Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabiliser-free sol-immobilisation

Christopher Williams[a], James H. Carter[a], Nicholas F. Dummer[a], Y. Kit Chow[a], David J. Morgan[a], Sara Yacob[b], Pedro Serna[b], David J. Willock[a], Randall J. Meyer[b], Stuart H. Taylor[a] and Graham J. Hutchings*[a]

[a] Cardiff Catalysis Institute, School of Chemistry, Cardiff University, CF10 3AT
[b] ExxonMobil Research and Engineering Company, Corporate Strategic Research, Annandale, NJ 08801, USA

*Corresponding email: hutch@cardiff.ac.uk
Abstract

The selective oxidation of methane to methanol, using H$_2$O$_2$, under mild reaction conditions was studied using bimetallic 1 wt. \% AuPd/TiO$_2$ prepared by stabiliser-free sol-immobilisation. The as-prepared catalysts exhibited low, unselective oxidation activity and deleterious H$_2$O$_2$ decomposition, which was ascribed to the small mean particle size of the supported AuPd nanoparticles. Heat treatments were employed to facilitate particle size growth, yielding an improvement in the catalyst turn-over-frequency and decreasing the H$_2$O$_2$ decomposition rate. The effect of support phase was studied by preparing a range of AuPd catalysts supported on rutile TiO$_2$. The low surface area rutile TiO$_2$ yielded catalysts with effective oxygenate production, but poor H$_2$O$_2$ utilisation. The influence of the rutile-TiO$_2$ support was investigated further by producing catalysts with a lower metal loading to maintain a consistent metal loading per m2 to the 1 wt.% AuPd/ P25 TiO$_2$ catalyst. When calcined at 800 °C the 0.13 wt.% AuPd catalyst demonstrated significantly improved turn-over frequency of 103 h$^{-1}$. In contrast, the turn-over frequency was found to be ca. 2 h$^{-1}$ for the rutile-supported 1 wt. \% AuPd catalyst calcined at 800 °C. The catalysts were probed by electron microscopy and XPS to understand the influence of particle size and oxidation state on the utilisation of H$_2$O$_2$ and oxygenate productivity. This work shows that the key to highly active catalysts involves the prevention of deleterious H$_2$O$_2$ decomposition and this can be achieved through carefully controlling the nanoparticle size, metal loading and metal oxidation state.

Keywords: methane, C-H, methanol, AuPd, particle size, partial methane oxidation
Introduction

The direct oxidation of methane to methanol is a key challenge within the scientific community.1,2 However, the direct transformation to methanol is complicated by the intrinsic inertness of methane, which lacks a dipole moment and usually requires harsh conditions for the activation of the kinetically stable C-H bond ($\Delta H_{\text{C-H}} = 440$ kJ mol$^{-1}$).3 Current industrial methanol production is an energy-intensive and an indirect process that converts methane to synthesis gas before further conversion to methanol and other bulk chemicals.4,5 This process demonstrates high selectivity towards the desired products producing 85 million metric tonnes of methanol per annum as well as other valuable commodities.6

A single step approach, applicable under low reaction temperature would therefore drastically reduce processing costs for the production of methanol. Additionally, both affordable and readily available, natural gas has the potential to be an alternative feedstock for chemicals and high value fuels, reducing the global dependence and prolonging current petroleum reserves. Natural gas is a viable prospect for an abundant feedstock with proven reserves of ca.190 trillion cubic metres.7 Furthermore, with many natural gas reserves found in remote locations, direct conversion to methanol at the point of extraction would provide a feedstock with reduced hazards and transportation costs.

Homogeneous catalytic applications have provided important information for low temperature approaches, active site regeneration and high selectivities. However, typically these processes require harsh reaction conditions or sacrificial reagents.8–11 Contrastingly, Hutchings and co-workers12 have reported the use of an environmentally benign H$_2$O:H$_2$O$_2$ system, efficiently oxidising methane to methanol under low reaction temperatures (50 °C).

The use of Fe-ZSM5 was inspired by methane mono-oxygenase, which carries out a one-step oxidation of methane to methanol under mild, aqueous conditions. The Fe- and Cu- promoted Fe-ZSM5 catalysts demonstrated considerable activity for the oxidation of methane to methanol, achieving turnover frequencies (TOFs) of > 2200 h$^{-1}$ and methanol selectivities above 80 %.13

Alternatively, C-H bond activation has been extensively studied using noble metal catalysts such as AuPd.14,15 Kesavan et al.16 reported the selective oxidation of the methyl group C-H bonds in toluene over TiO$_2$- and carbon- supported AuPd catalysts using O$_2$. Demonstrating high selectivity towards benzyl benzoate the differences in catalytic activity were attributed
to different AuPd morphologies due to support-metal interactions. However, direct oxidation of methane to methanol with oxygen has proved a significant challenge. Ab Rahim et al.17,18 reported on the systematic study of AuPd/TiO\textsubscript{2} catalysts for efficient formation of methanol from methane with H\textsubscript{2}O\textsubscript{2}. These catalysts were synthesized by wet impregnation from chloride precursors onto the support, typically producing a broad range of particle sizes. The catalysts were comprised of alloyed AuPd nanoparticles, with particle sizes ranging from 5-20 nm and Au-rich nanoparticles 100-200 nm in size.19 The presence of sub-nm AuPd particles and clusters of Pd were also identified, reflecting the poor control of metal dispersion and speciation provided by wet impregnation. Even so, these AuPd/TiO\textsubscript{2} catalysts showed moderate activity, demonstrating the highest methanol (49%) and oxygenate selectivity (90%) of supports investigated, including carbon.20

Despite exhibiting lower oxygenate formation, TOF and methanol selectivity than their Fe-ZSM-5 counterparts, AuPd catalysts are an attractive class of catalyst because they could be developed to generate H\textsubscript{2}O\textsubscript{2} \textit{in situ} from H\textsubscript{2} and O\textsubscript{2}. Ab Rahim \textit{et al.}, applied this approach with AuPd/TiO\textsubscript{2}, reporting a productivity of 0.50 mol kg\textsubscript{cat}-1 h-1 compared to 0.116 mol kg\textsubscript{cat}-1 h-1 when similar amounts of preformed H\textsubscript{2}O\textsubscript{2} (250 µmol).18 However, an improvement in methanol selectivity (68%) and three-fold improvement in H\textsubscript{2}O\textsubscript{2} reactivity were observed during \textit{in situ} peroxide generation.

Recently Agarwal \textit{et al.}21 showed significant improvements in activity when unsupported AuPd nanoparticles were used. Colloidal AuPd prepared using poly(vinyl pyrrolidine) showed high oxygenate productivity with preformed H\textsubscript{2}O\textsubscript{2} (29.4 mol kg\textsubscript{cat}-1 h-1). Notably, the introduction of oxygen with preformed H\textsubscript{2}O\textsubscript{2} resulted in a substantial increase in oxygenate productivity to 53.6 mol kg\textsubscript{cat}-1 h-1. The use of 18O\textsubscript{2} demonstrated significant incorporation of the gas phase O\textsubscript{2} into the methanol produced (70%). Crucially however, the rate of H\textsubscript{2}O\textsubscript{2} decomposition was drastically reduced by elimination of a metal-support interaction and the resulting high productivity was attributed to the controlled H\textsubscript{2}O\textsubscript{2} breakdown.

Industrially, \textit{in situ} generation of H\textsubscript{2}O\textsubscript{2} is more desirable than using pre-formed H\textsubscript{2}O\textsubscript{2} as the oxidant, a necessary requirement for the use of MFI-zeolite based catalysts. In order to realise this application, a solid understanding of the chemical reactivity of H\textsubscript{2}O\textsubscript{2} with supported AuPd catalysts is required. In contrast to impregnation techniques, catalyst synthesis by sol-immobilisation (SI) facilitates the control of particle sizes, composition and morphology.22,23
This methodology has been used to tune catalyst activity and enhance product selectivity for several reactions, including benzyl alcohol oxidation and hydrogenation of furfural.24,25 In this investigation, the role of AuPd particle size, support and oxidation state is considered for the selective oxidation of methane to methanol using added H\textsubscript{2}O\textsubscript{2}. The particle size distribution of AuPd is controlled using SI and carefully manipulated to evaluate the influence of nanoparticle size on the effective utilisation of H\textsubscript{2}O\textsubscript{2} and the production of methanol.
Experimental

Preparation of AuPd/TiO$_2$ by sol-immobilisation

For 0.5 wt.% Au-0.5 wt.% Pd/TiO$_2$, aqueous solutions of HAuCl$_4$.xH$_2$O (Aldrich 99.9% 1.667 mL, 12.25mg mL$^{-1}$) and PdCl$_2$ (Aldrich 0.816 mL, 6 mg mL$^{-1}$) were added to deionised water (800 mL) under vigorous stirring at room temperature. The resulting solution was stirred for 2 min before the addition of freshly prepared NaBH$_4$ (7.23 mL, 0.1 M) such that the molar ratio of NaBH$_4$ to metal was 5:1. Upon the addition of NaBH$_4$, the mixture turned dark brown/black and was then vigorously stirred for 30 min before addition of the TiO$_2$ (P25 Degussa, 1.98 g) support. The solution was acidified to pH 1 after 1 min by drop-wise addition of sulfuric acid (>95%) and stirred for 1 h. The suspension was then filtered under vacuum and washed thoroughly with distilled water and then dried in a conventional oven for 16 h at 110 °C. Calcinations were performed under static air at various temperatures for 3 h (ramp rate of 20 °C min$^{-1}$), while reduction of the catalysts was carried out under flowing 5% H$_2$/Ar for 4 h (ramp rate = 10 °C min$^{-1}$).

A similar method was followed for the preparation of 0.065 wt.% Au-0.065 wt.% Pd/rutile TiO$_2$ using aqueous solutions of HAuCl$_4$.xH$_2$O (Aldrich 99.9% 0.1061 mL, 12.25mg mL$^{-1}$) and PdCl$_2$ (Aldrich 99.9% 0.2167 mL, 6 mg mL$^{-1}$), with pre-calcined TiO$_2$ (P25 Degussa, 1.9974 g) support.

In order to help differentiate between the prepared catalysts, the following nomenclature was adopted: “metal loading% AuPd/phase of TiO$_2$, temperature of preparation, calcination temperature”. For example, a 1 wt. % AuPd catalyst prepared at room temperature on P25 TiO$_2$ and calcined at 800 °C would be abbreviated as 1%AuPd/P25-RT-800. A table of the catalysts prepared and their abbreviations is presented in the Supporting Information (Table S1).

Oxidation of methane using H$_2$O$_2$

The oxidation of methane was carried out using a 50 mL Parr stainless steel autoclave reactor. The autoclave was fitted with a removable Teflon liner (35 mL volume).
Reactions were carried out using a 10 mL reaction mixture comprising an aqueous solution of H$_2$O$_2$ (10 mL, 0.5 M, 5000 μmol) and the catalyst (10 mg). Prior to use the reactor was purged with methane to remove residual air before being pressurised with methane to 30.5 bar. The autoclave was then heated to the desired reaction temperature (50 °C) using the pre-set programme. At reaction temperature (t= 0 min), the solution was vigorously stirred at 1500 RPM and both heating and stirring were maintained for the required length (typically 30 min). Following this, the stirring was stopped and the temperature was reduced to 10 °C using an ice bath to minimise the loss of volatile products. Gaseous samples were removed by extraction into a gas bag for analysis via gas chromatography. The Varian-GC was equipped with a CP-SIL5CB column (50 m, 0.33 mm internal diameter) fitted with a methaniser and analysed by a flame ionisation detector (FID). The reaction mixture was filtered to remove catalyst particulates and analysed by 1H NMR, using a Bruker 500 MHz Ultra-shield NMR spectrometer. A sample NMR spectrum is presented in Figure S1. All 1H NMR samples were analysed against a calibrated insert containing tetramethylsilane (TMS) in deuterated chloroform (99.9 % D). The remaining H$_2$O$_2$ was determined by titration with acidified Ce(SO$_4$)$_2$.

Reactions to determine the decomposition rate of H$_2$O$_2$ over catalyst samples

The decomposition of H$_2$O$_2$ was carried out in a 35 mL glass vial. A typical reaction was carried out using 10 mL reaction mixture comprising an aqueous solution of H$_2$O$_2$ (10 mL, 0.5 M, 5000 μmol) and a measured amount of solid catalyst (10 mg). At intervals, H$_2$O$_2$ concentration was determined by titration of 0.1 mL sample of reaction solution against an acidified Ce(SO$_4$)$_2$ solution of known concentration using one drop of ferroin indicator (0.025 M). The reactions were carried out at room temperature, with stirring maintained at 1000 RPM.

Catalyst Characterisation

Powder X-ray Diffraction (XRD) patterns were collected using a PANalytical X’PertPRO X-ray diffractometer, with Cu K$_{α}$ radiation source (λ = 0.154 nm) and a Ni filter at ambient conditions. Samples were recorded between 15-80 ° at 40 kV and 40 mA with step sizes of 0.0167°. Transmission electron microscopy (TEM) was performed on a JEOL JEM-2100.
operating at 200 kV. Samples were prepared by dispersion in ethanol by sonication and deposited onto 300 mesh copper grids coated with holey carbon film. X-ray photoelectron spectroscopy (XPS) was performed using a Kratos Axis Ultra DLD spectrometer, using monochromatic Al Kα X-ray source operating at 120 W. Data was collected with pass energies of 160 eV for survey spectra, and 40 eV for higher resolution scans. The system was operated in the Hybrid mode, using a combination of magnetic immersion and electrostatic lenses and acquired over an area approximately 300 \times 700 \mu m^2. A magnetically confined charge compensation system was used to minimize charging of the sample surface, and all spectra were taken with a 90 ° take of angle. A base pressure of ca. \(1 \times 10^{-9}\) Torr was maintained during collection of the spectra. Each spectrum was calibrated against adventitious carbon, using the C 1s region, to 284.8 eV and CasaXPS was used for peak fitting, with integrated areas corrected for elemental sensitivity using modified Wagner factors as supplied by Kratos. Experimental binding energies are reported with confidence of \(\pm 0.2\) eV. To assess any reduction of Pd(II) species during analysis, Pd(3d)/Au(4d) spectra were acquired both at the start and again at the end of analysis, with negligible reduction of Pd(II) noted during the total analysis period.

Surface area measurements were performed at -196 °C on a Quantachrome Quadrasorb Si instrument after each sample was evacuated for 1 h at 120 °C. Surface areas were calculated using Brunauer–Emmet–Teller (BET) theory over the range \(P/P_0 = 0.05-0.2\).

Energy dispersive X-ray analysis (EDX) was performed on a Tescan Maia3 field emission gun scanning electron microscope (FEG-SEM) fitted with an Oxford Instruments XMAXN 80 Images were acquired using the secondary electron and backscattered electron detectors. Samples were dispersed as a powder onto adhesive carbon Leit discs mounted onto aluminium stubs.

Results and Discussion
The effect of the nanoparticle size

To evaluate the effect of supported metal particle size, a series of 1 wt. % AuPd/TiO\(_2\) (P25) catalysts were prepared using stabiliser-free sol-immobilisation. This technique can produce supported catalysts with a narrow nanoparticle size distribution which can then be manipulated with post-synthesis heat treatments.\(^{27}\) Furthermore, the deposition temperature during catalyst synthesis was previously reported to affect the size of the
nanoparticles. Rogers et al.28 previously reported an increase in particle size for poly(vinyl alcohol) stabilised Au nanoparticles after increasing the temperature during colloidal deposition from 25 to 70 °C. The mean particle size of resulting Au nanoparticles increased from 2.3 nm to 3.3 nm respectively.28 Therefore, both room temperature (RT) and 70 °C were investigated so that the effect of small changes to the nanoparticle size on the resultant methane oxidation activity could be established. The mean particle size of 1\%AuPd/P25-RT-dried and 1\%AuPd/P25-70-dried catalysts are reported in Table 1 (Entries 3 and 7). These were calculated from representative TEM images (see supporting information Fig. S2a and Fig. S3a) from approximately 250 particles. Increasing the catalyst preparation temperature from RT to 70 °C increased the mean particle size from 4.0 nm to 5.2 nm, consistent with the previously reported size increase by Rogers et al.28 The dried-only catalysts possess a particle size distribution of 2-10 nm, as shown in Figure S2a and S3a. This profile is also consistent with previously published reports where catalysts were prepared using stabiliser-free methods for sol-immobilisation.29

Initially, control reactions with no catalyst or just the support, TiO\textsubscript{2}, were carried out (Table 1, Entries 1 and 2), where no oxygenates were observed. The small quantity of CO\textsubscript{2} detected was considered to be adventitious. The dried-only catalysts were then screened for methane oxidation and the catalytic activity data is presented in Table 1 (Entries 3 and 7). Despite the almost complete decomposition of H\textsubscript{2}O\textsubscript{2} over both catalysts, no selective oxidation products were detected. We consider that the small particle size of the AuPd alloy could facilitate a rapid decomposition of the H\textsubscript{2}O\textsubscript{2} to H\textsubscript{2}O, which would prevent the possibility of methane reacting with active hydroperoxyl- or hydroxyl- radicals.30,31 Previously, it was shown that such materials exhibit high rates of H\textsubscript{2}O\textsubscript{2} productivity in the direct synthesis of H\textsubscript{2}O\textsubscript{2}, as well as high H\textsubscript{2}O\textsubscript{2} decomposition rates (> 100 µmol min-1).31

