LabVIEW as a Common Language
Resolving the Community-Building : Skill-Embedded Tension in Taught Master’s Learning

Richard Lewis
Director of Postgraduate Taught Studies
Richard Lewis

Cardiff University
Director of Postgraduate Taught Studies, School of Physics and Astronomy (PHYSX)
LewisR54@cardiff.ac.uk
MSc Teaching Philosophy and Design
MSc courses at PHYSX: a brief history

- **2005**: MSc Biophotonics (ended 2015)
- **2015**: MSc Physics
- **2015**: MSc Astrophysics
- **2017**: MSc Compound Semiconductor Physics
- **2017**: MSc Data-Intensive Physics
- **2017**: MSc Data-Intensive Astrophysics
- **2018**: New MSc (TBA)
- **2019**: New MSc (TBA)
What is an MSc for?

Where do our students want to go?
- Academia
- Industry
- Other (teaching, journalism, etc)

How does an MSc get them there?
- Development
- Conversion
- Other (CPD, career change, etc)

What does a “typical” MSc student look like?
- Second-class BSc, aiming for a PhD
- Little or no experience outside of university
Conflicting demands?

What do supervisors want?

- Coding and automation
- Data manipulation and analysis
- Experimental design
- Grant proposal writing
- Effective communication

What must PhD students do?

- Integrate into a research group
- Adapt to local conventions
- Identify and develop a niche
- Networking and personal development
- Plan, conduct and present research

Practical and research skills

Engagement and community
A community-building: skill-embedding tension

Practical and research skills
- What the student must do
- Emphasis on the individual

Engagement and community
- What the student must be
- Emphasis on the group

Resolving the tension: student identity and ownership
1. Provide a dedicated space: environment
2. Unify the students’ sense of purpose: ethos
3. Develop the skills: core modules
Providing the **environment**: dedicated MSc teaching facilities

- Learning in the round
- Guaranteed student access
- Student ownership of space
- Daily staff contact
The research group **ethos**: a unifying sense of purpose

- Engagement through partnership
- Student ownership of learning
- Peer support and accountability
- Collaborative learning
Developing skills: unique **core modules** (MSc Physics)

- Autumn semester: student-lead microprojects, LabVIEW core
- Spring semester: research and study skills, advanced LabVIEW elective

- Collaborative learning: **community building**
- Problem-based learning: **embedding skills**
- Student ownership of learning: **engagement through partnership**
Top-level MSc design: tapering towards independence

- Core: community, skills, LabVIEW
- Electives: research-lead teaching
- Direct scaffolding of core modules to summer research project
- Degree of instructor-lead material tapers off throughout core modules
MSc student feedback

“The MSc core modules were easily the best and what I learned the most in. Having our own floor really enhanced the community feel.”

“I really enjoyed how close the cohort has become - spending so much time around each other definitely creates a support network which is helpful.”

“I enjoyed the independent work aspect and the fact that the module used a real-world approach on how physics research is conducted. It was enjoyable and the teaching was first rate.”
LabVIEW as a Common Language
Why teach LabVIEW? Why not Python or something else?

- Immediately useful with Express VIs and NI hardware
- Shallow initial learning curve: can get to GUI-driven applications easily
- Rapid development allows more time for concepts

- It’s weird (in a good way): levels the field, acts as a point of reference
PXT101 “Advanced Experimental Techniques in Physics”

Introduction to LabVIEW
- Problem-based learning
- Hands-on activities weekly
- Focus on using LabVIEW practically
- Strong emphasis on good style
- Software development best practices

Student-lead micro-projects
- Complete student ownership
- Objectives negotiated
- Weekly group meetings
- Weekly lab diary submissions
- Final report and presentations

From “hello world!” to GUI-focused queue-based state machines and laboratory automation in 10 weeks

Mandatory LabVIEW aspect, developed in the latter half of the semester.

(Approximately CLAD standard)
Exercise example: *Chaos Game*

Context
- Group assignment over weeks 5 and 6
- Course consolidation point

Aims
- Generate functional specification of application
- Assign tasks, develop as a group, bug-fix
- Deliver application on-specification and on time

Outcomes
- All groups returned working code
- One group avoided a bug in my example code!
Micro-project example: *Cloud Chambers*

Context
- Compact demonstration devices
- Part of £93k *Quarknet Cymru* NSA grant
- Students have zero LabVIEW at project start

Aims
- Upgrade cloud chambers with cameras
- Maximise visibility of tracks
- Use LabVIEW to recreate tracks in 3D

Outcomes
- Automatic track extraction (2 cameras)
- Initial work on 3D track recreation (3 cameras)
Micro-project example: LEGO-LIGO

Context
- £3.8k STFC Public Engagement Small Award
- Recreate LIGO in LEGO for outreach(!)

Aims
- Create mechatronic LEGO diorama of LIGO
- Demonstrate proof-of-principle

Outcomes
- Diorama essentials constructed
- Working mechatronics and GUI
- “Toy” waveforms used for proof-of-concept
LabVIEW as a common language?

Promotes collaborative learning
- Bug-fixing in group meetings promotes sharing of hints, tips and best practice
- Graphical nature more intuitive; easier to grasp the gist of (well-written) code

Rapidly accessible, solves real problems
- From about week 5, students can be told “code it in LabVIEW and find out”

Weird in a good way :)
- Requires a certain type of lateral thinking
- Students often sketch G code on the board, even when discussing other languages!
MSc student feedback

“The way the LabVIEW language was explained definitely improved the total progress I made”

“Excellent quality teaching supported by good module resources. Good hands-on programming experience.”

“The coding aspects of the MSc have been insanely useful for my new job.”

“[LabVIEW] has proved extremely useful throughout my MSc course”
Summary

- Unique approach to MSc teaching
- Embeds skills and builds a PGT community
- Bridges culture between UG and PGR
- Does not compromise quality or thoroughness

Read the NI EIA award-winning case study: http://sine.ni.com/cs/app/doc/p/id/cs-17230
Stay Connected During and After NIWeek

ni.com/niweekcommunity
facebook.com/NationalInstruments
twitter.com/niglobal
youtube.com/nationalinstruments

Please provide feedback on this session via the NIWeek Mobile App.