (25).
Thus, all of the volume contained in the cell body,
Vc, and blebsVbi , add up to the initial value.

Equation (26) consists ofN = jAj equations, as
it enforces continuity of the membrane between
the cell and each bleb. Similarly, equation (27)
de�nes N equations that arise from combining
equations (16), (18) and (19) under the assump-
tion that pressure is continuous throughout the
cell and blebs, and that there is no cortex to ad-

here to in the bleb.
Through de�ning equations (23)-(25) we made

the assumption that each bleb only interacts
through continuity of pressure and volume. How-
ever, when blebs form in direct contact with one
another their interaction will be more complex.
We justify our assumption of bleb independence
by noting that blebbing is known as a very lo-
calised action in that blebs are usually isolated
from one another, at least in the satellite stem
cells, which we are modelling. Further, it is
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FIG. 3. Schematic diagram illustrating the bleb and
cell geometry. For each i th bleb we de�ne the vari-
ables: r bi - bleb radius; � bi - neck opening angle of
bleb; (� i ;  i ) - polar angles denoting the bleb's posi-
tion; � ci - neck opening angle of cell.

known that blebs have a small inhibitory e�ect
locally in both space and time [12], that is, if
a bleb occurs in a speci�c location then another
bleb will not appear near the original location for
a short time. Both of these characteristics sug-
gest that blebs tend not to have a large e�ect on
one another. By appealing to this assumption we
specify the location of blebi , through the spher-
ical coordinates (� i ;  i ), where the longitudinal
and azimuthal angles are chosen uniformly at ran-
dom from the intervals [� �= 2; �= 2] and [� �; � ),
respectively.

Equations (23)-(27) represent 2N + 1 con-
straints on the blebbing cell, i.e. 1 volume con-
straint; N continuity constraints and N force bal-
ances. However, as noted above, for a cell withN
blebs we need to specify 4N + 1 variables, i.e. 1
cell radius, r c; N bleb radii, r bi ; N bleb reference
radii, � bi ; N neck angles for the bleb,� bi ; and
N neck angles for the cell,� ci , hence, we need
to prescribe 2N constitutive equations. N con-
stitutive equations are used to specify the region
over which the membrane delaminates from the
cortex. That is we �x � ci = � c for all blebs. Al-
though, this appears to be a strong assumption
we aim to give an estimate of� c, which depends
on experimental data, and, so, this can be inter-
preted as being a mean value of the neck size,
which will provide an a posteriori check for the
validity of this assumption. It should be noted,
however, that the bleb neck is actually dynamic
as it tears away from the cortex. Since we are us-

ing an adiabatic approximation this simply means
that � c is the �nal stabilised value of the vari-
able. Although � c is currently undetermined fu-
ture work will look into the in
uence of stochastic
variation and, perhaps, coupling the neck angle to
other cellular processes.

Presently, 3N + 1 degrees of freedom are com-
pletely speci�ed. The remaining N degrees of
freedom are currently left free. Either, they can
be used to de�ne a constitutive evolution equa-
tion which models the growth of the reference
con�guration [32], or as we will see in Section
II B, we specify a new geometric relation which
links the size of the cell and bleb through their
interaction with a substrate.

Consistent with (i) treating � c as a �xed con-
trol parameter, which will be used in relating the
model to experiment; and (ii) blebs not in
u-
encing one another; we make a �nal simpli�ca-
tion of dealing with only a single bleb expanding
and contracting at a time. As discussed in the
introduction we consider a parsimonious model
of blebbing, stripped down to its simplest parts.
However, the insights will be of use, since once we
understand how the system acts with one bleb,
generalising the model will not be di�cult.

We are able to generate the maximum bleb size,
as limited by the equilibration of the pressure,
� P = 0. In this case equation (27) is set to zero
and, by de�nition, the cell and bleb radii collapse
onto those of their respective reference con�gura-
tions. Since� c and � c are inputs that are constant
we can calculate the maximum radius of the bleb,
Rb, through the volume constraint,

V = Vc +
1
3

�R 3
b(1 � cos(� b))2(2 + cos(� b)) ; (28)

where V = (4 =3)�r 3
0 and Vc = ( �= 3)� 3

c(1 +
cos(� c))2(2 � cos(� c)). Upon rearranging equa-
tion (28) and using equation (26) we �nd that Rb
satis�es the equation

0 =4 (V � Vc) R3
b � �R 2

b (� c sin (� c))4

�
1
3

� (� c sin (� c))6 � 3
(V � Vc)2

�
: (29)

The accompanying maximum neck angle for the
bleb, � max

b , can then be found using equation
(26), however, care needs to be taken due to the
non-uniqueness of sin(� b) for � b 2 [0; � ]. Hence,
using equations (26) and (28) we derive the fol-
lowing equation in terms of cos(� b), which is



7

uniquely de�ned in the given interval,

(� V 2 + 1) cos(� max
b )3 + 3(� V 2 + 1) cos(� max

b )2

+ 3� V 2 cos(� max
b ) + (� V 2 � 4) = 0 ; (30)

where

� V = 3
V � Vc

�� 3
c sin(� c)3 : (31)

Since the equations forRb and cos(� max
b ) are cu-

bic polynomials they can be solved explicitly. Un-
fortunately, the analytic solutions are rather cum-
bersome and o�er no real insight into the depen-
dence ofRb, or � max

b on the various di�erent pa-
rameters, thus we state the full cubic equation in-
stead, with the understanding that it can be triv-
ially solved numerically, or analytically, if needed.
Finally, note that the discriminant of equations
(29) and (30) can easily be checked and in both
cases they are negative, meaning that the cubic
equations have unique real solutions, hence, we
do not need to worry about choosing the correct
root

B. Adhesion model

We now present a model of adhesion. Evolving
adhesions lead to a temporal asymmetry, allow-
ing the cell to move as the blebs cyclically expand
and contract. Here, the adhesions are treated as
simple springs that break when stretched too far.
Critically, we do not consider the actual kinet-
ics of the adhesion binding and unbinding pro-
cess [37{39]. Not only is this assumption used to
retain simplicity in the model, but the adhesion
kinetics will only in
uence the time scale of the
process. Since we consider the blebbing \event"
(initiation-expansion-adhesion-retraction) as one
time unit this in
uence on time scale should not
change the qualitative results of the paper. We
begin by treating the case when the cell is able
to adhere to a 
at two-dimensional surface.

To de�ne the adhesions we prescribe a set of
spherical caps concentric around the blebbing
cell. This concentric layer represents the resting
size, L � r b, of the adhesive layer, whereL is
a new independent parameter (see Figure 4(a)).
The adhesions are modelled as piecewise Hookean
springs that break if extended beyond a critical
length, �L , where� is de�ned as the ratio of rest-
ing adhesion length to breaking adhesion length.
Further, because the adhesion kinetics of bind-

ing and unbinding occur on a fast molecular time
scale we assume that the system is in mechanical
equilibrium at each time point. At equilibrium
the surface and cell are separated by a distanceh.
The problem is then to resolve forces and torques
to �nd the resting position of the cell and blebs.
Initially we consider a spherical cell body without
a bleb, as we will see it generalises to the single
bleb case.

(a)

(b)

FIG. 4. Schematic diagram of adhesions acting be-
tween a substrate and (a) a cell, or, (b) a cell and a
bleb. Variable de�nitions: ( r c ; � c) - cell radius and
neck angle; (r b; � b) - bleb radius and neck angle; L -
width of resting adhesion layer; �L - maximum width
of adhesion layer; � c - half angle subtended by the
cell's adhesion pad; � b - half angle subtended by the
bleb's adhesion pad; hc - separation distance of bleb
and substrate; hb - separation distance of cell and
substrate; d - distance between cell and bleb centres.

The adhesions are assumed to act normally to
the cell surface. This is justi�ed because the ad-
hesions are small,h < L � r b � r c, and, so,
the in
uence of any perturbations to the orien-
tation will be much smaller. For a single sphere
in equilibrium with the substrate, the adhesion
pad is symmetric about the lowest point of the
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cell. Due to this symmetry torque and horizontal
force balances are automatically satis�ed, leav-
ing us to �nd the angle � c over which the ad-
hesions bind to the surface, such that the ver-
tical force balance is satis�ed (see Figure 4(a)).
Due to the spherical symmetry of the cell we
only need to consider a one dimensional slice
of the sphere and, further, due to the symme-
try about the lowest point we only need con-
sider the adhesions over a non-negative range of
�. Using Figure 4 and de�ning h to be the cell-
substrate separation distance we derive the equa-
tion l(�) cos(�) = h + r c(1 � cos(�)). Thus, ne-
glecting e�ects of gravity due to the trivial mass
of the cell, the vertical force balance is

0 =
Z � c

0
(L � l (�)) cos(�) d� ; (32)

=
Z � c

0
(L + r c) cos(�) � (h + r c) d� ; (33)

= ( L + r c) sin(� c) � (h + r c)� c; (34)

By geometry, when � = � c,

h + r c = ( �L + r c) cos(� c); (35)

which, together with equation (34), implies

�L + r c

L + r c
=

tan(� c)
� c

: (36)

Since L � r c we must have � c � 1 and by lin-
earising both sides of equation (36) we derive the
following general approximation

� c �

s
3(� � 1)L

r c
: (37)

Note that � c = 0 is also a solution, which cor-
responds to the cell lying on top of the substrate
without the adhesive layer deforming. However,
by comparing the cell-substrate adhesion energy
of these two solutions, we verify that equation
(37) gives the minimum energy solution.

Substituting equation (37) into equation (35)
we �nd that

h �
(3 � � )L

2
: (38)

Equations (37) and (38) are simple estimates that
predict how the cell will behave upon perturbing
the parameters. In particular, since the adhered
surface area is proportional tor 2

c � c equation (37)

predicts that the adhered surface area will scale
as r 3=2

c . Similarly, we �nd that in order to satisfy
the condition that the cell does not penetrate the
substrate, h � 0, we must have� < 3. This pro-
vides a natural limit for how far the adhesions can
stretch for a spherical cap model, namely they
can extend, at most, three times their natural
length, which is consistent with experiments [35].

We extend this analysis to a cell and bleb con-
�guration. First, we show that the torque bal-
ance is automatically satis�ed and, thus, all of the
derivations presented above for the single sphere
can be generalised to the cell and single bleb case.

An intuitive argument proceeds as follows:
suppose that the cell and bleb as a system is
in equilibrium both in terms of its forces and
torques. Further, suppose they are not indepen-
dently in force equilibrium. Due to the quick re-
laxation speed of the molecular kinetics, and the
fact that the adhesion pads for the cell and bleb
do not interact, then the adhesion pads will be
symmetric about the lowest points of the cell and
bleb, respectively. Thus, horizontal forces must
balance, meaning that only vertical forces are not
in equilibrium. Suppose, without loss of general-
ity, that the cell experiences a net upwards force
implying that, since the whole cell-bleb system
is in equilibrium, the bleb must experience a net
downwards force. However, this causes a non-
zero torque to exist about the centre of mass.
Hence, we produce a contradiction demonstrat-
ing that the cell and bleb must be in equilibrium
separately.

To illustrate this property here we have plot-
ted the locus of the roots for the total force
and torque balances in Figure 5, (equations not
shown, but they can be derived in a similar
manner to equations (32)-(34)). The functions
only share four roots in the non-negative quar-
ter plane, denoted 1-4 and represent the roots
(0; 0), (0; � 0c), (� 0b; 0) and (� 0b; � 0c), respec-
tively, where � 0c is given by equation (37) and
� 0b is given by equation (37) with r c changed to
r b. Out of these four solutions (� 0b; � 0c) has the
lowest energy.

Second, we compute the maximal radius tak-
ing into account that an expanding bleb will stop
growing when it hits the substrate, which can
happen before it has reached the global maximum
radius derived from equation (29). The bleb may,
or may not, interact with the substrate depend-
ing on the angle,� , at which the bleb is initiated
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FIG. 5. Roots of the force and torque balance equa-
tions. The points 1-4 are the values of � b and � c

that simultaneously solve both equilibrium functions.
Although we are speci�cally interested in the non-
negative quarter plane, the whole plane is shown to
illustrate the rotational symmetry that is present in
the solutions. Parameters are r c = 5 � m, r b = 1 :5� m,
� c = 1 =5, L = 10 � 3 � m � = 2 and � b is found through
equation (26).

as seen in Figure 4(b). In general, we have

d = r c cos(� c) � r b cos(� b): (39)

and that the global maximum bleb radius, r b =
Rb, occurs whenr c = � c. From these values we
know that the bleb will touch the substrate when-
ever � 2 [� �= 2 + � c + � c; �], where

sin(�) =
(Rb + �L ) cos(� b) � (� c + �L ) cos(� c)

� c cos(� c) � Rb cos(� max
b )

:

(40)
Thus, � is de�ned to be the maximum angle at

an expanded bleb can touch the substrate.
In the region [� �= 2; � �= 2 + � c + � c] the cell

is already touching the substrate through the ad-
hesions and, so, no bleb expands. We use the
dependence of �c and � b on L and L � r b � r c
to expand equation (40) with respect to L=r b to
obtain

sin(�) =
Rb � � c

� c cos(� c) � Rb cos(� max
b )

+ O
�
(L=r b)2�

:

(41)
In the complementary region, [� �= 2 + � c +

� c; �], we de�ne a function for the maximum ra-
dius of the bleb, r max

b , by expanding the geomet-
ric constraint

(r c + �L ) cos(� c) + dsin(� ) = ( r b + �L ) cos(� b);
(42)

to obtain

r c + dsin(� ) = r b + O (L=r b) : (43)

Combining equations (26) and (43) we obtain the
approximate relationships

r max
b � r c

�
2

1 + sin( � ) cos(� c)
cos(� )2 � 1

�
; (44)

with corresponding angle given by

cos(� b) =
� 2 sin (� ) sin (� c)2

sin (� )2 + 2 sin ( � ) cos (� c) + 1

� cos (� c) : (45)

In deriving equations (44) and (45) we neglected
the trivial root r c = r b and � c = � b, which cor-
responds to the unblebbed case. It can be seen
that since � c > 0 and �= 2 > � > � �= 2 then both
r max

b and � b are well-de�ned in terms of their ex-
istence and uniqueness.

Finally, equations (44) and (45) can be com-
bined with the volume equations (23)-(25) to give

r 3
c =

3V
�

3(2+cos( � c ) � sin( � ))
1+cos( � c ) cos (� )4 � 4 (3 � 2 sin (� )) cos (� )2 + 8 (1 � sin (� ))

�

2� (1 + cos (� c))3
�

9 cos(� )4

1+cos( � c ) + 3 (3 cos (� c) � 7) cos (� )2 � 8 (cos (� c) � 2)
� ; (46)

which depends solely on� c, a constant, and � ,
a uniform random variable. We are interested in
using � c as a control parameter for the system
as it is an experimentally measurable quantity,

which can be linked to the motility characteristics
of the cells.

The assumption that the bleb stops growing
once it hits the substrate can easily be relaxed.
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Speci�cally, we would assume that as the bleb
continues to grow the cell would not be moved as
it is more adhered to the substrate than the grow-
ing bleb. If the bleb did move the cell whilst it
was growing then it would result in the cell mov-
ing in the opposite way to bleb expansion, which
is not experimentally observed. Hence, at most,
the cell would rotate to accommodate the grow-
ing bleb. Since, in the case of muscle stem cells,
the expansion phase does not result in transla-
tion of the cell then altering how the bleb grows
in relation to the substrate would simply result in
changing the probability density function of bleb
sizes, which is easily incorporated in Section II C.
However, for clarity, we persist with the idea that
the bleb stops growing upon contact with the sub-
strate.

In Figure 6 we illustrate the model from sec-
tions II A and II B. The con�gurations are pro-
duced under the assumption that the bleb's size
is limited either by its interaction with the sub-
strate, or the conservation of the total cell vol-
ume, which is constrained under the assumption
that � P = 0 at equilibrium.

The small size of the adhesions that stick the
cell and bleb to the substrate has a number of
implications. Firstly, the three concentric shells,
which represent the membrane; resting adhesion
length and maximally stretched adhesion length,
respectively, look as though they rest on top of
one another. However, a magni�ed version of the
adhesion pad in the top left inset, demonstrates
that these three shells are separate. Secondly,
the size of the adhesion pad depends on the an-
gular region over which the stretched adhesion
touch the substrate, i.e. the width of the adhe-
sion pad is 2 sin(� c) � c2

p
3(� � 1)L=r c. In the

limit L ! 0, we could forego adhesion consid-
erations altogether and simply assume that cell
and blebs rest fully on the substrate indicating
that adhesions only occur at the point of touch
between the substrate and the sphere. However,
the scales derived above relating the size of the
sphere and its adhesion pad as well as the re-
striction on the parameter � more than justify
the inclusion of adhesion considerations.

The other two-dimensional plots in Figure 6
demonstrate the ability of the cell to bleb over
its entire body (save a small area over which the
cell is adhered to the substrate). Moreover, in
the bottom left and right plots, we see the in
u-
ence of the substrate on the expansion of a bleb.
By comparing the lengths of the thick black lines,
connecting the centre of the cell to the centre of

the bleb, we see that the maximally extended bleb
(bottom left of Figure 6) is con�gured in such a
way that its centre is outside of the cell's body,
whereas the bleb that was initiated at an angle
closer to � �= 2 (bottom right of Figure 6) is un-
able to extend as far, and its centre is still inside
the cell's body.

The plots of Figure 6 were all numerically ob-
tained from the exact, non-linear forms of the
relations between the variables. In Figure 7 we
compare these numerical solutions with their lin-
ear approximation. We note that it is only within
the adhesion pad region, � 2 [� �= 2; � �= 2 +
� c + � c], that the approximation breaks down.
This discrepancy is expected because the adhe-
sion pad region is assumed to inhibit blebbing,
thus, within this region there should be no bleb-
bing. Indeed, the numerical approximations re-
produce this solution as they are �xed to the ini-
tial radius constant, R0 within the adhesion pad
region. Whereas in the adhesion pad the linear
approximation slightly over estimates r c, the es-
timates for r b become increasingly disparate as
� ! � �= 2 because of the singularity in equation
(44), which speci�es r b.

C. Stochastic blebbing

Since the adhesions pad of a spherical cap scale
as r 3=2 the cell's adhesion pad will be larger than
a bleb's adhesion pad. Thus, as a bleb retracts
the cell adheres more to the surface than the bleb
and, hence, the retraction preferentially causes
the bleb's adhesion to break. Without taking into
account other processes this motion results in a
time reversal of the expansion process. In order
to break this symmetry we assume that adhesions
weaken over time. Thus, the blebbing process
proceeds as follows:

1. Initially a spherical cell adheres to the sub-
strate.

2. Initiate bleb expansion somewhere on the
cell surface by randomly sampling (�;  ).
Compute Rb from equation (29).

3. Depending on (�;  ) and Rb calculate
whether the bleb will intersect with the sub-
strate, or not.

4. Expand the bleb to its maximum size,
which will be r max

b (computed from equa-
tion (44)), or Rb, depending on stage 3.
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FIG. 6. A blebbing cell, adhering to a 
at substrate. In all case s the full non-linear system, equations (23)-
(27), (36) and (40), and were solved numerically using a Newton-Raphson iteration scheme. The centre shows
a fully rendered three-dimensional cell adhered to a two-dimensional 
at substrate, with a bleb extended to
its maximum distance. The black line along the three-dimensi onal body illustrates the plane of symmetry
normal to the substrate. The surrounding images are cross sectionsof a blebbing cell. a) Initial spherical cell
adhered to the substrate, which also illustrates the concentric shells of the adhesions at their resting length
and full extended length. The inset illustrates a magni�ed sec tion of the adhesion pad. The black solid lines
illustrate size of the adhesion pad, which depends on � c . b) A cell with a bleb that was initiated at an angle
� > 0, which will never touch the substrate and, thus, extends to i ts maximum size. The variables � , � c � c ,
Rb and � b are also presented in the image. c) A bleb is extended at an angle� = �, hence the bleb is just
touching the substrate and, so, the bleb is able, once, again to extend to its maximum size. d) A bleb for
which � 2 [� �= 2 + � c + � c ; �] and, thus, it is unable to grow to its maximum size, before it in teracts with
the substrate. Parameters are � c = 5 � m, � c = 1 =5, L = 10 � 3 � m, � = 2, �C = 1000pN=� m3 , A = 400pN =� m,
� = 0 :5 and, initially, � P = 40pN =� m2 .

5. Fix adhesions to the bleb whilst weakening
adhesions that couple cell and substrate.

6. Retract the bleb into the cell, allowing the
cell's position to update to that of the bleb.

This process captures the main qualitative fea-
tures of the bleb dynamics over the time scale of
its cycle (2-3 mins) and represents one discrete
event that we can iterate in time. The motion of
the cells is driven by the size and displacement of
the blebs. In this section we consider the stochas-
tic production of these blebs and use it to derive
rates of random motion. Further, depending on
the results of Section II B, we take the limit of
L ! 0 (and, thus, � c ! 0) and �x r c to be con-
stant.

As illustrated in �gures 3 and 4, the two an-
gles that are controlled stochastically are � 2
(� �= 2; �= 2], representing the altitude angle of
the bleb, and  2 [0; 2� ] representing the az-
imuthal angle of the bleb. Thus, � determines
whether the bleb hits the substrate, whilst  de-
termines the direction of movement. Initially, we
assume the angles are uniformly distributed in
their respective intervals and look for the proba-
bility density function of cell movement distance.

For a given angle,� 2 [� �= 2 + � c; �], a single
expansion and contraction will cause the cell cen-
tre to move a distance ofw = dcos(� ). Using the
continuity equations, (39) and (42), the equation
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(a) (b)

FIG. 7. Comparing numerical and linearised approximate solutio ns for (a) r c and (b) r b within the region
� 2 [� �= 2; �]. Parameters are the same as in Figure 6.

for w becomes

w =
� 2r c

cos(� ) (sin(� ) + cos(� c)) � 2 [� �= 2 + � c; �] ;
0 Otherwise:

(47)
We de�ne the largest distance that the cell centre
can move to be

ŵ =
2r c

cos(�)
(sin(�) + cos( � c)) ; (48)

which occurs when � = �. Further, we de-
�ne f (w) to be the probability density function,
which describes the relative likelihood for the
random variable, W to take a given value, w,
which depends on the uniformly random variable
� . The probability of W falling within a particu-
lar interval is given by the integral of f over that
interval. In order to calculate f (w) we �rst con-
sider the cumulative distribution, F (w), which
describes the probability that W will value less
than or equal to w. Speci�cally,

F (w) = P(W � w) for w 2 [0; ŵ]; (49)

= P(W = 0) + P
�

2r c

cos(� )
(sin(� ) + cos(� c)) � w

�
; (50)

= P(W = 0) + P

 

� � arctan
�

w
2r c

�
� arcsin

 
2r cp

w2 + 4 r 2
c

cos(� c)

!!

; (51)

= P(W = 0) +
Z arctan( w=2r c ) � arcsin

�
2r c cos(� c )=

p
w 2 +4 r 2

c

�

� c � �= 2

1
�

d�; : (52)

where we have inverted the formula forw in equa-
tion (51) and used the de�nition of the uniformly
random distribution, � , in equation (52). From
equation (47) we have

P(W = 0) =
�= 2 + � c � �

�
; (53)

which gives,
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F (w) =

8
>><

>>:

0 w < 0;
� � �

� + 1
�

�
arctan

�
w

2r c

�
� arcsin

�
2r c cos(� c )p

w 2 +4 r 2
c

��
0 � w � ŵ;

1 ŵ < w:

(54)

Note that by using the de�nition of w(� ) and its
inverse we see thatw = ŵ when � = �, i.e.

� = arctan
�

ŵ
2r c

�
� arcsin

 
2r c cos (� c)
p

ŵ2 + 4 r 2
c

!

:

(55)
Hence, F (ŵ) = 1, which further implies that
P(W = 0) < 1.

By de�nition, the cumulative distribution is re-
lated to the probability density function through
the identity

f (w) =
dF (w)

dw
: (56)

Speci�cally, for 0 � w � ŵ,

f (w) =
�= 2 + � c � �

�
� (w)

+
2r c

4r 2
c + w2

 

1 +
w cos(� c)

p
w2 + 4 r 2

c sin(� c)2

!

; (57)

where � (w) is the standard Dirac delta function.
The �rst and second moments can then be di-
rectly calculated and compared to available data.
These moments are given here as they will be of
use later on,

hW i =
ŵ�
�

�
1
�

�
ŵ arctan

�
ŵ

2r c

�
+ r c ln

�
4r 2

c

ŵ2 + 4 r 2
c

�

+ 2 cos (� c) r c ln

 
2r c sin(� c)

p
ŵ2 + 4 r 2

c sin(� c)2 + ŵ

!

+2 r c arctanh

 
ŵ cos(� c)

p
ŵ2 + 4 r 2

c sin(� c)2

!

� ŵ arcsin

 
2r c cos(� c)
p

ŵ2 + 4 r 2
c

!!

; (58)

hW 2i =
ŵ2�

�
+

1
�

�
4r 2

c + ŵ2�
 

arcsin

 
2r c cos (� c)
p

ŵ2 + 4 r 2
c

!

� arctan
�

ŵ
2r c

� !

�
2r 2

c

�
(sin (2� c) + � � 2� c) +

2r c

�

�
cos (� c)

q
ŵ2 + 4 r 2

c sin (� c)2 + ŵ
�

: (59)

Although we have constructed the probability
density function for the distance moved by the
cell during each bleb cycle, experimentalists do
not have direct access to this data. Instead, data
is often in the form of time evolving trajectories
that have been tracked over the course of an ex-
periment. Thus, we extend the analysis assuming
that individual bleb steps are independent and
identically distributed. Explicitly, if P(x ; n) is
the probability density function for the displace-
ment of the cell on the nth step, the evolution of
this position is governed by the general equation

[40]

P(x ; n + 1) =
Z

P(x � s; n)p(s) ds: (60)

where p(s) is the probability density function
for a movement from the origin to a point s =
(w cos(� ); w sin(� )), that is p(s) = f (w)=2� . Us-
ing the probability distribution we are able to
compute the expected value of any functional
form of the variables, g(X ), over a number of
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blebbing events through

En (g(X )) =
Z

g(x )P(x ; n) dx : (61)

In particular, we are interested in the moments
of the distribution.

Firstly, we note that since the random walk
of the cells is symmetric then the average po-
sition of all the cells is the initial origin, i.e.
En (X ) = En (Y ) = 0 for all n. Further, we are
particularly interested in the second moments of
the probability density as they are often used to
characterise speci�c motion patterns as they can
be compared with the mean squared displacement
of the experimental trajectory data. Higher order
moments can be calculated using the character-
istic function as derived in Appendix B.

Since each blebbing event is independent and
identically distributed the variance of the cell's
position is simply the sum of the step size vari-
ances,

En
�
X 2 + Y 2�

= nhW 2i : (62)

This property suggests that we can approximate
the position distribution of the cells as a multi-
variate Gaussian distribution,

g(x; y; t ) =
1

�� 2t
exp

�
� 1

2� 2t

�
x2 + y2�

�
; (63)

with variance, � 2 = hW 2i =2. Further, we can
rely on the central limit theorem, which will cause
P(x ; n) to converge to a Gaussian asn increases.
Note that since the blebbing motion we are in-
vestigating is a random walk with variable step
length then this approximation should be accu-
rate everywhere, except near the origin. The ori-
gin will be problematic for this continuous ap-
proximation, because of the delta function in
equation (57).

III. RESULTS

In this section we compare the approximations
derived in Section II with the distributions ex-
tracted from stochastically simulated populations
of blebbing cells, in order to link experimental
data to the properties of the cell.

A. No volume constraint

Initially, we do not constrain the volume. In-
stead, we use this degree of freedom to �x � (as
de�ned by equation (40)) to speci�c values to ob-
tain the relationship between the critical blebbing
angle and the length of one step,w. By varying �
we gain insight into the cases where the arrest of
bleb growth occurs through the repolymerization
of the cortex in the bleb. In this case the bleb
size is not dependent on pressure, and, therefore,
volume. Thus, we have more freedom to choose
the maximum blebbing angle. The simulations
proceed by generating a large number of values
of � 2 [� c � �= 2; �], and calculating the corre-
sponding values ofw, which we can compare the
formulas against.

Our �rst result, presented in Figure 8, com-
pares the analytically derived probability distri-
bution for the movement distance, equation (57),
with a normalised histogram, calculated from the
observations of W from the stochastic simula-
tions. We observe that the analytical solution
compares extremely well with the simulated data,
justifying the �rst order simpli�cations of �xing
r c to be constant and � c = 0.

Note that since we are dealing with a continu-
ous probability density function the probability of
any particular given value of observation 0< w
is zero and, thus, P(W = w) = 0. Instead, a
non-trivial range must be provided. The function
is then integrated over this given range resulting
in a value for the probability that W is within
the given range. This di�erence between proba-
bility and probability density becomes important
when the probability density function takes val-
ues larger than one (note the broken axis of Fig-
ure 8).

The large probability density in the �rst bar,
nearest zero, con�rms that three dimensional
blebbing on a two dimensional substrate is partic-
ularly ine�cient, as most of the time the cell does
not move at all. This ine�ciency is due to only a
small number of all the blebs actually expanding
in the direction of the substrate and, moreover,
being able to grow to a size that is able to reach
the substrate, thereby causing movement.

By comparing �gures 8(a) and 8(b) we con�rm
that as � increases, so does the range ofW and, in
turn, so does the maximum possible value, ^w (see
also Figure 10(a)). Equally, as � increases, more
blebs are able to successfully generate movement,
causingP(W = 0) to decrease, as it is above four
in Figure 8(a), but only just above one in Figure
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(a)

(b)

FIG. 8. Comparison of the probability density func-
tion for the random variable W calculated approx-
imately from 10 5 observations of a simulated bleb-
bing cell (shown as a histogram) and directly, through
equation (57). The parameter values are r c = 5 � m,
� c = 1 =5 (a) � = � �= 4 and (b) � = 0. Note that
the �rst column of the histogram contains the Dirac
delta function contribution.

8(b). Furthermore, we notice that the probability
densities have an internal local maximum (seen
clearly around W 2 [2; 4]� m in Figure 8(b)).

By additionally considering Figure 9 (which
again illustrates an excellent comparison between
theory and simulated data) we see that despite
this lower probability weighting for larger steps,
the mean step length and standard deviation in-
crease with �. However, the local internal maxi-
mum (along with the delta function at w = 0) of

the probability density means that hW i is always
much smaller than ŵ (see Figure 10(a)).

FIG. 9. Comparison of the mean and standard devi-
ation of W as estimated from 105 stochastic simula-
tions of a simulated blebbing cell or calculated from
equations (58) and (59). The black solid and dashed
lines represent analytically derived quantities, whilst
the (blue) points represent the sample mean and the
thin (blue) vertical lines represent one standard de-
viation about the mean. The parameter values are
r c = 5 � m and � c = 1 =5.

The derivative with respect to � of the di�er-
enceŵ � h W i is illustrated in Figure 10(b). This
gives us a sense of how these two quantities are
related to one another as � increases. We note
that even though the derivative is always positive
and, thus, the two quantities are always diverg-
ing away from one another, there is clearly a local
minimum in this divergence rate. Thus, we pre-
dict that there is an extremal choice between how
far a cell can move on average and how far it can
maximally move in one step. Explicitly, if the
blebs of the numerical simulation are constrained
to be small then the cell will hardly move dur-
ing a blebbing event. Conversely, if the blebs in
the simulations are allowed to vary over a large
range of sizes then we see that the mean step size
does not increase as quickly as the maximum step
size suggesting that these larger blebs occur too
infrequently to be signi�cant for motion.

B. Multiple blebbing events

Next, we consider the spatial probability dis-
tribution over multiple blebbing events and its
approximation to the Gaussian distribution, as
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(a)

(b)

FIG. 10. Visualising the relationship between the
mean and maximum values of W . (a) Comparison
of the mean and maximum of W , as � is varied, us-
ing equations (58) and (48). (b) Divergence rate of
the mean and maximum of W , as � is varied. The
parameter values are the same as in Figure 9.

derived in equation (63) (see Figure 11).
By comparing Figure 11(a)-Figure 11(d) we see

that the cells spread radially about the origin.
Moreover, although the Gaussian distribution al-
ways underestimates the density near the origin
(due to the delta function that occurs in the prob-
ability density function, equation (57)), we ob-
serve that ast increases comparison between the
point distribution and the surface given by equa-
tion (63) improves as a consequence of the central
limit theorem.

C. Constrained volume

Finally, we reinstate the volume constraint
meaning that upon �xing the cellular structural
parameters: � P0, � c, A, C� , � and � c (as de-
�ned in Section II) the variables: r c, Rb, � max

b , �
and ŵ are uniquely de�ned. Knowing these vari-
ables allows us to calculate the moments of the
random variables W , X and Y and, hence the
migration properties of our blebbing cell model.
Thus, our geometric model links observable mi-
gration to unobservable parameters. We choose
� c as a control parameter since the other vari-
ables can be estimated [13, 21, 35, 36, 41, 42],
and because� c is a geometric variable related to
the width of the bleb neck and, in turn, the re-
gion of cortex that becomes delaminated from the
membrane during the initiation of a bleb. Thus,
it can be calculated from observations, which we
consider later.

Due to the volume constraint, as � c increases,
the neck gets wider and, so, the bleb does not
protrude from the cell as far. Namely, we see in
Figure 12(a) that as � c is increased from zero the
maximum step length, ŵ, reduces to zero. Con-
versely Rb increases, which may appear counter-
intuitive. We may think that a bleb with a larger
radius would be able to reach further. However,
as� c increases the bleb neck becomes wider, caus-
ing the curvature of the bleb to become smaller
(see �gures 12(c)-12(e)).

Similar deductions can be made from Figure
12(b), although the illustrated curves are not
monotonic in contrast to Figure 12(a). Specif-
ically, � max

b initially decreases, demonstrating
that the blebbing angle decreases as the bleb is
withdrawn into the body (compare �gures 12(c)
and 12(d)). As � c increases further,� max

b reaches
a minimum and then increases again. The in-
crease occurs because the neck width is so large
that the cell body and bleb spheres essentially
collapse onto one another (see Figure 12(e)), and,
hence� max

b � � c.
The relationship between � (as de�ned by

equation (40)) and � c is similarly non-monotonic.
However, it is the dependence of the inter-
val [� �= 2 + � c; �] on � c that is most signi�-
cant. Namely, as� c increases the interval rapidly
shrinks. Thus, not only do wide blebs have
a smaller maximum step distance (see Figure
12(a)), but equally, the angular range of � over
which blebs can be produced, which actually
cause movement, is also greatly reduced.

In summary, the mathematical results in the
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(a) t = 3 blebbing events (b) t = 6 blebbing events

(c) t = 9 blebbing events (d) t = 18 blebbing events

FIG. 11. Comparisons of the probability density functions of a c ell being at a position ( x; y ) over time, where
time is measured in terms of the number of blebbing events. The � lled circles illustrate a two-dimensional
histogram derived from 105 simulations. Each histogram column has a base area of 1� m2 . The shaded smooth
surface is the Gaussian approximation, equation (63). To aid vi sualisation, the simulations and approximation
have been projected along the x and y directions illustrating the �t. The parameter values are r c = 5 � m,
� c = 1 =5 and � = � �= 4. Note that the z-axis has been truncated at 0.01. The colouration of the surface and
points is to aid visualisation only.

last three paragraphs, pertaining to Figure 12,
can be simpli�ed into the biological result that
as the bleb neck size increases the cells will move
much slower. This prediction is con�rmed in Fig-
ure 13, where we see an extremely rapid drop o�
of hW 2i as � c increases. Indeed, cells that pro-
duce blebs with neck angles wider than�= 8 are
predicted to be extremely inhibited in their mo-
tion. Further, it is consistent with experimental
data [13], where it was seen that cells that pro-
duce blebs with consistently larger necks produce
much slower motion.

We now make use of published data. According
to Collins-Hooper et al. [13] young satellite mus-
cle stem cells have an average one-dimensional

di�usion rate of D � 12� m2/min. Moreover,
there are on average 30 blebbing per unit time.
Comparing the di�usion rate with the mean
square displacement we have 2D = 24 = 30 � 2 =
15hW 2i , thus, hW 2i = 1 :6� m2. Using a root �nd-
ing algorithm on the curve illustrated in Figure 13
we �nd that this corresponds to � c � 0:2, which
is within with the range that is observed in the
literature, and in particular, corresponds to the
neck size seen in Figure 1. However, it should be
noted that, depending on the type of the cell, the
age of the cell and what treatments have been
applied to the cell � c can cover a range from 0.05,
for very small blebs, to 0.9, for wide blebs that
undergo circus motion [12].
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(a) (b)

(c) (d) (e)

FIG. 12. Illustrating the in
uence of � c on: (a) Rb and ŵ, produced through equation (29) and combining
equations (41) and (48), respectively; and (b) � max

b and �, produced through equation (30) and equation (41),
respectively. (c), (d) and (e) help demonstrate the trends seen in (a) and (b) as they are cell pro�les that
illustrate the maximum bleb extension, hence r b = Rb, w = ŵ, � b = � max

b and � = �. The parameter values
are the same as in Figure 6 and in (c), (d) and (e) � c = �= 16, �= 8 and �= 4, respectively.

FIG. 13. Illustrating the relationship between � c and
hW 2 i , produced by combining equations (29), (30),
(41), (48) and (59). The parameter values are the
same as in Figure 6.

IV. SUMMARY AND CONCLUSION

We have derived a simple geometric model of
blebbing based on a mechanical model. The
simpli�cation was based on the assumption that
the cell and blebs maintain spherical symme-
try throughout their expansion and retraction
phases. Further, by assuming that the blebs
were independent, this model produces an active
dynamical model of cyclical bleb expansion and
contraction. This structure was then placed on
a two-dimensional substrate to which it was al-
lowed to adhere.

Assuming that only a single bleb event occurs
at any given time we derived analytical formulas
linking the geometry and, most notably, migra-
tion properties of the blebbing cell with the fun-
damental structural parameters of the cell. Crit-
ically, we showed that even though the cell may
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undergo a random walk, with non-Gaussian dis-
tributed step sizes its long-time motion is well
approximated by a Gaussian function with pa-
rameters linked to cell-level properties.

Here, we use a uniform random distribution of
bleb locations, suggested from experimental ob-
servations. Other cell types may bleb in a po-
larised manner. This would lead to an alternative
distribution of blebs that could be incorporated
in the following framework, which is intention-
ally general. Although, the resulting expressions
may not be analytically tractable it should still
be possible to numerically simulate the results.
These simulations, in turn, will provide insights
into how the movement of a cell depends on the
underlying blebbing distribution. This work is
intended as a future consideration for the au-
thors. Further, the presented model only contains
stochastic terms in the location of bleb appear-
ance. However, blebbing cells are known also to
contain stochastic neck sizes. Equally, the sub-
strate that the cell moves upon will frequently
contain random heterogeneities. It is our inten-
tion that the future work will include such prob-
abilistic factors.

We have only chosen to vary� c, whilst �xing
the parameters � P0, � c, A, C� and � . If, in-
stead, we wanted to use the model to estimate
one of the other parameters then� c and � c can
be estimated from experiments. Further, it has
been demonstrated previously [29, 31] that� only
has a weak in
uence on the properties of the cell,
and, thus can be �xed at its intermediate value
of � = 1=2. Thus, we are left with estimating
� P0, A, and C� . Although di�cult it is possi-
ble to estimate these parameters experimentally
[35, 36, 43, 44]. However, the results from this
paper illustrate that only two of these three need
be derived from data: the third can be predicted
through the relationships generated in Section II.
Even if only one of these parameters can be �xed
through data we would still be able to generate
a relationship concerning the dependencies of the
other two. This would lead to at least a qualita-
tive understanding of how the parameters may be
correlated with each other and may even suggest
parameter regions within which the two parame-
ters must lie.

Our theoretical framework is able to capture
the essential features of the blebbing motion, as it
is able to predict parameter values that match ex-
perimental data. Moreover, we are able to encom-
pass certain experimental perturbations, such as
treatment with the methyl ester, L-NAME [24].

L-NAME acts a competitive inhibitor preventing
the synthesis of nitric oxide, which has been high-
lighted as an important pathway in regular bleb-
bing motion [13]. Critically, the blebs that are
produced from L-NAME treated cells are still vi-
able and undergo the same extension and retrac-
tion phases, however, there are far fewer blebs in
number (often only one at a time) and their neck
angle, � c, is much wider. Speci�cally, wild-type
cells are similar to those in Figure 12(c), whereas
L-NAME treated cells have blebs much more like
those seen in Figure 12(d). Although we do not
have speci�c data to compare with our results, we
can at least qualitatively match the characteris-
tics of the observations, namely that L-NAME
treated cell spread out in space much slower than
wild-type cells, which is consistent with the pre-
dictions from Figure 13.

The results illustrated in �gures 12 and 13 re-
inforce the �ndings of Woolley et al. [29], where
it was argued that blebs with neck widths smaller
than their maximum widths (known as small-
necked-blebs) play an important role. Speci�-
cally, it was seen that small-necked-blebs were
di�cult to maintain as the forces acting on the
cortex-membrane adhesions were large enough to
cause the membrane to peel away from the cor-
tex. As the membrane peels away from the cortex
the neck width of the bleb increases resulting in a
cell pro�le similar to that of Figure 12(d), rather
than Figure 12(c). Here, we o�er an answer to
an accompanying question, namely, since small-
necked-blebs are hard to maintain how critical is
their contribution to motility? We �nd that if the
bleb's neck is allowed to grow the bleb's extension
is signi�cantly reduced. In turn, this leads to a
dramatic reduction in the migration abilities of
the cell. For the muscle stem cells that we are
considering this would suggest that they are not
able to search and �nd damaged muscle as e�-
ciently.
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Appendix A: Glossary

Table I is provided as an aid for the reader, as
it collects geometrical and mechanical variables
together and provides a quick source of their def-

inition.

Appendix B: Derivation of the characteristic
function

The evolution equation of the cell's position is

P(x; y; n + 1) =
Z 2�

0

Z ŵ

0
P(x � w cos(� ); y � w sin(� ); n)

f (w)
2�

dw d�: (B1)

Equation (B1) can then be notionally solved by
converting the integral into Cartesian coordinates
and using Fourier transforms,

P(x ; n) = F � 1
�

F
�

f (jx j)
2� jx j

� n �
; (B2)

where we have used the initial condition
P(x ; 0) = � (jx j) and the identity,

F (� (jx j)) =
Z 1

�1

Z 1

�1
e� ik 1 x � ik 2 y � (jx j) dx dy

= 1 ; (B3)

Using equation (B2) we construct the characteris-
tic function, or complex moment generating func-
tion, which will provide us with an analytical
form for all of the moments of the probability

density. The characteristic function is

En
�
eit 1 X + it 2 Y �

=
Z 1

�1

Z 1

�1
eit 1 x + it 2 y P(x; y; n) dx dy; (B4)

Critically, we notice that

En
�
eit 1 X + it 2 Y �

= F (P)( � t1; � t2)

=
�

F
�

f (jx j)
2� jx j

�
(� t1; � t2)

� n

;

(B5)

where we have used equation (B2). Convert-
ing the equation back into polar coordinates the
Fourier transform becomes a �nite Hankel trans-
form [45],

En
�
eit 1 X + it 2 Y �

=

 Z ŵ

0
f (w)J0(rt ) dw

! n

:

(B6)
where we have substitutedt =

p
t2
1 + t2

2 = jt j and
J0 is the zeroth order Bessel function of the �rst
kind. Thus, in summary,

En (X m 1 Y m 2 ) = ( � i )m 1 + m 2
dm 1 + m 2

dtm 1
1 dtm 2

2

�
�
�
�
t =(0 ;0)

 Z ŵ

0
f (w)J0(wt) dw

! n

: (B7)

Such results allow the evaluation of any moment
for the analytical model as required.
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Geometric variables for mechanical model
(z; y) Cartesian coordinates of the solution pro�le
(zrc ; yrc ) Cartesian coordinates of the reference pro�le
� Normal angle of the solution pro�le, measured anticlockwise from the horizontal
s Arc length of solution pro�le
� Arc length of reference pro�le
Mechanical variables
� P Pressure di�erence across the membrane
(� s; � � ) Arc length and azimuthal stretch ratios
(ts; t  ) Arc length and azimuthal membrane surface tensions
Membrane constants
� Membrane extensibility
A Membrane sti�ness
Adhesion variables
F Adhesion force vector
F Adhesion force magnitude
E Adhesion extension
� Adhesion angle, measured anticlockwise from the horizontal
C� Adhesion strength density
Variables for the spherically constrained model
r 0 Initial cell radius
r c Cell radius of solution pro�le
� c Cell radius of reference pro�le
Rc Cortex radius
Bleb variables
r bi Radius of i th bleb
� bi Neck opening angle ofi th bleb
� ci Neck opening angle of cell connected toi th bleb
(� i ;  i ) Position of i th bleb
Rb Maximum bleb size
Adhesion geometry
L Adhesion layer resting width
l Adhesion layer perturbed width
h, hc, hb Height above substrate of unblebbed cell, blebbed cell and bleb, respectively
(� c; � b) Half angle subtended by the adhesion pad of the cell and bleb, respectively
� Maximum angle at which an expanded bleb can touch the substrate
� Adhesion resting to breaking length ratio
Movement variables
w Random variable of cellular movement distance
W Observed distance moved by cell
ŵ Maximum possible cellular movement distance

TABLE I. Reference table for variables and parameters. See text for fu rther details.

[1] R. McLennan, L. Dyson, K. W. Prather, J. A.
Morrison, R. E. Baker, P. K. Maini, and P. M.
Kulesa. Multiscale mechanisms of cell migra-
tion during development: theory and experi-
ment. Development, 139(16):2935{2944, 2012.

[2] Y. Naparstek, J. Holoshitz, S. Eisenstein,
T. Reshef, S. Rappaport, J. Chemke, A. Ben-
Nun, and I. R. Cohen. E�ector T lymphocyte
line cells migrate to the thymus and persist there.
Nature, 1982.



22

[3] A. P. Singh, U. Schach, and C. N•usslein-Volhard.
Proliferation, dispersal and patterned aggrega-
tion of iridophores in the skin pre�gure striped
colouration of zebra�sh. Nat. Cell. Biol. , 16(6):
607{614, 2014.

[4] P. L Townes and J. Holtfreter. Directed move-
ments and selective adhesion of embryonic am-
phibian cells. J. Exp. Zool. , 128(1):53{120, 1955.

[5] F. A. Meineke, C. S. Potten, and M. Loe�er.
Cell migration and organization in the intestinal
crypt using a lattice-free model. Cell Proliferat. ,
34(4):253{266, 2001.

[6] N. A. Wright and M. Alison. The Biology of
Epithelial Cell Populations , volume 1. Oxford
University Press, USA, 1984.

[7] J. P. Heath. Epithelial cell migration in the in-
testine. Cell. Biol. Int. , 20(2):139{146, 1996.

[8] G. Oster and A. S. Perelson. Cell Protrusions.
In S. A. Levin, editor, Frontiers in Mathemati-
cal Biology, volume 100, pages 53{78. Springer
Berlin Heidelberg, 1994.

[9] W. H. Goldmann. Mechanical aspects of cell
shape regulation and signaling. Cell. Biol. Int. ,
26(4):313{317, 2002.

[10] J. Lee, A. Ishihara, and K. Jacobson. How do
cells move along surfaces?Trends Cell. Biol. , 3
(11):366{370, 1993.

[11] G. T. Charras. A short history of blebbing. J.
Micros. , 231(3):466{478, 2008.

[12] G. T. Charras, M. Coughlin, T. J. Mitchison,
and L. Mahadevan. Life and times of a cellular
bleb. Biophys. J., 94(5):1836{1853, 2008.

[13] H. Collins-Hooper, T. E. Woolley, L. Dyson,
A. Patel, P. Potter, R. E. Baker, E. A. Ga�ney,
P. K. Maini, P. R. Dash, and K. Patel. Age-
related changes in speed and mechanism of adult
skeletal muscle stem cell migration. Stem Cells,
30(6):1182{1195, 2012.

[14] H. Blaser, M. Reichman-Fried, I. Castanon,
K. Dumstrei, F. L. Marlow, K. Kawakami,
L. Solnica-Krezel, C. P. Heisenberg, and E. Raz.
Migration of zebra�sh primordial germ cells: a
role for myosin contraction and cytoplasmic 
ow.
Dev. Cell., 11(5):613 { 627, 2006.

[15] E. Sahai and C. J. Marshall. Di�ering modes of
tumour cell invasion have distinct requirements
for Rho/ROCK signalling and extracellular pro-
teolysis. Nat. Cell. Biol. , 5(8):711{719, 2003.

[16] O. T. Fackler and R. Grosse. Cell motility
through plasma membrane blebbing. J. Cell.
Biol. , 181(6):879, 2008.

[17] H. Keller and P. Eggli. Protrusive activity, cy-
toplasmic compartmentalization, and restriction
rings in locomoting blebbing Walker carcinosar-
coma cells are related to detachment of cortical
actin from the plasma membrane. Cell. Motil.
Cytoskel., 41(2):181{193, 1998.

[18] C. C. Cunningham. Actin polymerization and
intracellular solvent 
ow in cell surface blebbing.

J. Cell Biol. , 129(6):1589{1599, 1995.
[19] G. Charras and E. Paluch. Blebs lead the way:

how to migrate without lamellipodia. Nat. Rev.
Mol. Cell. Biol. , 9(9):730{736, 2008.

[20] J. Y. Tinevez, U. Schulze, G. Salbreux, J. Roen-
sch, J. F. Joanny, and E. Paluch. Role of cortical
tension in bleb growth. Proc. Nat. Acad. Sci. ,
106(44):18581{18586, 2009.

[21] J. Dai and M. P. Sheetz. Membrane tether for-
mation from blebbing cells. Biophys. J., 77(6):
3363{3370, 1999.

[22] J. Mercer and A. Helenius. Vaccinia virus uses
macropinocytosis and apoptotic mimicry to en-
ter host cells. Science, 320(5875):531{535, 2008.

[23] M. A. Gonda, S. A. Aaronson, N. Ellmore, V. H.
Zeve, and K. Nagashima. Ultrastructural studies
of surface features of human normal and tumor
cells in tissue culture by scanning and transmis-
sion electron microscopy. J. Natl. Cancer. Inst. ,
56(2):245{263, 1976.

[24] A. Otto, H. Collins-Hooper, A. Patel, P. R. Dash,
and K. Patel. Adult skeletal muscle stem cell
migration is mediated by a blebbing/amoeboid
mechanism. Rejuv. Res., 14(3):249{260, 2011.

[25] D. W. Dorward, C. F. Garon, and R. Judd. Ex-
port and intercellular transfer of DNA via mem-
brane blebs of Neisseria gonorrhoeae.J. Bacte-
riol. , 171(5):2499{2505, 1989.

[26] W. Strychalski and R.D. Guy. A computational
model of bleb formation. Math. Med. Biol. , 12
(2):462, 2012.

[27] J. Hu. Mathematical Modeling and Analysis of
in vitro Actin Filament Dynamics and Cell Bleb-
bing. PhD thesis, Univeristy of Minnesota, 2009.

[28] M. Tozluo�glu, A. L. Tournier, R. P. Jenkins,
S. Hooper, P. A. Bates, and E. Sahai. Matrix
geometry determines optimal cancer cell migra-
tion strategy and modulates response to inter-
ventions. Nat. Cell. Biol. , 15,:751762, 2013.

[29] T. E. Woolley, E. A. Ga�ney, J. M. Oliver, S. L.
Waters, R. E. Baker, and A. Goriely. Global
contraction or local growth, bleb shape depends
on more than just cell structure. J. Theor. Biol. ,
380(0):83 { 97, 2015.

[30] T. E. Woolley, E. A. Ga�ney, and A. Goriely.
Membrane shrinkage and cortex remodelling are
predicted to work in harmony to retract blebs.
Roy. Soc. Open Sci., 2(7):150184, 2015.

[31] T. E. Woolley, E. A. Ga�ney, J. M. Oliver, R. E.
Baker, S. L. Waters, and A. Goriely. Cellular
blebs: pressure-driven, axisymmetric, membrane
protrusions. Biomech. Model. Mechan., 13(2):
463{476, 2014.

[32] T. E. Woolley, E. A. Ga�ney, S. L. Waters, J. M.
Oliver, R. E. Baker, and A. Goriely. Three me-
chanical models for blebbing and multi-blebbing.
IMA J. Appl. Math. , 79(4):636{660, 2014.

[33] B. Maugis, J. Brugu�es, P. Nassoy, N. Guillen,
P. Sens, and F. Amblard. Dynamic instabil-



23

ity of the intracellular pressure drives bleb-based
motility. J. Cell. Sci. , 123(22):3884{3892, 2010.

[34] E. A. Evans and R. Skalak. Mechanics and Ther-
modynamics of Biomembranes. CRC Press Boca
Raton Florida, 1980.

[35] D. Liu, L. Ge, F. Wang, H. Takahashi, D. Wang,
Z. Guo, S. H. Yoshimura, T. Ward, X. Ding,
K. Takeyasu, and X. Yao. Single-molecule
detection of phosphorylation-induced plasticity
changes during ezrin activation. FEBS Lett. , 581
(18):3563{3571, 2007.

[36] M. P. Sheetz, J. E. Sable, and H. G. D•obereiner.
Continuous membrane-cytoskeleton adhesion re-
quires continuous accommodation to lipid and
cytoskeleton dynamics. Annu. Rev. Biophys.
Biomol. Struct. , 35:417{434, 2006.

[37] T. Bihr, U. Seifert, and A.-S. Smith. Mul-
tiscale approaches to protein-mediated interac-
tions between membranesrelating microscopic
and macroscopic dynamics in radially growing
adhesions. New J. Phys., 17(8):083016, 2015.

[38] T. Bihr, U. Seifert, and A.-S. Smith. Nucleation
of ligand-receptor domains in membrane adhe-

sion. Phys. Rev. Lett., 109(25):258101, 2012.
[39] F. Chamaraux, S. Fache, F. Bruckert, and

B. Fourcade. Kinetics of cell spreading. Phys.
Rev. Lett. , 94(15):158102, 2005.

[40] B. D. Hughes. Random walks and random envi-
ronments. Clarendon Press Oxford, 1996.

[41] J. A. Nichol and O. F. Hutter. Tensile strength
and dilatational elasticity of giant sarcolemmal
vesicles shed from rabbit muscle. J. Phys., 493:
187, 1996.

[42] C. Pozrikidis. E�ect of membrane bending sti�-
ness on the deformation of capsules in simple
shear 
ow. J. Fluid. Mech. , 440:269{291, 2001.

[43] Y. C. Fung. Biomechanics: Mechanical Proper-
ties of Living Tissues. Springer New York, 1993.

[44] M. F. Ashby, L. J. Gibson, U. Wegst, and
R. Olive. The mechanical properties of natural
materials. I. Material property charts. Proc. R.
Soc. A, 450(1938):123{140, 1995.

[45] R. Bracewell. The Fourier Transform and Its
Applications . McGraw Hill, New York, 1965.


