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Abstract—We present a distributed information fusion system
able to integrate heterogeneous information processing services
based on machine learning and reasoning approaches. We focus
on higher (semantic) levels of information fusion, and highlight
the requirement for the component services, and the system as
a whole, to generate explanations of its outputs. Using a case
study approach in the domain of traffic monitoring, we introduce
component services based on (i) deep neural network approaches
and (ii) heuristic-based reasoning. We examine methods for
explanation generation in each case, including both transparency
(e.g, saliency maps, reasoning traces) and post-hoc methods
(e.g, explanation in terms of similar examples, identification of
relevant semantic objects). We consider trade-offs in terms of
the classification performance of the services and the kinds of
available explanations, and show how service integration offers
more robust performance and explainability.

Index Terms—information fusion, explainability, interpretabil-
ity, machine learning, reasoning, distributed systems

I. INTRODUCTION

Our goal is to facilitate situational understanding by human
analysts by providing an open, distributed information fusion
architecture that integrates machine learning and reasoning
services operating on multimodal data feeds. We broadly
subscribe to the view that an integrated learning and reasoning
system can be viewed as a dynamic composition of simpler
models such that the composed system is able to answer
questions that the individual models cannot [1]. In our case,
we require that the system not only provide human analysts
with classified or inferred assessments of a situation, but
also be able to provide explanations for its assessments in
terms of a typology of model interpretability [2]. Moreover,
we aim to take advantage of the compositional architecture
by exploiting semantic relationships between model outputs
to improve generated explanations, especially for informa-
tion fusion processes involving sub-symbolic models where
interpretability remains a challenging problem, including deep
neural networks, DNNs [3].

We require that the architecture be distributed to allow
for information processing (including pattern recognition and
inference) to occur anywhere on the network, and also to allow
sharing of heterogeneous services from multiple providers.
Sharing brings the additional requirement that there must be
a degree of control over service access and information flow,
e.g., for privacy or security reasons.

The work presented in this paper is framed as a case study,
in which a representative situational understanding problem
and available multimodal data feeds facilitate experiments in:

1) integrating machine learning and reasoning models via
a lightweight service-oriented architecture;

2) exploring trade-offs between (i) model performance for
situational assessment and (ii) interpretability for expla-
nation generation; and

3) enabling the imposition of constraints to control infor-
mation flow.

The paper is organised as follows: Section II summarises
prior work in information fusion and explainability; Section III
introduces the application used as the basis for our case
study; Section IV describes the main services: a machine
learning service based on a convolutional neural network
(CNN) and a composition of services that comprise a reasoner;
Section V describes the explanations generatable for each
service; Section VI concludes, pointing to future work.

II. RELATED WORK

Our work aims to support situational understanding via
information fusion, with a focus on higher fusion levels
and human-in-the-loop processes [4]. While much work in
fusion of multimodal data addresses signal processing tech-
niques applied at lower (data) levels (e.g., [5]) our interest
in integrating heterogeneous machine learning and reasoning
services leads us to consider late fusion at higher (information)
levels (e.g., [6]). Moreover, we require services to provide
explanations for their outputs and, where outputs are fused,
we require the fusion of those explanations also.

Explainability in artificial intelligence systems has been
recognised as a problem for several decades, and was ex-
tensively studied in the 1980s and 1990s in the context of
symbolic reasoning (‘expert’) systems (e.g., [7], [8]). The
focus then was on effective means to make the reasoning
of knowledge-based systems transparent to end-users. Funda-
mentally, the approaches sought to frame explanations in terms
of reasoning traces (e.g., chains of rule firings or proof trees)
and component data (i.e., input data that triggered the rules
or grounded the proof). While non-trivial, this work benefited
from these systems being symbolic rather than sub-symbolic;
their internal elements were largely explicable.

The resurgence of interest in sub-symbolic approaches in
recent years, chiefly DNNs, has led renewed interest and



concerns regarding explainability1. System transparency re-
mains a key issue, but it is also recognised that ‘traces’ in
terms of DNN weights are not explicable and, often, post-hoc
explanations are more useful [2]. The dominant approach to
addressing transparency in DNNs is in image classification
systems, to associate an output class with the parts of an
input image that had the greatest weight in determining the
classification; e.g., saliency mapping identifies regions of
similarly-weighted pixels in an input image that contribute
positive weight towards a particular output class [9], [10].

Common post-hoc explanation approaches for DNNs in-
clude explanation-by-example and text explanation. The for-
mer draws on earlier work in case-based reasoning wherein an
explanation is framed in terms of a selection of labelled cases
computed to be similar to the input case [11], [12], [13]. The
latter employs object detection techniques to identify mean-
ingful sub-elements of the input and constructs an explanation
based on these elements, in a manner similar to automatic
image captioning [14].

III. TESTBED APPLICATION

Our testbed was chosen as an exemplar application where
open data and pre-existing services were readily available,
and where machine learning and reasoning services could
plausibly operate at a range of semantic scales (low to high-
level). We selected the problem of monitoring and predicting
traffic congestion. In many cities, multiple organisations offer
open sources of information. For example, Transport for Lon-
don (TfL) offers an application programming interface (API)
to view imagery and video from their traffic cameras placed
around London2, while Open Street Maps (OSM) offers infor-
mation about roads, e.g., speed limit3.

A. Testbed System Architecture and Design

The structure of the system is shown in Figure 1. The
figure shows information flows from data sources through
processing services to decision-support classifications. Dark
grey arrows show the path information takes to produce
congestion classifications (ratings) and light grey arrows show
information flows that produce explanations of those ratings.
There are two service chains producing classifications: one via
a CNN (only) and a second via a more complex composition
of services that feed in to a reasoning service. We refer to
the CNN as the congestion classifier and the latter as the
congestion reasoner. Section IV details these services and
Section V examines the kinds of explanations that can be
generated from each.

B. Data Collection and Labelling

TfL provides still images and video sequences (of a few
seconds duration) from over 1,200 cameras, released at a 5-
minute refresh rate. This paper focuses principally on the still

1Recent machine learning literature favours the term ‘interpretability’ over
‘explainability’. We use the terms interchangeably here.

2http://www.trafficdelays.co.uk/london-traffic-cameras/
3http://www.openstreetmap.org/

Fig. 1. Testbed system architecture: dark grey arrows show information flow
leading to congestion ratings; light grey arrows show information flow to
generate explanations for ratings

images; these are 352�288 pixels. We collected images and
video sequences from 691 cameras over a period of 23 days,
including imagery at all times of the day and night, in different
location types, and over a range of traffic and environmental
conditions. See Figure 2 for example images illustrating some
of the variations in lighting, traffic and road configuration
present in the dataset.

A subset of the imagery covering five locations over a
24 hour period was selected for ground truth labelling. For
this, a web-based image annotation tool4 was developed to
allow users to label each image as one of: ‘congested’,
‘uncongested’, ‘unknown’ or ‘broken’. Users were guided to
use the first two labels for images where they were confident
that the traffic was congested or not, to use ‘unknown’ where
they were uncertain, and ‘broken’ to label images that were
blank or otherwise unreadable (an artifact of the TfL system).
Use of this tool by 12 users yielded a dataset consisting
of 4,117 images labelled by at least one annotator. Once the
broken images were rejected a total of 3,967 usable labelled
examples remained. Taking the most prevalent labelling for
each image revealed that 57% were uncongested and 43%
congested. In order to take account of the non-binary nature
of the phenomena of interest, and differing opinions expressed

4https://image-annotation.eu-gb.mybluemix.net/




