Tantalum Oxide Electron-Selective Heterocontacts for Silicon Photovoltaics and Photoelectrochemical Water Reduction

Yimao Wan*†1,2,3, Siva Krishna Karuturi†4, Christian Samundsett1, James Bullock2,3, Mark Hettick2,3, Di Yan1, Jun Peng1, Parvathala Reddy Narangari4, Sudha Mokkapati5, Hark Hoe Tan4, Chennupati Jagadish4, Ali Javey2,3, and Andres Cuevas1

1 Research School of Engineering, The Australian National University (ANU), Canberra, ACT 0200, Australia

2 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA

3 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

4 Department of Electronic Materials Engineering, Australian National University (ANU), Canberra, ACT 0200, Australia

5 School of Physics and Astronomy, Cardiff University, Cardiff, Wales, UK

* Corresponding Author yimao.wan@anu.edu.au

†These authors contributed equally to this work.
ABSTRACT

Crystalline silicon (c-Si) solar cells have been dominating the photovoltaic (PV) market for decades, and c-Si based photoelectrochemical (PEC) cells are regarded as one of the most promising routes for water splitting and renewable production of hydrogen. In this work, we demonstrate a nanoscale tantalum oxide (TaO\textsubscript{x}, \textasciitilde 6 nm) as an electron-selective heterocontact, simultaneously providing high quality passivation to the silicon surface and effective transport of electrons to either an external circuit or a water splitting catalyst. The PV application of TaO\textsubscript{x} is demonstrated by a proof-of-concept device having a conversion efficiency of 19.1%. In addition, the PEC application is demonstrated by a photon-to-current efficiency (with additional applied bias) of 7.7%. These results represent a 2% and 3.8% absolute enhancement over control devices without a TaO\textsubscript{x} interlayer, respectively. The methods presented in this paper are not limited to c-Si based devices, and can be viewed as a more general approach to the interface engineering of optoelectronic and photoelectrochemical applications.

TOC GRAPHICS
With increasing concerns over rising global energy demand and environmental sustainability, the development of renewable energy technologies is of great importance to the continuation of socio-economic development. There is growing consensus that significant contributions can come from the conversion of solar energy into electricity using photovoltaic (PV) cells\(^1\) and/or into chemical energy using photoelectrochemical (PEC) devices\(^2\). With a 90% share of global PV market, crystalline silicon (c-Si) is unequivocally the most important photovoltaic technology. Due to its high abundance in the earth crust and industrial maturity, c-Si based systems have also received significant attention for PEC applications\(^3-7\). Both PV and PEC devices rely on the same central working principle; photo-generated electrons and holes are separately collected at the two opposite terminals of the device. A common method to achieve this function is via doping (i.e., boron-doped \(p^+\) or phosphorus-doped \(n^+\)) the near-surface regions of the silicon wafer or thin silicon films deposited on it\(^8-10\).

Another attractive approach to separately collect the two types of charge carriers is to use metal-insulator-semiconductor (MIS) passivated heterocontact structures. A typical MIS heterocontact is composed of a metal layer positioned on the outer surface of an oxide passivated semiconductor. To be able to function as passivated heterocontacts, the oxide interlayers have to fulfil several critical requirements: (i) effective passivation of defects typically present at the silicon surface, (ii) efficient transport of only one carrier type (for example electrons) and effective blocking of the other carrier (for example holes) in their path from the silicon photon absorber to the outer metal terminals, and (iii) simple synthesis method at low thermal budget. Specific to PEC applications, the oxide interlayers also need to be chemically robust to survive in a very harsh aqueous environment for extended operation.

Ultrathin tunnelling silicon dioxide (SiO\(_2\), typically \(\sim 1.5\) nm) is one of the most explored oxides in heterocontacts for both PV\(^{11,12}\) and PEC\(^4,6,13,14\) applications, thanks to its reasonable passivation quality and effective transport of carriers (i.e., permits the transport of majority
carriers together with a low recombination of minority carriers)11,12 and its stability over a wide range of pH and chemical potentials15. However, the highly insulating bulk properties of SiO\textsubscript{2} lead to inhibition of charge transport through the MIS heterocontacts, restricting conduction to tunnelling, or through pinholes. Furthermore, the high quality ultrathin SiO\textsubscript{2} places stringent requirements in film thickness control and process environment purity. Profound efforts have been recently devoted to explore alternatives to SiO\textsubscript{2} as the interlayer to form passivated carrier-selective heterocontacts on c-Si wafers, such as metal salts16,17 and oxides18 and organic polymers19,20.

Another group of candidate materials for MIS passivated heterocontacts are the transition metal oxides, some of which possess almost all critical characteristics for carrier selective contacts, including a wide range of work functions, semiconducting properties, and high transparency to sunlight21. Research on the incorporation of transition metal oxides into Si-based PV and PEC devices is very recent. High work function oxides such as molybdenum oxide, tungsten oxide, vanadium oxide and cuprous oxide have been explored as hole-selective contacts in silicon solar cells22-27, whereas nickel oxide and cobalt oxide have been studied as effective photoanodes for water oxidation28-30. Remarkably, defective titanium oxide has also been reported to promote hole transport for efficient water oxidation31,32. In contrast, research on transition metal oxides as electron-selective contacts on crystalline silicon is scarce, with titanium oxide and zinc oxide so far the only transition metal oxides reported on Si solar cells33-35.

Although it has not received as much attention yet, tantalum oxide (TaO\textsubscript{x}) is a promising material for electron-selective contacts to silicon due to: (i) small conduction band offset21,36, which allows electrons from the silicon conduction band to flow through TaO\textsubscript{x}, (ii) large valence band offset (~2.9 eV)21,36, which provides a barrier to prevent holes in the silicon valence band from flowing to the oxide and further to the metal cathode, and (iii) recently
demonstrated effective passivation of silicon surface defects37, 38. In addition, TaO\textsubscript{x} possesses high thermal and chemical stability under various pH conditions39-42, making it a sensible choice for PEC applications. In this work, we report a nanoscale TaO\textsubscript{x} film (~6 nm) as a robust passivated electron-selective heterocontact for c-Si based photovoltaics and photoelectrochemical water reduction for the first time, demonstrating significantly improved solar-to-electricity and solar-to-hydrogen conversion efficiencies.

We investigate the optoelectronic properties of TaO\textsubscript{x} films synthesised by atomic layer deposition (ALD) and hydrogenated by plasma enhanced chemical vapour deposited (PECVD) silicon nitride (SiN\textsubscript{x}), including core-level, valence band, work function, contact resistivity and surface passivation properties. We then demonstrate, for the first time, the application of hydrogenated TaO\textsubscript{x} to Si-based PV and PEC devices for the generation of electricity and hydrogen, achieving a solar-to-electricity efficiency of 19.1\% and applied bias photon-to-current efficiency of 7.7\%, which corresponds to 2\% and 3.8\% absolute enhancement respectively over control devices without a TaO\textsubscript{x} interlayer.

X-ray photoelectron spectroscopy (XPS) was employed to reveal TaO\textsubscript{x} electronic properties, including stoichiometry, valence band and work function, which are critical to the transport of electrons. The results are shown in Figure 1. While the Ta 4f spectra shows typical doublet peaks located at 26.5 eV and 28.5 eV for Ta 4f 7/2 and Ta 4f 5/2 respectively43, the O 1s spectra can be fitted with two Gaussian components with peaks positioned at 530.8 eV and 532 eV, respectively. The small peak located at 532 eV is usually attributed to peroxide O\textsubscript{2}2-, although sometimes it can also be due to surface contamination43. The component with lower binding energy peaked at 530.8 eV is from Ta-O binding43. Notably, the peak positions for both Ta 4f and O 1s are observed to be the same for the TaO\textsubscript{x} film before and after SiN\textsubscript{x} hydrogenation. However, we can notice a slight reduction in the core level peak areas of O 1s spectra after SiN\textsubscript{x} hydrogenation. The extracted TaO\textsubscript{x} film stoichiometry based on core level
peak areas is also included in Figure 1(b). The result shows the as deposited TaO$_x$ has an O to Ta atomic fraction of 2.53, and the TaO$_x$ after SiN$_x$ hydrogenation has an O to Ta atomic fraction of 2.44, implying the hydrogenation process makes the TaO$_x$ film slightly more sub-stoichiometric.

Figure 1(c) presents the valence band spectrum of the two TaO$_x$ films, showing no significant difference (< 2% change). Although the TaO$_x$ film after SiN$_x$ hydrogenation is more metallic, no defect band in the band gap can be seen, suggesting negligible amount of filled states at the Fermi level. Further, the XPS secondary electron cut-off result shows that the TaO$_x$ film after SiN$_x$ hydrogenation has a work function of 3.27 eV, approximately 0.3 eV lower than that of as deposited TaO$_x$. The lower work function can be attributable to the lower cation oxidation state that was revealed by the core level measurements. As proposed in Ref. 44, the lower cation oxidation state would result in lower work function, due to the fact that lower oxidation-state cations are less electronegative than higher oxidation-state cations. The measured work function of the TaO$_x$ films is significantly lower than that of TiO$_2$ presented in the literature (i.e., ~4.2 eV)45,46. The reduced work function is expected to promote downward band-bending inside the silicon wafer drawing electrons to the surface and consequently improving electron transport.
Figure 1: Electronic characterizations of atomic layer deposited TaOx films before and after hydrogenation. (a) and (b) present the core level spectrum of Ta 4f and O 1s, respectively. (c) shows the valence band spectrum, and (d) shows the secondary electron cut-off spectrum with a gold (Au) reference.

As mentioned above, TaOx combines a high valence band offset, creating a potential barrier to hole transport; nevertheless, holes can still flow to the interface between TaOx and Si, unless it is perfectly passivated. Therefore, the carrier selectivity of an n-Si/TaOx hetero-structure needs to be evaluated by characterising not only the contact resistivity \(\rho_c \) but also the surface recombination velocity. A highly selective contact is achieved through a simultaneous reduction in recombination and contact resistance. One of the most straightforward techniques to probe the recombination properties of c-Si surfaces is by measuring the effective minority carrier lifetime \(\tau_{\text{eff}} \) of symmetrically film-passivated wafers in a contactless fashion\(^{47}\), as illustrated in Supporting information S1.
Figure 2(a) depicts the quality of surface passivation provided by 6 nm TaO$_x$ films before and after SiN$_x$ hydrogenation by plotting the injection-dependent effective carrier lifetime $\tau_{\text{eff}}(\Delta n)$ of n-type undiffused c-Si samples. As can be seen, the as-deposited TaO$_x$ film (i.e., before hydrogenation) provides a poor passivation to silicon surfaces, with τ_{eff} of \sim30 μs at an excess carrier density $\Delta n = 10^{15}$ cm$^{-3}$. The level of surface passivation is improved more than one order of magnitude upon a SiN$_x$ hydrogenation treatment, resulting in τ_{eff} as high as \sim650 μs at $\Delta n = 10^{15}$ cm$^{-3}$, corresponding to a recombination current density J_0 of 22.5 fA/cm2 and an implied V_{OC} of 690 mV. Figure 2(b) shows that the passivation quality of hydrogenated TaO$_x$ films depends strongly on the film thickness; the corresponding injection-dependent lifetime curves are shown in detail as Supporting information Figure S1(b). As the TaO$_x$ thickness increases, τ_{eff} first increases, and then tends to plateau at 8 nm TaO$_x$. The highest lifetime achieved at $\Delta n = 10^{15}$ cm$^{-3}$ is \sim2.7 ms. The substantial enhancement in passivation upon SiN$_x$ hydrogenation is mainly attributable to the hydrogenation of defects at the TaO$_x$/c-Si interface during the deposition of SiN$_x$.38

The contact resistivity ρ_c of TaO$_x$ to n-type Si was measured using the method devised by Cox and Strack.48 The test structure is schematically depicted in Supporting information Figure S2(a). Low work function metal Mg was employed here to further enhance the electron transport, as demonstrated in previous work.49 Figure 2(c) shows a representative I–V measurement of TaO$_x$ samples before and after the SiN$_x$ hydrogenation treatment. As can be seen, the sample before SiN$_x$ hydrogenation exhibits severe rectifying behaviour and a high contact resistivity. By contrast, the contact behavior of the TaO$_x$ (\sim6 nm) film is enhanced dramatically upon SiN$_x$ hydrogenation, resulting in an Ohmic contact to the n-type Si substrate. The full series of I–V measurements are shown in Supporting information Figure S2(b); from that series, the ρ_c for the heterocontact with \sim6 nm hydrogenated TaO$_x$ is determined to be \sim0.35 $\Omega\cdot$cm2, which is sufficiently low to function as a full area heterocontact for n-type silicon.
PV and PEC devices. The good electron transport provided by the hydrogenated TaOₓ on n-type Si can be attributed to

(i) a reduced work function, and/or

(ii) Fermi-level depinning as a consequence of the passivation of interface states between TaOₓ and the silicon substrate. The dependence of contact resistivity on TaOₓ thickness is depicted in Figure 2(d), exhibiting a slow increase in ρc and then a sharp increase when TaOₓ is beyond 6 nm. Indeed, when TaOₓ thickness exceeds 10 nm, the contact behaves in a rectifying fashion even after the SiNₓ hydrogenation. The increasing trend in both τₑff and ρc creates a trade-off between surface passivation and contact resistivity provided by the TaOₓ film. To resolve this trade-off, we fabricate completed silicon solar cells in order to find the optimum TaOₓ film thickness for maximising the carrier selectivity.

Upon quantifying the carrier selectivity of TaOₓ, we can now perform a comparison to state-of-the-art electron selective contacts reported in the literature. Table S1 in Supporting Information summarises the performance parameters of the various electron-selective contacts, including work function, contact resistivity, and recombination current density. Compared to the lowest work function materials, such as alkali and alkaline earth metals or salts, TaOₓ itself can provide an effective passivation of the silicon surface, with a recombination current density of just J₀ ~22.5 fA/cm². In contrast, to achieve low recombination in the case of electron-selective contacts based on alkali or alkaline earth metal salts, it is necessary to insert an additional passivation layer, such as amorphous silicon; without significant compromise in the contact resistivity. The surface passivation quality by TaOₓ is slightly better than the recently reported SiOₓ/TiO₂ stack which has enabled an efficiency of 22.1% silicon solar cells, demonstrating a high potential to achieve high efficiency solar cells by using TaOₓ based electron selective heterocontacts. It is notable, however, that in our experiments it has been necessary to hydrogenate the TaOₓ/Si interface by depositing a sacrificial layer of SiNₓ; it should be possible, however, to perform such hydrogenation by other simpler means, such as
hydrogen plasma treatment. A distinctive feature is that, among all the electron-selective contacts in Table S1, TaOx exhibits the highest stability against chemical solutions, making it a sensible choice for photoelectrochemical applications.

Figure 2: Carrier selectivity characterizations of TaOx passivated electron heterocontacts to n-type c-Si. (a) presents the effective carrier lifetime τ_{eff} versus excess carrier density Δn for c-Si passivated with TaOx films before and after SiN$_x$ hydrogenation. (b) presents the effect of hydrogenated TaOx film thickness on τ_{eff}. (c) presents a representative I–V measurements of TaOx samples before and after SiN hydrogenation. (d) shows the effect of hydrogenated TaOx film thickness on the contact resistivity ρ_c. The inset in (d) shows a schematic illustration of band diagram with hydrogenated TaOx.

The complete silicon solar cells feature full area one dimension TaOx passivated heterocontacts and are schematically depicted in Figure 3(a). Figure 3(b) presents a cross-sectional transmission electron micrograph of the rear heterocontacts, showing the ~6 nm TaOx consists of ~1.2 nm interfacial layer and ~4.5 nm TaOx. The interfacial layer may result from exposure to ambient after deionized water rinse or water precursor during the first few ALD
cycles. A photoluminescence image of the complete solar cells (Figure 3c) employing a 1025 nm short-pass filter shows the cell surfaces had uniform optical, passivating and contact behaviors. Figure 3(d) shows the solar cell power conversion efficiency as a function of TaOₓ film thickness (detailed electrical parameters for these cells (Vₒc, Jₛ𝑐, and FF) are presented in Supporting information Figure S3 and Table S2). As can be seen, the efficiency exhibits a strong dependence on TaOₓ film thickness, with a maximum at a thickness of 6 nm. As TaOₓ film thickness increases, the efficiency first increases primarily due to an increase in surface passivation quality and therefore an enhancement in Vₒc, and then decreases after 6 nm mainly due to a high contact resistivity imposed by the thicker TaOₓ film and therefore a reduction in FF. These solar cells trends are consistent with the carrier selectivity results presented in Figure 2.

The illuminated J–V curve for the champion cell with 6 nm TaOₓ is plotted in Figure 3(e), which also includes the reference cell without a TaOₓ film. It can be seen that all cell parameters were improved drastically by inserting the 6 nm thick TaOₓ layer, yielding a 19.1% solar-to-electricity conversion efficiency, which is 2% absolute higher than the 17.1% reference cell. Compared to the reference cell with metal directly on silicon, an absolute gain of 29 mV in open-circuit voltage (Vₒc) was obtained, primarily due to the improved surface passivation provided by the hydrogenated TaOₓ film. The suppression of the recombination at rear silicon surfaces also leads to a gain of 2.3 mA/cm² in short-circuit current. It is interesting to note that the fill factor is negligibly affected by the insertion of 6 nm TaOₓ, despite of a slight increase in contact resistivity. It is worth mentioning that the obtained Vₒc (638 mV) is significantly lower than the implied Vₒc from the lifetime sample (~690 mV). One tentative cause for this behavior is the damage to surface passivation during Mg metal evaporation, a behavior that has also been observed for the case of amorphous silicon⁴⁹. A possible solution to mitigate this damage would be the use of other low work function materials such as lithium or magnesium.
flourides16, 17. The spectral response plotted in Figure 3(f) shows a similar reflectance but a significant enhancement in the external quantum efficiency (EQE) at long wavelengths (i.e., range from \(~900–1200\) nm) for the cell with the TaO\textsubscript{x} heterocontact, thanks to the passivation of the rear surface by the TaO\textsubscript{x} layer. This is consistent with the abovementioned improvements in effective lifetime, voltage and current and provides additional evidence of the enhancements realized from TaO\textsubscript{x} passivation.

![Figure 3](image)

Figure 3: PV device performance with a full-area rear TaO\textsubscript{x} passivated electron heterocontact. (a) Schematic cross-section of an \(n\)-type silicon solar cell featuring a full-area TaO\textsubscript{x}/Mg/Ag rear contact. (b) Cross-sectional transmission electron micrograph (TEM) of the rear heterocontacts. (c) Photoluminescence image of the complete solar cell. (d) Dependence of cell efficiency on TaO\textsubscript{x} film thickness. (e) Light \(J–V\) curves and electrical parameters of cells with and without a \(
\text{a} \sim 6\) nm TaO\textsubscript{x} interlayer. (f) Spectral response (external quantum efficiency and reflectance) of the two cells.
Finally, the concept of electron transport by hydrogenated TaO$_x$ is also demonstrated for photoelectrochemical hydrogen evolution. The electron-selective heterocontact was prepared by replacing the Mg/Ag metal stack, which we found not to be chemically stable, with 5 nm Ti metal and 5 nm Pt catalyst on a ~ 6 nm TaO$_x$ film, to enable stable and efficient hydrogen evolution reactions, as shown in Figure 4(a). Ti metal with its relatively low work function (~4.2 eV53) assists in reducing the barrier between TaO$_x$ and Pt, improving the photovoltage over a device with Pt only4. When the silicon device is illuminated, photogenerated minority carriers (holes in this case) flow towards the illuminated p^+ region at the front surface, whereas the majority carriers (electrons in this case) are transported through the TaO$_x$ interlayer to the outer Ti/Pt catalyst, where the hydrogen evolution reaction takes place.

For comparison, a control PEC device was prepared without a TaO$_x$ film. Figure 4(b) compares the photoelectrochemical performance of these two PEC devices, with and without TaO$_x$. The control device shows an onset potential of 525 mV for water reduction, whereas the photoelectrode with ~ 6 nm of TaO$_x$ showed a more positive onset potential of 565 mV. The photocurrent density of the device with a TaO$_x$ passivated electrode reaches 37.1 mA/cm2 at 0V vs RHE, compared to the 27.5 mA/cm2 obtained for the control electrode without TaO$_x$. The significant enhancement in both photocurrent and photovoltage is consistent with the improved photovoltaic characteristics shown in Figure 3, and can be attributed to the role of TaO$_x$ in suppressing carrier recombination at the rear surface whilst maintaining efficient electron transport.

To evaluate the improvement in photoelectrochemical performance with TaO$_x$ layer, applied bias photon-to-current efficiency (ABPE) has been calculated using the method reported previously54. It is noted that ABPE values derived from three-electrode measurements does not include the losses that might be present at the counter electrode in a two electrode system. ABPE for TaO$_x$ passivated electrode has been measured to reach 7.7% which is almost double
to that of the control electrode without TaO$_x$ interlayer. However, this PEC conversion efficiency is well below the 19.1% achieved by the best photovoltaic device incorporating a TaO$_x$ interlayer, mainly due to lower photovoltage and FF. Beyond the thermodynamic energy loss associated with the water reduction electrolyte, this disparity can be largely attributed to an unfavourable energy band alignment in the Ti/TaO$_x$/Si photocathode, compared to the Mg/TaO$_x$/Si contact architecture used in the PV devices. The use of Ti instead of Mg, can potentially lead to a higher barrier height for electron transport and therefore cause significant loss in the electron contact resistivity. Nevertheless, these experiments have demonstrated, for the first time, that hydrogenated TaO$_x$ is capable of providing passivation of the silicon surface and, simultaneously, transport efficiently the electrons for PEC water reduction.

As the electrodes used for water splitting must endure a highly corrosive and reducing environment, stability tests have been carried out to evaluate the photoresponse and photostability. As shown in Figure 4(d), the reference electrode exhibited a slight drop in photocurrent with time, while the photoelectrode with TaO$_x$ film showed a highly stable photoresponse. It is known that c-Si is stable in acid environments while it is highly unstable in oxidising conditions. The instability of the control electrode without TaO$_x$ interlayer is likely attributed to the lack of hole blocking effect at the interface, inducing possible self-oxidising conditions. The long-term stability of the TaO$_x$–based electrode is further confirmed in 1M hydrochloric acid solution for 2 hours of continuous operation (see Supporting information Figure S4).
Figure 4: PEC device results with TaOₓ passivated electron heterocontacts. (a) illustrates the schematic of an n-type silicon photocathode using TaOₓ passivated electron heterocontacts. (b) presents the photoelectrochemical current-voltage curves of Si photocathodes with and without ~6 nm TaOₓ interlayer. (c) shows applied bias photon-to-current efficiency (ABPE). (d) shows amperometric current-time curves of Si photocathodes at 0V vs the reversible hydrogen electrode (RHE).

Conclusions

We have successfully demonstrated a hydrogenated TaOₓ (~6 nm) electron-selective heterocontact that simultaneously provides high quality passivation of the silicon surface (i.e., lifetime ~650 μs) and effective transport of electrons (i.e., contact resistivity ~0.35 Ω·cm²). The XPS measurements revealed the hydrogenation induced by PECVD SiNₓ resulted in reduction in TaOₓ stoichiometry and work function, making TaOₓ film favourable for electron contacts.
We have achieved a solar-to-electricity efficiency of 19.1% and a solar-to-hydrogen efficiency of 7.7%, which corresponds to a 2% and 3.8% absolute enhancement, respectively, over the control devices without a TaOₓ interlayer. These findings related to tantalum oxide are not limited to a silicon-based device platform; more generally, they indicate a generic pathway for interface engineering of optoelectronic and photoelectrochemical applications.

Experimental methods

The TaOₓ films were deposited by a thermal ALD reactor (Picosun, R200 Advanced) using Tantalum Ethoxide precursor at 250 °C and had a corresponding growth rate of 0.35 Å/cycle as measured by ex-situ spectroscopic ellipsometry (J.A. Woolam M2000 ellipsometer). The hydrogenation of TaOₓ film was realised by capping PECVD SiNx atop TaOₓ and then stripping off the SiNx layer by 1% hydrofluoric acid, taking advantage of the exceptional chemical stability of TaOₓ film under various pH conditions. PECVD SiNx has been well-known in providing hydrogen to manipulate bulk and interfacial properties of a range of materials such as silicon⁵⁵. The capping SiNx layer was deposited in a microwave/radio-frequency PECVD reactor (AK400, Roth & Rau)⁵⁶, having a thickness of 85 nm and a refractive index of ~1.9 at 632 nm.

Further experimental details are given in the Supporting Information.

ASSOCIATED CONTENT

Supporting Information

Characterization methods including X-ray photoelectron spectroscopy (XPS), carrier lifetime, and contact resistivity, fabrication and characterization details of silicon PV and PEC devices

AUTHOR INFORMATION

Corresponding Author

*yimao.wan@anu.edu.au
Author Contributions

Y.W. supervised the project. Y.W. and S.K. conceived the idea. Y.W. and C.S. carried out the material development, device fabrication, characterization and analysis. Y.W., S.K., and P.R.N. conducted water splitting experiment. J.B. and M.H. assisted with XPS characterization and analysis. D.Y. and J. P. assisted with PV device fabrication and characterization. S.M., H.H.T., C.J., A.J. and A.C. discussed the results. The manuscript was mainly written and revised by Y.W and S.K. All authors commented on the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGEMENTS

This work was supported by the Australian Government through the Australian Research Council (ARC). Some facilities at the Australian National Fabrication Facility and Centre for Advanced Microscopy at ANU were used. XPS characterization was performed at the Joint Center for Artificial Photosynthesis, supported through the Office of Science of the US Department of Energy under Award Number DE-SC0004993. A.J., M.H. and J.B. acknowledge funding from the Bay Area Photovoltaics Consortium (BAPVC).

References
