Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Inflation physics from the cosmic microwave background and large scale structure

Abazajian, K.N., Arnold, K., Austermann, J., Benson, B.A., Bischoff, C., Bock, J., Bond, J.R., Borrill, J., Buder, I., Burke, D.L., Calabrese, Erminia, Carlstrom, J.E., Carvalho, C.S., Chang, C.L., Chiang, H.C., Church, S., Cooray, A., Crawford, T.M., Crill, B.P., Dawson, K.S., Das, S., Devlin, M.J., Dobbs, M., Dodelson, S., Doré, O., Dunkley, J., Feng, J.L., Fraisse, A., Gallicchio, J., Giddings, S.B., Green, D., Halverson, N.W., Hanany, S., Hanson, D., Hildebrandt, S.R., Hincks, A., Hlozek, R., Holder, G., Holzapfel, W.L., Honscheid, K., Horowitz, G., Hu, W., Hubmayr, J., Irwin, K., Jackson, M., Jones, W.C., Kallosh, R., Kamionkowski, M., Keating, B., Keisler, R., Kinney, W., Knox, L., Komatsu, E., Kovac, J., Kuo, C.-L., Kusaka, A., Lawrence, C., Lee, A.T., Leitch, E., Linde, A., Linder, E., Lubin, P., Maldacena, J., Martinec, E., McMahon, J., Miller, A., Mukhanov, V., Newburgh, L., Niemack, M.D., Nguyen, H., Nguyen, H.T., Page, L., Pryke, C., Reichardt, C.L., Ruhl, J.E., Sehgal, N., Seljak, U., Senatore, L., Sievers, J., Silverstein, E., Slosar, A., Smith, K.M., Spergel, D., Staggs, S.T., Stark, A., Stompor, R., Vieregg, A.G., Wang, G., Watson, S., Wollack, E.J., Wu, W.L.K., Yoon, K.W., Zahn, O. and Zaldarriaga, M. 2015. Inflation physics from the cosmic microwave background and large scale structure. Astroparticle Physics 63 , pp. 55-65. 10.1016/j.astropartphys.2014.05.013

[img]
Preview
PDF - Accepted Post-Print Version
Download (1MB) | Preview

Abstract

Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments—the theory of cosmic inflation—and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Publisher: Elsevier
ISSN: 09276505
Date of First Compliant Deposit: 7 September 2017
Date of Acceptance: 26 May 2014
Last Modified: 11 Oct 2017 09:58
URI: http://orca.cf.ac.uk/id/eprint/104442

Citation Data

Cited 72 times in Google Scholar. View in Google Scholar

Cited 66 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics