Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Multi-objective invasive weed optimization of the LQR controller

Ismail, Hafizul Azizi, Packianather, Michael S. and Grosvenor, Roger I. 2017. Multi-objective invasive weed optimization of the LQR controller. International Journal of Automation and Computing 14 (3) , pp. 321-339. 10.1007/s11633-017-1061-3

Full text not available from this repository.

Abstract

The Robogymnast is a triple link underactuated pendulum that mimics a human gymnast hanging from a horizontal bar. In this paper, two multi-objective optimization methods are developed using invasive weed optimization (IWO). The first method is the weighted criteria method IWO (WCMIWO) and the second method is the fuzzy logic IWO hybrid (FLIWOH). The two optimization methods were used to investigate the optimum diagonal values for the Q matrix of the linear quadratic regulator (LQR) controller that can balance the Robogymnast in an upright configuration. Two LQR controllers were first developed using the parameters obtained from the two optimization methods. The same process was then repeated, but this time with disturbance applied to the Robogymnast states to develop another set of two LQR controllers. The response of the controllers was then tested in different scenarios using simulation and their performance evaluated. The results show that all four controllers are able to balance the Robogymnast with varying accuracies. It has also been observed that the controllers trained with disturbance achieve faster settling time.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Engineering
Publisher: Springer Verlag (Germany)
ISSN: 1476-8186
Date of Acceptance: 19 July 2016
Last Modified: 15 Jul 2019 13:43
URI: http://orca.cf.ac.uk/id/eprint/102945

Citation Data

Cited 5 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item