Larger modifications to the mean particle size were achieved through post-synthesis heat treatments at 400, 600 or 800 °C. The catalysts calcined at 400 °C (Table 1, Entries 4 and 8) did not produce oxygenates, despite an increase in the metal nanoparticle size to 6.5 nm and 7.5 nm respectively. As with the dried-only catalysts, there was no H\textsubscript{2}O\textsubscript{2} remaining after the reaction. The complete decomposition of H\textsubscript{2}O\textsubscript{2} by the dried-only catalysts and catalysts calcined at 400 °C is typical of materials with small particle sizes31 and explains the low productivities observed for methane oxidation (0.054 mol kg\textsubscript{cat}-1 h-1).
Table 1: The effect of post-synthesis heat treatment on the catalytic activity of 1wt.% AuPd/TiO₂ (P25) for the oxidation of methane. [a] (Entries 3-6; room temperature, 7-10; 70°C)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Heat Treatment</th>
<th>Methanol [b]</th>
<th>Formic Acid [b]</th>
<th>Methyl hydroperoxide [b]</th>
<th>CO₂ [c]</th>
<th>Oxygenate selectivity [d] [%]</th>
<th>Total Productivity[e] [mol kg(cat)⁻¹ h⁻¹]</th>
<th>TOF[f] [h⁻¹]</th>
<th>H₂O₂ Remaining[g] [%]</th>
<th>Mean Particle Size[h] [nm]</th>
<th>H₂O₂ Decomposition Rate[i] [μmol min⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blank</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.24</td>
<td>0</td>
<td>0</td>
<td>97.6</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2</td>
<td>TiO₂</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.20</td>
<td>0</td>
<td>0.039</td>
<td>97.4</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>3</td>
<td>RT, Dried</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.27</td>
<td>0</td>
<td>0.054</td>
<td>0.78</td>
<td>0.3</td>
<td>4.0 ± 1.4</td>
<td>557</td>
</tr>
<tr>
<td>4</td>
<td>RT, 400 °C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.27</td>
<td>0</td>
<td>0.054</td>
<td>0.77</td>
<td>0.3</td>
<td>6.5 ± 2.1</td>
<td>199</td>
</tr>
<tr>
<td>5</td>
<td>RT, 600 °C</td>
<td>0.03</td>
<td>0</td>
<td>0.13</td>
<td>0.16</td>
<td>46.6</td>
<td>0.063</td>
<td>0.91</td>
<td>1.7</td>
<td>8.3 ± 2.0</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>RT, 800 °C</td>
<td>0.23</td>
<td>0</td>
<td>0.50</td>
<td>0.17</td>
<td>80.8</td>
<td>0.172</td>
<td>2.47</td>
<td>42.1</td>
<td>19.0 ± 5.1</td>
<td>99</td>
</tr>
<tr>
<td>7</td>
<td>70 °C, Dried</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.16</td>
<td>0</td>
<td>0.032</td>
<td>0.50</td>
<td>0.3</td>
<td>5.2 ± 1.4</td>
<td>278</td>
</tr>
<tr>
<td>8</td>
<td>70 °C, 400 °C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.14</td>
<td>0</td>
<td>0.018</td>
<td>0.28</td>
<td>0.5</td>
<td>7.5 ± 2.0</td>
<td>251</td>
</tr>
<tr>
<td>9</td>
<td>70 °C, 600 °C</td>
<td>0</td>
<td>0</td>
<td>0.12</td>
<td>0.16</td>
<td>42.5</td>
<td>0.057</td>
<td>0.89</td>
<td>13.3</td>
<td>11.1 ± 2.4</td>
<td>145</td>
</tr>
<tr>
<td>10</td>
<td>70 °C, 800 °C</td>
<td>0.29</td>
<td>0</td>
<td>1.12</td>
<td>0.16</td>
<td>90.0</td>
<td>0.312</td>
<td>4.87</td>
<td>56.1</td>
<td>19.7 ± 6.2</td>
<td>31</td>
</tr>
</tbody>
</table>

[a] Standard reaction conditions: time: 30 min, temperature: 50 °C, P(CH₄): 30.5 bar, stirring rate: 1500 rpm, all catalysts (1 wt. % total): 7.24x10⁻⁷ mol of metals equal to 10 mg for solid catalysts, volume: 10 mL of H₂O.(H₂O₂): 0.5 M. Catalysts were prepared by SI at room temperature (entries 3-6) or at 70 °C (entries 7-10). Catalyst is dried at 110 °C, 10 °C min⁻¹, 16 h, static air. Calcined at various temperatures (20 °C min⁻¹, 3 h, static air). [b] Analysed by ¹H NMR spectroscopy with 1 % TMS in CDCl₃ internal standard. [c] Analysed by gas chromatography using an FID methaniser. Values obtained using CO₂ calibration curve. [d] Oxygenate selectivity calculated as (moles oxygenates/total moles of products) x 100. [e] Total productivity calculated as (moles(products) / weight(catalyst))/time. [f] TOF: Turn-over frequency, calculated as (moles(products) / total moles(metal)) / time (h). [g] Remaining H₂O₂ assayed by Ce⁴⁺ (aq.) titration. Calculated as (moles(initial)/moles(final) x100. [h] Determined by transmission electron microscopy. [i] H₂O₂ decomposition reaction conditions: time: 30mins, temperature: 24 °C, atmospheric pressure, stirring rate: 1000rpm, all catalysts (1 wt. % total): 7.24x10⁻⁷ mol of metals equal to 10 mg for solid catalysts, volume: 10 mL of H₂O.(H₂O₂): 0.5 M. Maximum experimental error; Methanol: 10%, Methyl Hydroperoxide: 16%, CO₂: 22%, H₂O₂: 9%.
In order to better establish the relative rate of H_2O_2 decomposition, a series of control experiments at room temperature were performed. The catalysts were stirred in a dilute H_2O_2 solution and the decomposition rate was determined through analysis of the solution as a function of time. The decomposition rates expressed as $\mu\text{mol min}^{-1}$ are reported in Table 1 and the time-on-line data is shown in supporting information Figure S4 and S5. The rate of H_2O_2 decomposition over 1%AuPd/P25-RT-dried was found to be 557 $\mu\text{mol min}^{-1}$ and 278 $\mu\text{mol min}^{-1}$ for 1%AuPd/P25-70-dried. Less than 10% of the H_2O_2 was remaining after 30 min and indicates that the small AuPd particles are capable of rapidly decomposing H_2O_2.

Following heat treatment at 600 °C (Table 1, Entries 5 and 9) the particle sizes of the catalysts increased to ca. 10 nm, where the onset of catalytic activity was observed, albeit with low productivity and relatively high H_2O_2 decomposition rates. The rate of H_2O_2 decomposition decreased to ca. 100 $\mu\text{mol min}^{-1}$ over these catalysts, although just 1.7% of H_2O_2 remained after the oxidation reaction. The rate of H_2O_2 decomposition over catalysts with metal nanoparticles less than 8 nm in diameter is unfavourably high and does not facilitate the production of methanol.

Heat treatment at 800 °C (Table 1, Entries 6 and 10) resulted in a significant growth of the mean nanoparticle size to ca. 19 nm in 1%AuPd/P25-RT-800 and 1%AuPd/P25-70-800 catalysts, which was matched by a large improvement in catalyst productivity (0.172 mol and 0.312 kg$_{\text{cat}}$ h$^{-1}$ respectively), as well as oxygenate selectivity and remaining H_2O_2. The H_2O_2 decomposition rates of the 1%AuPd/P25-RT-800 and 1%AuPd/P25-70-800 were found to be ca. 100 and 30 $\mu\text{mol min}^{-1}$ respectively, which emphasises that larger nanoparticles are required to ensure a sufficient concentration of reactive oxidising radicals, which facilitates the activation of methane.

Particle size distributions for both 1%AuPd/P25-RT-800 and 1%AuPd/P25-70-800 (Fig. S1d and S2d) demonstrate quite similar profiles and average particle sizes: 19.0 ± 5.1 and 19.7 ± 6.2 nm, respectively. Upon closer inspection, however, the presence of nanoparticles below 9 nm in the 1%AuPd/P25-RT-800 catalyst were observed, in contrast to 1%AuPd/P25-70-800. The presence of these sub-10 nm particles could be a contributing factor in the lower activity observed with 1%AuPd/P25-RT-800, as these particles demonstrably catalyse the deleterious decomposition of H_2O_2, however the number of sub-10 nm metal nanoparticles in 1%AuPd/P25-RT-800 represents a small proportion of the total population of supported
nanoparticles. Another possible explanation concerns the standard deviation of the average particle size measurements, which suggests that the actual differences in the supported nanoparticle sizes are greater than suggested by the average value. There are, however, clear trends associated with the average particle sizes, the rates of H$_2$O$_2$ decomposition and the quantity of reaction products. These relationships are illustrated in Figure 1 a), b) and c).

![Graphs illustrating the structure-activity relationship of 1 wt. % AuPd/ TiO$_2$ (P25) for methane oxidation.](image)

Fig. 1. The structure-activity relationship of 1 wt. % AuPd/ TiO$_2$ (P25) for methane oxidation: a) Lower H$_2$O$_2$ decomposition rates are consistent with the larger quantities of products after the 0.5 h reaction; b) Lower H$_2$O$_2$ decomposition rates lead to a higher productivity after the 30 min reaction; c) Larger mean particle sizes result in higher productivities. ● = RT and θ = 70 °C.

The oxidation state of Pd has previously been demonstrated to affect the rate of H$_2$O$_2$ decomposition32,33. XPS was therefore used to investigate a potential link between H$_2$O$_2$ decomposition rates (and therefore oxygenate production) and the oxidation state of Pd in the samples. The corresponding Au 4d and Pd 3d spectra are illustrated in Figure S7 and S8, with elemental analysis provided in Table S2. It is evident that the preparation method, involving NaBH$_4$ as the reducing agent, leads to the formation of the reduced metal species only. Expectedly, calcination of the catalysts resulted in the formation of oxidised species, with only Pd$^{2+}$ present after calcination at 400 °C (Fig. S7 and S8) (Table S2, Entries 2-4 and 6-
Overall, the XPS analysis of Pd 3d region of the RT and 70 °C prepared samples was similar and the oxidation state of the Pd was not affected by the temperature of the preparation method. In order to confirm the metal loadings and Au:Pd ratio, elemental analysis was carried out on the dried samples using MP-AES after digestion of the catalysts using *aqua regia*. Due to inefficient digestion of TiO\(_2\) support when using *aqua regia*, complementary SEM-EDX analysis was also carried out. The measured metal loadings are presented in Table S2 and are very close to that of the nominal values, although the 1%AuPd-P25-70-800 had a lower loading (0.89 wt.%) than 1%AuPd-P25-RT-800 (0.97 wt.%). Additionally, these SEM-EDX measurements were also consistent with the MP-AES data. The lower loading of metal in 1%AuPd-P25-70-800 could actually be beneficial as there are fewer sites to decompose \(\text{H}_2\text{O}_2\) in the system. It was previously reported that increasing the mass of 5 wt. % AuPd/TiO\(_2\) catalysts could lower the production of methanol.\(^{18}\) The importance of the concentration of metal is discussed below. TOFs were calculated according to the total metal loading determined using MP-AES (Table 1). The most active catalyst, 1%AuPd-P25-70-800, exhibited a TOF of 4.87 h\(^{-1}\), comparable to those previously reported.\(^{20}\)

The effect of the support phase

The increase in oxygenate productivity noted when the 1 wt. % AuPd/TiO\(_2\) (P25) catalysts were calcined at 800 °C was ascribed to the increase in mean AuPd particle size, which prevented the deleterious decomposition of \(\text{H}_2\text{O}_2\). However, the P25 TiO\(_2\) support also underwent a phase transition to rutile, as evidenced by the characteristic XRD reflections (Fig. S6). Therefore, an analogous series of catalysts were prepared on rutile TiO\(_2\). Nitrogen adsorption measurements indicated that the BET surface area decreased from 45 m\(^2\) g\(^{-1}\) for the P25 material to 6 m\(^2\) g\(^{-1}\) for the rutile material. Catalysts were prepared with 1 wt.% AuPd at both room temperature and at 70 °C for consistency with the previous samples and were tested for the selective oxidation of methane with \(\text{H}_2\text{O}_2\) (Table 2) after the same heat treatments. The XRD patterns of the supported rutile catalysts are shown in Fig. S9, and indicate that no major phase changes occur to the catalyst support. Consistent with the results in Table 1, selective methane oxidation over 1 wt.% AuPd/rutile was not observed for the dried-only catalysts prepared at RT or 70 °C (Table 2, Entries 2 and 6). These catalysts exhibited high \(\text{H}_2\text{O}_2\) decomposition activity (Fig. S12 and S13), which we consider is due to the
particle size and presence of metallic Pd in the AuPd nanoparticles. Analysis of the rutile-supported catalysts by TEM revealed an interesting phenomenon that occurs during preparation (Fig. S10 and S11). Deposition of stabiliser-free AuPd sols onto the rutile TiO$_2$ support resulted in particle agglomerates on the dried-only catalyst, rather than discrete nanoparticles. Heat treatment of these parent catalysts subsequently resulted in the preferential formation of distinct, hemi-spherical nanoparticles, which increase in size with increasing heat treatment temperatures (Fig. S10 and S11). Interestingly, the AuPd/rutile catalysts calcined at 400 °C exhibited selective catalytic activity towards oxygenates (Table 2, Entries 3-5 and 7-9), in contrast to the analogous catalysts supported on P25. After calcination at 800 °C, the mean particle size increased to 19 - 23 nm, consistent with the catalysts supported on the untreated TiO$_2$ support.
Table 2: The effect of support pre-calcination for 1wt.% AuPd/rutile TiO$_2$ prepared at room temperature (Entries 2-5) and at 70 °C (Entries 6-9)$^{[a]}$

<table>
<thead>
<tr>
<th>Entry</th>
<th>Heat Treatment</th>
<th>Products [µmol]</th>
<th>Oxygenate selectivity [%]</th>
<th>Total Productivity [mol kg(catalyst)$^{-1}$ h$^{-1}$]</th>
<th>TOF [h$^{-1}$]</th>
<th>H$_2$O$_2$ Remaining [%]</th>
<th>Mean Particle Size [nm]</th>
<th>H$_2$O$_2$ Decomposition Rate [µmol min$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Methanol$^{[b]}$</td>
<td>Formic Acid$^{[b]}$</td>
<td>Methyl hydroperoxide$^{[b]}$</td>
<td>CO$_2$$^{[c]}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>rutile</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.33</td>
<td>0</td>
<td>0.040</td>
<td>97.5</td>
</tr>
<tr>
<td>2</td>
<td>RT, Dried</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.26</td>
<td>0</td>
<td>0.052</td>
<td>0.73</td>
</tr>
<tr>
<td>3</td>
<td>RT, 400 °C</td>
<td>0.26</td>
<td>0</td>
<td>0</td>
<td>0.29</td>
<td>0.29</td>
<td>47.9</td>
<td>0.109</td>
</tr>
<tr>
<td>4</td>
<td>RT, 600 °C</td>
<td>0.22</td>
<td>0.36</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>65.4</td>
<td>0.176</td>
</tr>
<tr>
<td>5</td>
<td>RT, 800 °C</td>
<td>0.45</td>
<td>0.21</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>83.4</td>
<td>0.163</td>
</tr>
<tr>
<td>6</td>
<td>70 °C, Dried</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.27</td>
<td>0</td>
<td>0.053</td>
<td>0.83</td>
</tr>
<tr>
<td>7</td>
<td>70 °C, 400 °C</td>
<td>0.36</td>
<td>0.56</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>86.2</td>
<td>0.214</td>
</tr>
<tr>
<td>8</td>
<td>70 °C, 600 °C</td>
<td>0.30</td>
<td>0.73</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>87.1</td>
<td>0.161</td>
</tr>
<tr>
<td>9</td>
<td>70 °C, 800 °C</td>
<td>0.38</td>
<td>0.73</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>86.5</td>
<td>0.243</td>
</tr>
</tbody>
</table>

$^{[a]}$Standard reaction conditions: time: 30 min, temperature: 50 °C, P$_{CH_4}$: 30.5 bar, stirring rate: 1500 rpm, all catalysts (1 wt. % total): 7.24x10$^{-7}$ mol of metals equal to 10 mg for solid catalysts, volume: 10 mL of H$_2$O,[H$_2$O]: 0.5 M. TiO$_2$ support pretreated by calcination at 800 °C prior to use in catalyst preparation (denoted rutile). Catalysts were prepared by SI at room temperature (entries 2-5) or at 70 °C (entries 6-9). Catalyst is dried at 110 °C, 10 °C min$^{-1}$, 16 h, static air. Calcined at various temperatures (20 °C min$^{-1}$, 3 h, static air). $^{[b]}$Analysed by 1H NMR spectroscopy with 1 % TMS in CDCl$_3$ internal standard. $^{[c]}$Analysed by gas chromatography using an FID methaniser. Values obtained using CO$_2$ calibration curve. $^{[d]}$Oxygenate selectivity calculated as (moles oxygenates/total moles of products) x 100. $^{[e]}$Total productivity calculated as (moles(products) /weight(catalyst))/time). $^{[f]}$TOF: Turn-over frequency, calculated as (moles(products) / total moles(metal)) / time (h). $^{[g]}$Remaining H$_2$O$_2$ assayed by Ce$^{4+}$(aq.) titration. Calculated as (moles(initial)/moles(final) x100. $^{[i]}$H$_2$O$_2$ decomposition reaction conditions: time: 30mins, temperature: 24 °C, atmospheric pressure, stirring rate: 1000 rpm, all catalysts (1 wt. % total): 7.24x10$^{-7}$ mol of metals equal to 10 mg for solid catalysts, volume: 10 mL of H$_2$O,[H$_2$O]: 0.5 M. Maximum experimental error; Methanol: 11%, Methyl Hydroperoxide: 16%, CO$_2$: 22%, H$_2$O$_2$: 10%.
However, the concentration of H$_2$O$_2$ remaining is inconsistent with our earlier observations where the presence of larger AuPd particles resulted in high percentage of H$_2$O$_2$ remaining (Table 1). For example, the 1%AuPd-rutile-RT-800 catalyst had a mean particle size of ca. 20 nm and exhibited high oxygenate selectivity, but with < 10 % H$_2$O$_2$ remaining (Table 2). The rate of H$_2$O$_2$ decomposition of the calcined catalysts was investigated and found to be between 150 and 317 µmol min$^{-1}$ for the catalysts prepared at room temperature and 70 °C, respectively (Table 2, entries 3-5 and 7-9, and Fig. S12 and S13). The surface composition, as determined by XPS, indicates that between 40-60% of the Pd is present as Pd0 (Fig. S14 and S15, and Table S3), whereas the P25 supported catalysts were composed entirely of Pd$^{2+}$. Previous studies on the direct synthesis of hydrogen peroxide have demonstrated Pd0 leads to higher rates of H$_2$O$_2$ decomposition compared to Pd$^{2+}$. The expected effect on catalytic activity would be detrimental and result in inefficient utilisation of H$_2$O$_2$. To observe the effect of Pd oxidation state on the catalytic activity, two samples of 1%AuPd/P25 were heated under a reducing environment (5% H$_2$/Ar) at 400 or 800 °C and screened for methane oxidation. The results of these tests are presented in Table S4 and show almost complete consumption of H$_2$O$_2$, and almost no catalytic activity. These data confirm that Pd0 promotes H$_2$O$_2$ decomposition at the expense of methane oxidation activity.

The large mean particle sizes and the presence of Pd0 observed with the heat-treated catalysts supported on rutile TiO$_2$ suggest that this combination can facilitate both the selective oxidation of methane whilst exhibiting an increased rate of H$_2$O$_2$ decomposition. This combination however does not facilitate efficient utilisation of H$_2$O$_2$. This is evident in Fig. 2, which depicts comparable relationships to those plotted in Fig. 1. The mean particle size of the rutile-supported catalysts does not correlate well with H$_2$O$_2$ decomposition or total products, as the Pd oxidation state is evidently an important parameter in determining these rates. Analogous elemental analysis using MP-AES and EDX was carried out on the rutile supported catalysts to confirm the expected metal loadings (Table S3). In each case, the metal loadings are close to the nominal loadings, although the catalysts prepared at 70 °C had a marginally lower total metal loading (0.91 wt. %), consistent with the P25-supported catalysts, suggesting that the interaction of the nanoparticles and the support is less favourable at elevated temperatures. Additionally, the increased performance of the 1%AuPd-rutile-70-800 compared with 1%AuPd-rutile-RT-800 could, in part, be due to the lower concentration of metal. Not only does this increase the TOF, but the lower metal
loading is also consistent with higher productivity, which as suggested above, could contribute to suppressing the deleterious decomposition of H_2O_2.

Fig. 2. The structure-activity relationship of 1 wt. % AuPd/ TiO$_2$ (rutile) for methane oxidation: a) In contrast to the P25-supported catalyst, there is not a clear correlation between the H_2O_2 decomposition rate and the mean particle size; b) The H_2O_2 decomposition rate correlates well with the total products after the 0.5 h reaction; c) The correlation between mean particle size and total products for catalysts prepared on rutile is poor, indicating that there are other factors affecting the activity. ● = RT and ○ = 70 °C.

The effect of surface area: metal loading ratio

The reduction in the surface area caused by the high temperature phase-change at 800 °C resulted in an increase in the supported metal to surface area ratio. Therefore, the metal loading on rutile TiO$_2$ was reduced from 0.167 %AuPd m$^{-2}$ to the equivalent loading of 0.022 wt. % AuPd m$^{-2}$, which is consistent with the metal:surface area of the 1 wt. % AuPd/P25 TiO$_2$. In this case, a nominal 0.13 wt. % loading of AuPd was used to prepare catalysts at room temperature on rutile TiO$_2$. As expected, the mean AuPd particle sizes of the 0.13 wt. % rutile TiO$_2$ catalysts were comparable to the 1 wt. % AuPd/P25 TiO$_2$ catalysts (Table 1) although interestingly, the dried catalyst featured nanoparticles that had formed agglomerates as was observed in the 1 wt.% AuPd/rutile TiO$_2$ catalysts. Fig. S16 illustrates the observed
agglomeration, and similarly shows the formation of hemispherical nanoparticles after heat
treatment at 400 °C. The 0.13 wt. % AuPd catalysts were active after calcination at 400 °C
(Table 3), where the mean particle size was 6.5 nm. Furthermore, the rate of H₂O₂
decomposition for all heat-treated catalysts was low and in general, > 90 % remained after
the 30 min reaction. The most likely explanation for this difference in catalytic activity is that
the 0.13 wt. % AuPd catalyst had significantly less metal present per moles of reactant and,
therefore, the rate of H₂O₂ decomposition was lower. The total productivity was calculated
to be 0.68 mol kg$_{\text{cat}}^{-1}$ h$^{-1}$, which corresponded to a turnover frequency of 103 h$^{-1}$, significantly
higher than the 1 wt. % AuPd catalysts (2-4 h$^{-1}$) and any previously reported supported-AuPd
bimetallic catalyst for this reaction.18,20 As above, the TOFs were calculated according to the
MP-AES measurements, which indicated the total metal loading to be 0.11 wt.%, although at
these very low loadings the limit of reliable quantification is approached.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Heat Treatment</th>
<th>Methanol [b]</th>
<th>Formic Acid [b]</th>
<th>Methyl hydroperoxide [b]</th>
<th>CO₂ [c]</th>
<th>Oxygenate selectivity [d] [%]</th>
<th>Total Productivity [e] [mol kg (\text{cat}^{-1}) h(^{-1})]</th>
<th>TOF [f] [h(^{-1})]</th>
<th>H₂O₂ Remaining [g] [%]</th>
<th>Mean Particle Size [h] [nm]</th>
<th>H₂O₂ Decomposition Rate [i] [μmol min(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dried</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.23</td>
<td>0</td>
<td>0.046</td>
<td>7.00</td>
<td>8.9</td>
<td>n/a</td>
<td>215</td>
</tr>
<tr>
<td>2</td>
<td>400 °C</td>
<td>0.06</td>
<td>0.00</td>
<td>0.41</td>
<td>0.25</td>
<td>64.8</td>
<td>0.152</td>
<td>23.0</td>
<td>55.1</td>
<td>6.5 ± 1.7</td>
<td>10.7</td>
</tr>
<tr>
<td>3</td>
<td>600 °C</td>
<td>0.13</td>
<td>0.00</td>
<td>0.86</td>
<td>0.33</td>
<td>75.0</td>
<td>0.234</td>
<td>35.5</td>
<td>75.5</td>
<td>9.3 ± 3.2</td>
<td>25.9</td>
</tr>
<tr>
<td>4</td>
<td>800 °C</td>
<td>0.32</td>
<td>0.19</td>
<td>2.65</td>
<td>0.27</td>
<td>90.7</td>
<td>0.677</td>
<td>103</td>
<td>64.3</td>
<td>19.1 ± 4.5</td>
<td>21.4</td>
</tr>
</tbody>
</table>

[a] Standard reaction conditions: time: 30 min, temperature: 50 °C, PCH₄: 30.5 bar, stirring rate: 1500 rpm, all catalysts (1 wt. % total): 9.41x10⁻⁸ mol of metals equal to 10 mg for solid catalysts, volume: 10 mL of H₂O. [H₂O₂]: 0.5 M. TiO₂ support pretreated by calcination at 800 °C prior to use for catalyst preparation (denoted rutile TiO₂). Catalyst prepared by SI at 70 °C. Catalyst is dried at 110 °C, 10 °C min⁻¹, 16 h, static air. Calcined at various temperatures (20 °C min⁻¹, 3 h, static air). [b] Analysed by ¹H NMR spectroscopy with 1% TMS in CDCl₃ internal standard. [c] Analysed by gas chromatography using a FID methaniser. Values obtained using CO₂ calibration curve. [d] Oxygenate selectivity calculated as (moles oxygenates/total moles of products) x 100. [e] Total productivity calculated as (moles(oxygenates)/weight(catalyst))/time. [f] TOF: Turn-over frequency, calculated as (moles(products)/total moles(metal))/time(h). [g] Remaining H₂O₂ assayed by Ce⁴⁺(aq.) titration. Calculated as (moles(initial)/moles(final))x100. [h] Determined by transmission electron microscopy. [i] H₂O₂ decomposition reaction conditions: time: 30mins, temperature: 24 °C, atmospheric pressure, stirring rate: 1000rpm, all catalysts (1wt. % total): 7.24x10⁻⁷ mol of metals equal to 10 mg for solid catalysts, volume: 10 mL of H₂O.[H₂O₂]: 0.5 M. Maximum experimental error; Methanol: 13%, Formic Acid 2%., Methyl hydroperoxide: 15%, CO₂: 20%, H₂O₂: 9%.
The rate of H$_2$O$_2$ decomposition at room temperature was much lower after calcination (Table 3, Fig. S17), as expected based on the methane oxidation reactions and the lower concentration of metal in the reaction. Over each catalyst, the rates were measured at < 26 µmol min$^{-1}$ despite the presence of ca. 50 % Pd0, as shown from XPS analysis (Table S5 and Fig. S18). This is consistent with the 1 wt.% AuPd/rutile TiO$_2$ catalysts that also featured high concentrations of Pd0 after calcination, suggesting that rutile stabilises Pd0 (or inhibits Pd oxidation). In addition, the XRD patterns of the 0.13 wt.% AuPd catalysts exhibited the same reflections as those in the 1 wt.% AuPd/rutile catalysts (Fig. S19). The reduction in metal loading also decreased the concentration of H$_2$O$_2$ decomposing metal, which facilitates a slower turnover of H$_2$O$_2$ and a higher methane oxidation activity. This observation supports the work of Han35 et al. and Landon36 et al. who demonstrated the proportional increase in H$_2$O$_2$ hydrogenation with increasing catalyst mass. The results from the present work indicates that the concentration of metal is an important parameter in determining methane oxidation activity in AuPd catalysts. This relationship is illustrated in Fig. 3, demonstrating the dependence of TOF as a function of the actual metal loading, as determined from MP-AES. Catalysts calcined at 800 °C were selected due to a comparable metal nanoparticle size of ca. 20 nm. Further inspection (Fig. 3, Inset) shows metal loadings closer to 1 wt. % where it is evident that a lower metal loading is conducive to an improved TOF of methanol and is likely caused by a decrease in the rate of deleterious H$_2$O$_2$ decomposition. These findings further underline the sensitivity of this reaction to the properties of the catalyst.
Fig. 3. The relationship between the actual metal loading determined using MP-AES and the TOF for a series of AuPd/TiO$_2$ catalysts calcined at 800 °C and with similar average particle sizes (ca. 20 nm). Inset: Close-up of the graph where the metal loading is between 0.88 - 1 wt.%.

![Graph showing the relationship between actual metal loading and turnover frequency. The x-axis represents actual metal loading in weight percent, and the y-axis represents turnover frequency in hours]$^{-1}$. The inset shows a close-up of the graph for metal loadings between 0.88 and 1 wt.%. The data points are marked with error bars indicating the range of values.

The figure illustrates the inverse relationship between actual metal loading and turnover frequency, with the TOF decreasing as the metal loading increases.
Conclusions

The influence of nanoparticle size and Pd oxidation state on the selective methane oxidation using AuPd/TiO$_2$ has been systematically investigated. Using stabiliser-free sol-immobilisation, the initial particle size distribution was controlled and modification of the deposition temperature allowed small differences in the initial particle size to be induced. These dried-only catalysts were not active for methane oxidation due to their ability to rapidly decompose H$_2$O$_2$. Calcining the catalysts at 400, 600 and 800 °C resulted in significant increases in the mean particle sizes, which yielded improvements in the H$_2$O$_2$ stability. In catalysts with larger than ca. 10 nm metal nanoparticles, the production of oxygenates was observed. After calcination at 800 °C the P25 TiO$_2$ transformed from approximately 80% anatase and 20% rutile to 100% rutile. To understand the influence of the support phase, catalysts were prepared using calcined P25 TiO$_2$, which produced a pure rutile phase. The stabilisation of Pd0 in these catalysts, even after high temperature calcination, resulted in rapid H$_2$O$_2$ decomposition. The metal loading was proportionally lowered to account for the lower surface area of the rutile catalyst compared to the P25 TiO$_2$. These 0.13 wt.% AuPd/rutile TiO$_2$ catalysts exhibited extremely high activity, particularly when calcined at 800 °C: The TOF of 0.13%AuPd/rutile-RT-800 was 103 h$^{-1}$. This is significantly higher than previously reported AuPd catalysts. We consider that the low concentration of metal in the low-loaded catalysts limited the H$_2$O$_2$ decomposition to a favourable rate. Therefore, while the supported nanoparticle size is an important parameter, it is not the only consideration that must be made in developing highly active, efficient heterogeneous catalysts for the selective oxidation of methane to methanol using supported AuPd nanoparticles. The size, oxidation state and concentration of supported nanoparticles must be controlled to maximise the efficiency and performance of the resulting catalyst.

Acknowledgements

The authors wish to thank ExxonMobil for financial support and the Cardiff University electron microscopy facility for the transmission (TEM) and scanning electron microscopy (SEM).
Associated Content

Summary of prepared catalysts, typical 1H NMR spectrum of post-reaction reaction solution, TEM, H$_2$O$_2$ decomposition reaction data, XRD, XPS, MP-AES and SEM-EDX analysis of catalysts.
References

(34) Samanta, C.; Choudhary, V. R. Direct Oxidation of H₂ to H₂O₂ over Pd/CeO₂ Catalyst under

Graphical Abstract: