This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/107743/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Publishers page: http://dx.doi.org/10.1002/cphc.201701202
<http://dx.doi.org/10.1002/cphc.201701202>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
A kinetic study of methane partial oxidation over FeZSM-5 using N\textsubscript{2}O as an oxidant

Ying Kit Chowa, Nicholas F. Dummera*, James H. Cartera, Randall J. Meyerb, Robert D. Armstronga, Christopher Williamsa, Greg Shawa, Sara Yacobb, Madan M. Bhasinc, David J. Willocka, Stuart H. Taylora, and Graham J. Hutchingsa*

a Cardiff Catalysis Institute, School of chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.

b ExxonMobil Research and Engineering, Corporate Strategic Research, Annandale, NJ 08801, USA

c Innovative Catalytic Solutions, LLC, Charleston, WV, 25314, USA.

* Corresponding author emails: dummernf@cardiff.ac.uk and hutch@cardiff.ac.uk
Fig. S1. First rank (a), second rank (b) and third rank (c) delplots of minor products taken from data collected over a series of experiments using different masses of 2 % Fe-ZSM-5 at 300 °C; (∆) CH$_3$OH, (★) C$_2$H$_6$ and (×) C$_2$H$_4$.
Fig S2. First rank (a), second rank (b) and third rank (c) delplots of minor products taken from data collected over a series of experiments using different masses of 2 % Fe-ZSM-5 at 300 °C with water in the feed; (×) C₂H₆.
Fig. S3 N\textsubscript{2} adsorption isotherms (A) and BET surface area plots (B) for: (i) H-ZSM-5, (ii) Fe-ZSM-5, (iii) Fe-ZSM-5-20\% and (iv) Fe-ZSM-5-0\% following testing at 300 °C for 3 h.