Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy

Jiménez-Forteza, Xisco, Keitel, David, Husa, Sascha, Hannam, Mark ORCID: https://orcid.org/0000-0001-5571-325X, Khan, Sebastian and Pürrer, Michael 2017. Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy. Physical Review D 95 (6) , -. 10.1103/PhysRevD.95.064024

[thumbnail of PhysRevD.95.064024.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (6MB) | Preview

Abstract

Numerical relativity is an essential tool in studying the coalescence of binary black holes (BBHs). It is still computationally prohibitive to cover the BBH parameter space exhaustively, making phenomenological fitting formulas for BBH waveforms and final-state properties important for practical applications. We describe a general hierarchical bottom-up fitting methodology to design and calibrate fits to numerical relativity simulations for the three-dimensional parameter space of quasicircular nonprecessing merging BBHs, spanned by mass ratio and by the individual spin components orthogonal to the orbital plane. Particular attention is paid to incorporating the extreme-mass-ratio limit and to the subdominant unequal-spin effects. As an illustration of the method, we provide two applications, to the final spin and final mass (or equivalently: radiated energy) of the remnant black hole. Fitting to 427 numerical relativity simulations, we obtain results broadly consistent with previously published fits, but improving in overall accuracy and particularly in the approach to extremal limits and for unequal-spin configurations. We also discuss the importance of data quality studies when combining simulations from diverse sources, how detailed error budgets will be necessary for further improvements of these already highly accurate fits, and how this first detailed study of unequal-spin effects helps in choosing the most informative parameters for future numerical relativity runs.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Advanced Research Computing @ Cardiff (ARCCA)
Publisher: American Physical Society
ISSN: 2470-0010
Date of First Compliant Deposit: 20 July 2017
Date of Acceptance: 9 February 2017
Last Modified: 09 Nov 2023 10:11
URI: https://orca.cardiff.ac.uk/id/eprint/102727

Citation Data

Cited 93 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics