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Abstract

Most mental functions are associated with dynamic intien@s within functional brain networks. Thus, trainindividuals to
alter functional brain networks might provide novetl @owerful means to improve cognitive performance andiemst

Using a novel connectivity-neurofeedback approadeta@n functional magnetic resonance imaging (fMi) show for the
first time that participants can learn to change fonetibrain networks. Spdidally, we taught participants control over a key
component of the emotion regulation network, in thay learned to increase top-down connectivity froexdbrsomedial
prefrontal cortex, which is involved in cognitivergrol, onto the amygdala, which is involved in erotprocessing. After
training, participants successfully self-regulated tpedown connectivity between these brain areas evisrouwii
neurofeedback, and this was associated with concomitzngizises in subjective valence ratings of emotional stwhttie
participants. Connectivity-based neurofeedback goesngegrevious neurofeedback approaches, which werestrit

training localized activity within a brain regiolh allows to noninvasively and non pharmacologicallgrge interconnected
functional brain networks directly, thereby resultingpecfic behavioral changes. Our results demonstrate that cibrityebased
neurofeedback training of emotion regulation netwakhances emotion regulation capabilities. This appraach c
potentially lead to powerful therapeutic emotionulegion protocols for neuropsychiatric disorders.

Key words: connectivity-based neurofeedback, dynamisa modeling (DCM), emotion networks regulation, fumetianagnetic
resonance imaging (fMRI), positive emotions

Introduction

When Bertrand Russell wroté&Control your emotion, or it will control yduhe expressed emphatically a necessity that we all experreageryday
life: the capacity to control our emotions. Emotion regulasitows us to adaptively cope with negative and poséients; failure to do so can
result in burdening affective disorders. The psychologicatlamaeural processes underlying emotion regulation have heeséty studied over
the past decade, leading to the formulation of well-estaaliffmotion regulation allows us to adaptively cope withatieg and positive events;
failure to do so can result in burdening affective disordédre.pBychological and the neural processes underlying emotidatieginave been
intensely studied over the past decade, leading to the legraruof well-established feasibility of simple correlatioeasures between brain areas
as an index of brain connectivity has been explor#ithefZilverstand et al. 20)4or has been integrated as an add-on to stamdéixity-based
neurofeedbackim et al. 201%. Rather tharromputing simple statistical dependencies for the feedbahawve recently shown, using dynamic
causal modeling (DCM}hat even causal interactions within brain networks camsbd for neurofeedbacKgush et al. 2013 Such a DCM-based
approach allows to determine the directionality of connegtidiéscribes how neural dynamics propagates through a neamatlallows for
modeling effective connectivity at the neuronal lelgton et al. 2003Stephan et al. 20)0Here, for thdirst time, we used a connectivity-based
neurofeedback signal for brain training and applied it to moegulation. We hypothesized that such training walli@v healthy participants to
learn control over spéii aspects of the emotion regulation network, and that suomgravould affect the subjective response to emotionaisii
To test these hypotheses, we trained 15 healthy volurigepssticipants in the experimental group; 6 in a matchettaaroup) to voluntarily
increase top-down effective connectivity from the dmPFC ontbitagral amygdala, which is one of the key connections of emegigulation
networks Banks et al. 200Barbas and Zikopoulos 200Pesso2008 Ochsner01Q Ochsner et al. 20)ZFig. 1). Neurofeedback training was
accomplished by 1) processing fMRI signals in near real-time,r2paong a model representing top-down modulation from the dindpko the
amygdala with a model representing bottopfiow of information from the amygdala onto the dmPFC using dyneatisal modeling (DCM) (Fig.
1C), and 3) providing the participants in the fMRI scannién anline feedback about the dominance of the top-dowreh{gdush et al2013. If
the top-down modditted the ongoing brain activity during a training trial betien the bottom-up model, the feedback signal was positive:
bottom-up model dominated, the feedback signal was negativelBjidJsing this connectivity-based neurofeedback information asmasal
successive training sessions, participants attempted tg bsatrial and error and using a freely chosen strategyctease the top-down
connectivity from the dmPFC onto the amygdala. Traditional ingaginearch has generally focused on the downregulaticgatine emotions,
but here we focus the neurofeedback training on upregulatititgypasmotions. This approach is more relevant for targetingrthedonia aspect of
emotion regulation disorders such as depression and arRistye( et al. 201, ITreadwayand Zald 201}, and avoids exposure to disturbing visual
scenes that might be problematic in these patients. Headgipants were presented with images depicting moderatsiljveosocial situations
during training and asked to appraise the positive contiéma personal perspective. The goal of the neurofeedbaciagravas to strengthen the
top-down connectivity from the dmPFC onto the amygdala, thustmitemimicking the effect produced by reappraigatfisner and Gross 2005
Banks et al2007 Kim et al. 2011 Zotev et al. 2018
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Figure 1 Experimentz| design. (4] Prior to neurofesdback taining, participants mted ther subjective responsss to target pictures, filled out psychological questonnaires, and
paformed self-regulation without neumfeadback {pretmining tansfer run). They then sterted neurcfeedback treining, which took placein six 17.5min nuns spresd over 3
days. After tmining, partidpanis agein performed self-regulation in the absence of newrofeedback (posttmining trensfer nm), rated thewr subjedtive responses to Erget pichures,
and filled cut psychological questonneires. {B) Example of 8 neumfeedback trisl Par neumfeedback training day, peridpants performed 2 runs, which were each compaosed of 7
trials. Each neumfeedbed: trisl was composed of 5 beseline and 4 reguleation blodes of 12 s esch, 8 rest period of 38 5, and afeedbark display lasting 4 5. During the baselinehlocks,
imapes of neutral ohjects were prasented, end partid pants were asked to passively look at them. During regulation blodks, moderatey positive sodalimapss were presented, and
particdpants were asked to imagine experiendng the depicted positive socisl simeation. During the rest perind, a black saeen wes presemted The feedback displey consisted of the
loganthmic Bayes factor value (which was red if the tial wes successful, L2, positive, and blue otherwise}, and the curmulative rewerd that hed been esrned untd then. (C) During
neurofesdhack traming, partidpants learned to wolun tarily inrease top-down effecive connectivity from the dmPPC onto the hilates] anypdsle. This was eccomplished by
providing & feedback signal thatindicated the degree of dominance of & top-down model [=tzrget modd, lefi parel} compared with & bottom-up model [right panel).

Materials and Methods

Participants

Fifteen healthy human volunteers (7 male, 8 female, age 2642ye4rs) gave written informed consent to participate in therigmpnt,

Which was approved by the local ethics committee. All pagitiphad normal or correctéaknormal vision and had no prior history of neurological
or psychiatric diseases. Before the experiment, participacesved written instructions describing that they waddorm a 3-day neurofeedback
training experiment during which they would be askeattempt to control the emotion networks. The instructiookided explanations of the
experimental procedure and of the neurofeedback display. Participare informed that they should regulate their brain actvitgaximize
positive feedback and recommended as potential regulation stsdiegigagine one-self engaged in the depicted positivel siitiation. In
common with established practice in the neurofeedbaltk we were not prescriptive about the strategy that pamtitsphould adopt during
learning Gulzer et al. 20131t was emphasized that participants shdind an individual strategy that worked best for them. biitamh to afixed
amaunt of 20 CHF/h for their participation in the experimenbonus of 1 CHF was rewarded for each successful neurofeedbacix of the 15
participants were allocated to an age- and gender-matched agotrpl(control group: 3 males, 3 females, 25.7 + 2.9 years;imqeal group: 4
males, 5 females, 26.4 £ 4.7), to determine whether the hyprattidsarning effects can also be achieved with unrelated fee dbaticipants in
this control group were provided with the same instruct@omsunderwent identical training procedures but unknowreto tleceived sham
feedback. Sham feedback was derived from the feedback values of the 6 best performing participants in the learning gnatiper than their
own brain activity. Debriing interviews conducted after the experimenficored that the control participants were unaware that they hadedcei
sham feedback. After each scanning session, participants Wwectktasll in a written questionnaire and, among other questi@ss;ribe how they
tried to manipulate the feedback signal, how effective theegiyatas, and how they rated the attentional demandsdteom a scale from 1 to 5 if
they were focused or absent-minded during the training.runs)

Stimuli

The stimuli consisted of 2 sets of photographs that were fad the International Affective Picture Set (IAPSjutg et al1993, the Nencki
Affective Picture System (NAPSMarchewkaet al. 2013, and the Geneva Affective Picture Database (GAPBR){Glauser and Scherer 2011
Images in thdirst set (684 photographs) depicted social situatiosawhoderately positive content, among which 504 images weddarse
neurofeedback training (mean and standard deviation for normatemce 6.73 + 0.92, arousal 4.48 + 1.00), and 180 images seztdar the pre-
and pos ttraining tests (mean and standard deviation forativenvalence 6.40 + 0.93, arousal 4.22 + 0.92). From theees we randomly selected
60 images for the preand pos ttraining transfer runs (meastamdiard deviation for normative valence 6.43 + 0.95, afdu20 + 0.92), of which
30 images were randomly selected for the pretraining and 3@ef@osttraining transfer runs. The remaining 120 imagestfiertest set were used
for the pe- and posttraining behavioural ratings (mean and standardidaviar normative valence 6.38 + 0.92, arousal 4.23 +)p&2vhich 60
images were randomly selected for the pretraining and 60 imagie fposttraining behavioral ratings. There were no valencarandal
differences between pre- and posttraining image Bet€(20). Note that the images in the test setswere ofisaymily lower valence and arousal
levels than the images used during the neurofeedback traiataged 2-sample t-test comparing 180 images used fgrded 504 images used for
training; valence:@s2)= 4.16,P < 0.01, arousal@s2)= 2.97,P < 0.01). We used slightly less emotional images duringtesi avoid ceiling effest
and to thereby allow detection of training-related changes. ¥denainted to test whether learned self-regulation transfemntyoto situations
without neurofeedback, but also to situations with diffevetence levels. Due to these differences, the logarithmic Bayes flténe training and



transfer runs (for details sé8onnectivity-based neurofeedback sigrsgiction) are not directly comparable (F24.,C). The order of
presentationwas pseudorandomized, and no imagewas presenteédananece to any participant. Images in the second sep{Gfographs)
depicted non-social neutral objects that were used for neurofeetibiaikg (630 images, mean and standard deviation for noenalence 5.34
0.72, arousal 3.67 + 0.97) and for the pre- and posttrairangfer runs (66 images, mean and standard deviation for neeraatéence 5.41 + 0.52,
arousal 3.65 + 0.84). From the 66 images for the transferwensandomly selected 33 for the pretraining and 33 for disénaining transfer run.
There were no valence and arousal differences between trainitigaasfer run sets, and between the images used for prpesitcining transfer
runs (P> 0.40)Neurofeedback TraininBarticipants took part in 3 neurofeedback training sesspweadover 3 days. On average, neurofeedback
training was provided 4.7 + 0.8 days apart (the durdteiween sessions did not correlate with learning successheeslope of the learning curve]:
Pearsots p = -0.05,P = 0.85). Every training session started with a structwam $o coregister the current head position with the anetdmi
template containing the ROIs. This ensured that the sameviR@dgargeted across the 3 different training sessions (fotsdetaut the selection of
the ROIs, seSupplementariaterials and Methogslin each training session, participants performed 2 traming of 17.5 min each. Each of the 2
training runs consisted of 7 neurofeedback trials. A needifack trial was composed of four 12 s regulation blocks #vat wterleaved with
baseline blocks of the same duration (Big). During the baseline blocks, images of neutral objects wesemtexl and participants were asked to
passively look at them. During the regulation blocks, moderptaitive social images were presented, and we suggeseedialoregulation
strategies such as, for example, imagining experiencingdethieted positive social situation. However, it was empghédghat participants should
find individual strategies that work best for them. Notetthefeedback signal did not depend on a comparison betweembaseli regulation
conditions (as in most previous neurofeedback studies)h&iit tvas based on a comparison between how well natv®rk model alternatives
described the fMRI data acquired during each trial, whicluédtetl both baseline and regulation conditions (for detak'Connectivity-based
neurofeedback sigriasection). Per block, 3 images with a diameter of 12° visngle were presented centrally for 4 s each using the Psyaixoolb
3 (Brainard 199Y. After each repetition of the 5 baseline and the 4 regulaticks, participants were given the chance to rest fer @8file a black
screen was presented. After this rest period, participanespresented with feedback about their success for 4 s. Thméedisplay consisted of
the logarithmic Bayes factor value (for details, %@ennectivity based neurofeedback sigrsaiction), which was red if the trial was successful (i.e.,
a positive Bayes factor) and blue otherwise (i.e., a negativesBagtor), and the total reward that had been earned untihenptrial. We used
intermittent rather than continuous feedback because 1) itsaftmvimproved feedback signal quality due to more scans bedilglate for

awveraging, 2) the intrinsic hemodynamic delay does not have takien into account by the participant, and 3) it is efmiehe participants to focus
on self-regulation (there is no dual-task interference with theltsineous evaluation of the feedback signal). At least for fMiREe advantages
seem to be more important for promotinfjaént neurofeedback learning than is tight temporal contigdignson et al. 2013ulzer et al. 201)3

To promote learning, we applied a shaping procedure accordingdb thie threshold for reward was gradually increased across traiaysg On

the 1st day, all positive log Bayes factors were rewarded, omthde®, Bayes factors needed to be larger than 2 to qualify for reavattdn the

3rd day, reward was given for Bayes factors larger th&kiBijer 1958
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Figure 2. Meumfeedback learning and behavioral effects. [A) Top-down control of the dmPFCover the amygdala was messured as median log Bayes factor, which indicated
the degree of dominance of the top-down model over the bottom-up model Partidpants in the experimentsl group (n = 9) showed &n incresse in top-down control with
tmining. Perticipants in the control group (n=§) did not leam to contral the emotion network. (B) Perdcipants in the experimentsl gmoup showed significantly larger
trining success than thoase in the control group, thatis, the slopes of the learning curves were significantly steeper than those of the contral group. (C) Leamed
control aver the emotion netarorks when feedhack was no longer available. Mote that the median values of the mansfer and the treining runs are not directly
comparzhle and are this sceled differently. (D} The experimentzal gmup, but not the contml group, showed significently more positive msponses ta the terget stimuli
after than before training. (E and F) Significent positive correlation between the degres to which an individusl leamed control over the emotion network (Le, the slope
of the leaming curve}, and post- versus pretrzining differencesin valence and arousel rmtings across sll partidpants. In (A-C), symbols represent the median anderror bars
represent the lower and upper quarttile; in (D) error bars represent the standsrd emror of the meen. Asterisks denote statisticsl significanos.

MRI Data Acquisition

MRI data were acquired on a 3T MRI scanner (Trio Tim, Siemens Mesibations, Erlangen, Germany) equipped with a 32-channelrbeaive

coil at the Brain and Behavior Laboratory (University of Geneva)hébeginning of each scanning session, for each partieigaacquired a iF
weighted structural image (3D MPRAGE, voxel size = Tiswtropic,flip anglea = 9°, TR = 1900 ms, Tl = 900 ms, TE = 2.27 ms), andubkie

echo FLASHfieldmap (TE1 =5.19 ms, TE2 = 7.65 ms, voxel size = %22 mm). Functional images were acquired with a single-shot gradient-
echo B*-weighted EPI sequence, with 1050 and 252 repetitionsdming and transfer sessions, respectively (TR = 1100 ms,3EmSs,

18 slices, matrix size = 120 x 120, voxel size = 1.83xx11.8 mm, flip anglea = 70°, bandwidth = 1.54 kHz/pixel, TE = 30 ms, GRAPHPAT =

3). The EPI protocol had a high resolution to allow for a peesithdivision of the preselected frontal and limbic brain ase@shad a short TRto

limit the effects of slice timing differences on the DCKigbel et al. 2007Koush et al. 2013 Positive phase-encoding polarity and slice tilt



approximately-42° in combination with relatively high spatial resolutair8T was applied to optimize sensitivity for frontal dinthic brain areas

(Weiskopfet al. 20062007).

Visual stimuli were displayed using a rectangular projectiveen at the rear of the scanner bore and were viewed with a msitored on top of
the head coil. All participants were instructed to breatadsty and to remain as still as possible.

Heart rate and respiration were continuously monitored througin@eixperiment and did not show any differences betweesxpiegimental
conditions (for details about the cardio-respiratory variablesSspplementary Materials and Methpds

Connectivity-Based Neurofeedback Signal

The connectivity-based neurofeedback signal was calculatedaisimgcently developed real-time DCM approacbushet al. 2013 DCM is a
Bayesian framework for modeling a functional brain network &t afglifferential equations that describe the architectureeofi¢twork (i.e., the
ROIs and the connections) and dynamic changes withimetfreork due to external inputs (e.qg., the presentationafés) and due to contextual
modulations (e.g., imagining experiencing the depicted sc@restpn et al. 20038 Using Bayesian model comparison, DCM allows to test which
model architecture explains the fMRI data b&&n(ny et al. 2004 The spedic models that we compared using real-time DCM were a target model
that represented top-down modulation from the dmPFC oatbiliiteral amygdala, and a model that represented botdlow of information from
the bilateral amygdala onto the dmPFC (Rig; for details about the selection of the ROIs, Segplementary Materialnd Method} For the top-
down model, external inputs entered the network via the dmé&tOnodulatory inputs affected the top-down connections fhe dmPFC onto the
amygdala. For the bottom-up model, external inputs entered tiherkevia the dmPFC, and modulatory inputs affected the toprdmnnections
from the dmPFC onto the amygdala. For the bottom-up model, exitgng entered the network via the amygdala, and modulatansiaffected
the bottom up connections from the amygdala onto the dmPFerfipare these model alternatives in real time, the fMRI images wenetexk to a
high-end PC immediately after the acquisition (CPU Intel Core 80-393.2 GHz, 32 GB RAM). On this computer, custom-made, tnee fMRI
software running on Matlab (Mathworks Inc., Natick, MA, USA)wasdito performonline motion correction; extraction of the timesasufrom the
ROls; removal of signal drift, spikes, and high frequermiger and calculation of the feedback sigiaysh et al. 201,2013. The feedback signal
was the result of the Bayesian model comparison between the 2 afted®htives using our real-time adaptation of DCM10 (géeimented in
SPMB8; Wellcome Trust Centre for Neuroimaging, Queen Square, Lpbidkgmttp://www fil.ion.ucl. ac.uR. If the top-down modditted the data of
a neurofeedback trial better than the bottom-up model, thetlogésiBayes factorwas positive, and the participantwas rewardedsfaccessful
trial. If the bottom-up model dominated, the logarithmic &afactor was negative, and the participant was not rewariged 8. Note that the
feedback signal calculation for a neurofeedback trial was bast @ntire ROI time series of this trial, including basedime regulation
conditions. The feedback signal is thus not a comparisevebatbaseline and regulation conditions (as in most previeurofeedback studies), but
is a comparison between how 2 model alternatives descrildath@cquired during a trial, which includes both basaleregulation conditions.

Pre- and Posttraining Tests

To test whether learned self-regulation transfers to sinstidere neurofeedback is no longer available, participantsmpedcself-regulation in the
absence of neurofeedback before and after neurofeedback trainirtcaridfer trials were identical to the training trials excegt they wee
composed of 11 baseline blocks interleaved with 10 regalbtacks (4.2 min run duration), that the presented images of lower valence and
arousal levels (for details, s&&timuli” section), and that no neurofeedback was presented. Dherpetraining transfer run, participants were
asked to passively look at the images depicting neutraltskfesseline condition) or to imagine one-self engageueinlépicted positive social
situation (regulation condition). Using the same desighpilot participants (different from those recruited inithen experiment), we found
increased top-down modulations from the dmPFC onto the amygdafatidsy imagined themselves engaged in the depicted pasitiia situation
compared with when they passively viewed the depicted in{fgredetails, se&upplementary Materials afdethody. During the posttraining
transfer run, participants were asked to apply their newly lda@léregulation skills. To test whether neurofeedback trgimiadulated the
participantsaffective responses to visual stimuli, we asked theratéotheir subjective response to visual stimuli simildhtse used during the
pre- and posttraining transfer runs in terms of valence and ar@isglthe standard self-assessment manikin ratings (Sevip(et al. 1998 The
pictures used for these ratings were less positive tlgpictures used during training (for details, $&#muli” section). These ratings were
performed once before and once after the neurofeedback trainingthesi®4M 9-point rating scalééng et al. 1998

Psychometric Questionnaires

Before the experiment, we asked participants to complete the Enfetgulation Questionnaire (ER@rpss and John 2003

the Thought Control Ability Questionnaire (TCAQuciano et al. 2006 the White Bear Suppression Inventory (WBSWe@ner

and Zanakos 1994the State-Trait Anxiety Inventory (STAIBpielberger et al. 1983the Sensitivity to Punishment and Sensitivity to Rewar
Questionnaire (SPRSQJdrrubia et al. 20Q1Lardi et al. 2008, and the Beck Depression Inventory (BBetk et al1961). None of the

participants suffered from depression (BDI scores wétb + 1.1). Average questionnaire scores did not differ &tvparticipants in the
experimental group and those of the control group (2-tateahZple t-testd? > 0.20 uncorrected).

Statistical Analyses

As dependent variables, we included valence and arousal difergnces, and learning success. The differences between thegpssatraining
valence and arousal ratings were calculated for each participhobaverted to z-scores. The learning success was indiated slope of the
learning curve, i.e., the linear regression of the logarithmic Blagésr across training sessions (as indicated by Pearso chstudy the
covariance patterns between dependent variables and to fex#tmine whether valence and arousal rating differences were similadiylated by
the learning success ,we performed a multivariate analysis of va(MASOVA) and a principal component analysis (PCA, for detaiée
SupplementariMaterials and MethodsTo further elucidate the effect of neurofeedback training orestitzgly experienced levels of valence and
arousal, we performed 2 separate analyses of variance (ANOVASs) wifiactior group (experimental vs. control) and the covariate leamnacgss
We estimated post hoc the difference between the learningssuafcthe experimental and control groups using a 2-tailednple t-test. Next, we
analyzed the difference in the resulting logarithmic Bayes factonsebatthe pre- and posttraining transfer runs, as well agbetthe participants
in the experimental group and those in the control groupg dstailed Wilcoxon rank sum tests and zistass. This approach was used, because a
Jarque-Bera test established that the logarithmic Bayes factors @ thes were not normally distributed. To ensure that prepasitraining
transfer run performance could be compared, we constructed partigieafic$ROIls that were applied to both of these runs. Thess R€xe based
on the disjunction of the ROIs that were used in thetkssing run of each participant. The transfer run time cowfte sodefined

ROIs were extracted, corrected for possible signal drifts, hégluéncy noise, and spikes, and were fed into the DCM analysis

Subsequently, pre- and posttraining valence and arousalsratgérg converted to z-scores and compared post hoc using Iptaited t-tests
(separately for the experimental and for the control group). ¥¢ecalculated post hoc Pearson correlations

between each participasipre- and posttraining valence and arousal rating differenegp(sttrainingpretraining) and learning success (i.e., the
slope of their learning curve).

To investigate the DCM model parameter differences betweenghan posttraining transfer runs, we applied 2-tailéeg@atests to the
corresponding sets of DCM model parameters from the pre- and posgraansfer run models (separately for the experimental arabitteol
group). To assess how the dynamic ROIs (based on thenextal general linear model [[IGLM]; for details, Sagpplementary Materiand
Methodg changed across neurofeedback training runs, we analyzednig#mesignal change, 2) the mean number of voxels within eactaRD3)
the cytoarchitectonic composition of the amygdala for each trainimgfor details, see

Supplementary Materials and Methhds


http://www.fil.ion.ucl/

We calculated Pearsg@rcorrelations between the participamormalized z-scores on the questionnaires and 1) thedldpelearning curve, and
2) the slope of the ROI activity changes across training Wesalso calculated Pearspigorrelations between the participdmtermalized z-scores
on the questionnaires and 1) the logarithmic Bayes facterelif€es, 2) the DCM parameter differences, and 3) the ROI activity difésrbetween
the pre- and the posttraining transfer runs. The correlatintia¢ ROIs was calculated separately for each of the 3 Rdscorrelation with the
DCM parameter differences was only reported for §icgmt differences (i.e., between the top-down and the botooornection between the
dmPFC and the right amygdala). These correlation analyses were donee§efmartite participants in the experimental group and fosetin the
control group. The statistical siditance was corrected for multiple comparisons using Bonferroni faméyevisr rate correction (FWE).

Finally, we performed a randogeffect whole-brain group-level analysis using a paired t-tespasing posttraining > pretraining transfer runs (for
details, seSupplementary Materials amdethods.

Results

The MANOVA, which assesses the effect of neurofeedback trainimjgintly on learning success (i.e., the slope of the legraimve) and the
differences in valence and arousal ratings, revealed distnieffect of training (factor groups fi= 6.93,P < 0.01; for details, seBupplementary
Materials and Method)sThe ANOVA on valence rating differences (globalF2,12= 14.47,P < 0.01) cofirmed a main effect of group (factor
group: k,12= 4.80,P = 0.05), with higher positive valence rating differencefigexperimental than in the control group. The ANOVA on aious
rating differences (globdit: F2,12= 6.03,P = 0.02) indicated no effect of training (factor group14= 0.86,P = 0.37). Interestingly, both valence and
arousal rating differences were positivelfiienced by learning success (learning success covariates:28.12,P < 0.01 and E12= 10.89,P<

0.01, respectively). The PCA further illustrates sigant differences between the participants in the experimentg) gra in the control group in
terms of learning success and concomitant changes in behavicngs (aeeSupplementary Fig.;Tor details, seSupplementariaterials and
Methods.

Learning to Increase Top-Down Control
Follow-up tests revealed that over the course of trainingicipants in the experimental group successfully learned to setba dominance of the
top-down model compared with the bottom-up model (E#g.experimental group: Pearsep =0.88,

P =0.02). Participants in the control group did not leain¢oease top-down control (FigA; control participants: Pearssmp = —0.20,

P =0.70). The participants in the experimental group showeidfisantly higher learning success than those in the control greupghe slopes of
the learning curves were sifjnantly steeper (Fi2B; 2-tailed 2-sample t-testy4= 2.40,P = 0.03). The learned ability to control top-down
connectivity was subsequently maintained in the absencauobieedback. In posttraining transfer runs without feedbackouvesl that participants
in the experimental group could control top-down connectaigpificantly better after than before neurofeedback training gEgl-

tailedWilcoxon rank sumtests and z-statistics; experimentaip,z = 1.94,P = 0.03). No such improvement was found in the control ppatints
who received sham neurofeedback (1-tailed Wilcoxon rank sumatests-statistics; control group= 0.40,P = 0.35). In the posttraining transfer
runs, dominance of the top-down model was sicgmtly higher for participants in the experimental group coetpaith the control participants
(Fig. 2C; 1-tailed Wilcoxon rank sum tests and z-statistiosftpaining transfer run comparisaw 1.71,P = 0.04), whereas pretraining transfer runs
did not reveal such a difference (1-tailed Wilcoxon rank sststand z-statistics; pretraining transfer run comparise®.06,P = 0.48). These data
show that once participants in the experimental group hatklé@ontrol over top-down connectivity, this learned skillld be employed even in
the absence of neurofeedback.

Behavioral Effects of Self-Regulation

Follow-up tests revealed that the difference between the egreal and the control group was driven by a $icguit increase in valence ratings
after compared with before neurofeedback training that was rétetegirned control over the top-down connectivity.

It was evident only for the participants in the experimegntalip (Fig.2D; experimental group; 1-tailed paired t-tegi~£2.04,P = 0.04), but not in
the control participants (Fi@D; control participants; 1-tailed paired t-teg),% 1.33,P = 0.12). The effect sizes for valence ratings were large and
medium, respectively (experimental group Cdbdrr 0.53; control group Coh&d = 0.42). When assuming equal group sizes between the
experimental and the control group, the increase in valence ratatgeached almost trend level in the control group doelsetoime sigricant,

and is thus not an effect of powert & ffiffiffi 9 p = ffiffiffi 6 p b x t6; to = 1.63, B= 0.07). Follow-up tests also indicated that arousal miitig) not
change with training (Fig2D; posttrainingpretraining; experimental group: 1-tailed paired t-test1t.12,P = 0.15; control group: 1-tailed paired t-
test, t5=0.05,P = 0.52), nor did wdind any other sigficant intra- and inter-group valence and arousal rating (P>.0.15)

Over and above group-spgcieffects, collapsing across both groups, there was dis@gnipositive correlation between the degree to which an
individual improved top-down control across training rure (the slope of the learning curve) and the increase inceaend arousal ratings that
they exhibited (Fig2E,F; Pearson correlatipp = 0.77,P< 0.01 anch = 0.68,P< 0.01, respectively). Thiinding accords with the notion that
regulation abilities mediated by the dmPFEhygdala network were directly related to the subjective emotjmnaiapls of the participants, but that
they were differentially boosted in those participants undegguoéurofeedback training.

Unlike for emotion ratings, there were no sfgriant differences in psychological questionnaire scores assessugand anxiety after compared
with before neurofeedback trainifi2rtailed paired t-tests, a@ft> 0.20 uncorrected; Emotion Regulation

Questionnaire [ERQ], Thought Control Ability Questionndir€AQ], White Bear Suppression Inventory [WBSI], State-Trait

Anxiety Inventory [STAI], Sensitivity to Punishment and Sevisy to Reward Questionnaire [SPRSQ], Beck Depression

Inventory [BDI]).

Mental Processes Underlying Self-Regulation

How did our participants learn to increase top-down connectifitie dmPFC over the amygdala? In common with establishedceracthe
neurofeedbackeld, we were not prescriptive about the strategy that partisigaould adopt during learnin§ulzer et al. 2013 In debrid¢ing, most
reported attempting a strategy related to imagining themselypessmally involved and experiencing the depicted pes#tocial situations (see
Supplementary Table) 1However, participants in the control grouseed similar strategies (although with somewhat greater visiabée
Supplementary Table) 1but they nevertheless failéal learn self-regulation. This indicates that in additmfeedbackguided search for an explicit
control strategy, other, momaplicit learning mechanisms attributable to operant conditgpbased on reinforcement by the feedback might be a
factor (Thorndike 1898Skinner 1953Bray et al. 2007Birbaumer et al. 20)3Furthermore, attentional factors alone cannot explaffindings,
because the participants in the experimegralip and the control participants showed statisticallystimdjuishable

attentional effort (2-tailed 2-sample t-tegts) = 0.32,P = 0.76; rating experimental group: 4.33 + 0.87, ratingrobgroup: 4.17 + 1.17), yet the
training success diverged substantially (). Likewise, motivational factors alone cannot explainfmdings, because feedback reward levels in
both experimental groups were identical, and participanteeicantrol groupwere unaware that they had received sham feedback.

Neural Substrates of the Learning Effect

To further explore the neural substrates of the learning effeavéhabserved, we compared the individual model parameters of therngtend
the posttraining transfer runs. This comparison revealed dis#giincrease in top-down modulation and a ficgmt decrease in bottom-up
processing between the dmPFC and the right amygdala that wededioly in the participants in the experimental group,amiy in the trained
model (i.e., the top-down model; Fig.Pearson correlation; dmPFEAMY rconnectivity: 2-tailed paired t-tesgg)t 2.38,P = 0.05 uncorrected;
AMY r—dmPFC connectivity: 2-tailed paired t-tegty=t2.49, P= 0.04 uncorrected).



An analysis of brain activations in the 3 ROIs that ciosep our emotion network models revealed that dmPFC activitifisantly increased, and
that right amygdala activity siditantly decreased in the participants in the experimental gnitiptraining (se€Supplementary Fig.A& Pearson

correlation; dmPFCp = 0.81,P = 0.05 uncorrected; AM¥: p = -0.81,P = 0.05 uncorrected).

Participants in the experimental group with higher levelsatésinxiety (STAI-S score) showed a smaller increase in dmPFC aetivith is in
line with previoudindings that showed decreased levels of prefrontal activitighly anxious individuals during negative emotion proceséhig.

4, seeSupplementaryable 2 Pearson correlatiop;= -0.94,P < 0.01 corrected for 8 STAI correlations; for further results relatéide

psychometric questionnaire scores, Sapplementary Fig. 8ndMaterial andViethodg (Bishop et al. 2004 In contrast, participants in the control
group showed sigficantly increased left amygdala activity with training (Se@plementary Fig.E, Pearson correlatiop;=

0.86,P = 0.03 uncorrected). Interestingly, for the experimental gritiepincreased percent signal change in the dmPFC was associated

with a decrease of its number of active voxels Ggeplementary Fig.A), whereas for all other areas in both groups,

the similar trend for percent signal change and the numlzetioé voxels was observed (seepplementary Figs 2 andl Zhe increased left
amygdala activity in the control participants is aldterted in an increasing number of voxels of particularly the lasad nuclei that the control
participants recruited with training (sepplementary Fig.;3earson correlatiop;= 0.90,P= 0.02 uncorrected; our ROIs werefided
dynamically to allow for shaping of brain activitgKinner 1953 for details, seSupplementary Fig. &andMaterials and Methodls

These differences between the experimental group and the agnotupl were also evident when directly contrasting whole baativation of the
pre- and posttraining transfer runs, which revealed afgignt increase indmPFC activity in the experimental group arghficant increase in left
amygdala activity in the control group (seepplementary Fig.)7

Discussion

Our results establish for thiest time that participants can employ connectivity-basedofeedback to learn to increase topdown connectivity from
the dmPFC onto the amygdala in a self-organized, endogenousféSigi?A). Control participants who received sham feedback did not sesim
control, indicating that the learning effects observed inxpermental group cannot be achieved with unrelated feedbarkf5B). The sample
size in our study was rather small and, as a consequenbehtina@oral effects were somewnhat statistically weak. Nonetheledsctithat
increasing the level of top-down connectivity was associatédincreased valence ratings (F&p,E) might indicate the potential for enhancing
emotion regulation through connectivity-based neurofeedbackigain
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Figure 3. Model parameter differences. (A) Comparing pre- 2nd posttraining transfer runs, the connectivity between the dmPFC and the right amygdsla changed
significantly in the experimental group. Spedfically, top-down connections from the dmPFC onto the amygdala were increased, and bottom-up connections from the
right amygdsla onto the dmPFC were decreased. These changes were specific to the trained top-down model (ie., they were not found in the bottom-up model), and
(B} specific to the participants in the experimental group (ie., they were not found in the control participants). Asterisks and bold lines denote statistical significance;
P-values are indicated in brackets.
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Our new connectivity-based neurofeedback approach goes beyond prestimafeedback approaches that were limited to training locéliagd
activity within a ROI Bulzer et al. 2013 Although connectivity-based neurofeedback trainingreanlt in accompanying changes in the level of
activity in ROIs (as was found in the present study Ssemlementary Figs @d 4 for details, seSupplementary Materials and Methpds

we have previously shown that it is a new and distinct feedinaelsure that fiects connectivity between areas, and that is qualitativedrelift
from activity-based feedback (i.e., activity- based feedback signdlsonnectivity-based feedback signals can be uncorrel&imeH et al. 2013
Connectivity-based neurofeedback thus provides a novel wegniavasively and nonpharmacologically change interactiotsnaitterconnected
functional brain networks, to provide brain-based tragjrfior causing spefit behavioral changes.

Learning to increase top-down control of the dmPFC over the anaygadal associated with decreased bottom-up processing béheenPFC
and the right amygdala (FigA). It was also associated with increased activity indiin€FC and decreased activity in the right amygdala (see
Supplementary Fig.A), which is particularly involved in inducing negative efons (Lanteaume et al. 2007Such training might thus be used to
directly target emotion regulation disorders such as depressioanaiety, which are often characterized by ifisight topdown

inhibition, excess bottom-up processing, hyperactivithhemamygdala, and hypoactivity in the dmPBG(er et al2011). It is particularly
important for clinical applications that after training, self-ragjoh of effective connectivity between the dmPFC and the ang/gdalbe applied
even without neurofeedback, as demonstrated by our transfer ignaQ)-(Sulzer et al. 2013

Our connectivity-based neurofeedback approach is not linatedhancing positive emotions through training of tepdemotion regulation
connectivity, which may help counteract the frequent anhedonmonent of emotion regulation disorders. It might bisapplied to improve
emotion regulation capabilities by decreasing negative ensadisspciated with these disorders. In principle, any furattmain network might be
targeted with this new method to study causal relationstithsoninvasive neuroimaging methods, or to normalize dgsformal brain networks in
psychiatric and neurological disorde8tdeckel et al. 2034In the future, neurofeedback training of functional braitworks may provide a
powerful and highly spefic mean to promote plasticity and learning in various comdifiby modulating patterns of interactions between brain
areas—rather than the level of activity within one brain area cadytraditionally implemented by most neuromodulation tectasiguch as single-
ROI neurofeedback, transcranial magnetic stimulation (TMS), or deepstirairiation (DBS). This in turn opens new perspectives fatrtrent of
neuropsychiatric disorders associated with emotion regulgilome, including depression and anxiety, possiblgambination with other
procedures based on psychotherapy and medication.
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