Static/Dynamic Filtering for Mesh Geometry:
Supplementary Material

1 Information for Test Data

Below are the vertex and face counts for the mesh models used in the paper:

Model Sphere Cube Duck Gargoyle Armadillo Knot
Figure No. 7 8 12 1 14 9
#Vertices 30006 24578 34059 50002 21582 50000
#Faces 60008 49152 68114 100000 43160 100000
Model Merlion | Chinese Lion | Sunflower | Giraffe | Lee Perry Smith | Welsh Dragon
Figure No. 10 13 16 6 18 15
#Vertices | 283235 50003 9859 14822 30549 1105352
#Faces 566465 100000 15156 29628 54629 2210673
Model Bunny Fandisk Twelve
Figure No. 19 19 19
#Vertices 34817 6475 4610
#Faces 69630 12946 9216

Table A: Information on the testing mesh normals for SD normal filter.

The Giraffe texture image has 1024 x 1024 pixels. The Sunflower texture image has 256 x 256 pixels.

2 Comparison Between MM Algorithm and Fixed-Point Iteration

We compared the computational time between our fixed-point iteration solver and the MM algorithm,
for optimizing the target function Esp. The comparison is preformed using the following test models
and parameter settings:

Model A n I v
Armadillo 5 150, | 25] 027
Cube 1.10* | 5I. [0.8] 0.2
Duck 10 2. | 25| 03
Knot 1-10° | 4l. [251027
Gargoyle 5 3. | 10 | 0.42
Merlion 10 | 2.51. | 20 | 0.26

Table B: Test models and parameters for the computational time comparison between the MM algorithm
and our fixed-point iteration solver.

For each test model, we ran the MM algorithm for 5 iterations, and our solver for 100 iterations. The
MM algorithm were run twice, using Cholesky factorization and Conjugate Gradient to solve the linear
system, respectively. All examples are run on a PC with 16GB memory and a quad-core 3.6GHz CPU.
Whenever possible, the MM algorithm implementation utilizes OpenMP parallelization. The following
table compares the timing and the target energy values for the resulting models:

Model #Faces Method Initial Energy | Final Energy | Time(s)

MM(CG) 93672.6 19679.8 7.55

Armadillo | 43K | MM(Cholesky) 93672.6 19679.8 11.08

Ours 93672.6 22381.8 1.67

Cube MM(CG) 6.30 - 107 1.20- 107 74.06
49K [MM(Cholesky) | 6.30-107 1.20-107 | 2529.27

Ours 6.30 - 107 1.20- 107 18.32

Duck MM(CG) 76113.7 16411.5 27.80
68K | MM(Cholesky) 76113.7 16411.5 188.61

Ours 76113.7 20946.3 4.44

Knot MM(CG) 6.69 - 1010 99999.7 318.85
100K | MM(Cholesky) 6.69 - 1010 99999.7 2108.65

Ours 6.69 - 10™° 1.03 - 10™ 43.87

Gargoyle MM(CG) 239660 37362 40.43
100K | MM(Cholesky) 239660 37362 283.92

Ours 239660 37370.4 10.38

Merlion MM(CG) 1.34.10° 166076 571.43

566K | MM(Cholesky) — - —
Ours 1.34-10° 242718 62.83

Table C: Computational time (in seconds) for our fixed-point iteration solver, and the MM algorithm
(using Cholesky factorization and Conjugate Gradient as linear system solver, respectively). The timing
for Merlion using MM-Cholesky is not available, because the solver runs out of memory.

3 Parameter Settings

3.1 Scale-aware filtering

The following table provides the parameter settings for the scale-aware normal filtering examples.

Parameter Cube Sphere
Filtered-1 | Filtered-2 | Filtered-3 || Filtered-1 | Filtered-2
A 500 100 100 100 100
n 51, 61, 351, 121, 37,
I 3 20 20 0.8 1.5
v 2 0.35 0.09 0.3 0.17

Table D: Parameters for scale-aware mesh normal filtering.

3.2 Geometry feature enhancement

The following table provides parameters for the geometry feature enhancement results.

Parameter Lee Welsh Dragon Gargoyle Armadillo
MOTMYTM?2] MO | MU M2 MO | MY | M? MY T MY T M?
A 1 1 | 500 10 10 10 5 1.5 0.5 2 1.5 1
n 51, | 3l. | 51. || 751, | 5l. | 250, | 3l. | 251. | 251, || 251, | 1.5, | 11,
" 1.5 | 15 3 20 20 20 10 10 10 1.5 1.5 1.5
v 05 | 05 2 035 (035|035 | 042 | 0.3 0.3 045 | 0.33 | 0.23

Table E: Parameters for geometry feature enhancement.

3.3 Comparison with ¢, optimization and RGNF

Below are the parameters the comparison between our method and ¢y optimization and RGNF.

Method | Parameter | Cube Knot | Merlion (Bottom) | Merlion (Top)
A 5 50 5 5
g 0.1 1 0.1 0.1
' Bo 1103 [11073 1103 1103
0 Lot 05 05 05 05
" 1.414 1.414 1.414 1414
Bmaz 1.10% 1.10% 5-103 200
Os 8 5 5 5
RGNF oy 0.1 0.35 0.6 0.1
Niter 5 5 5 5
A 1106 10 100 1-10%
n 51, 21, 21, 3l
Ours 7 25 25 2 20
v 0.4 0.8 0.23 0.12

Table F: Parameters for the comparison between SD filtering, ¢, optimization, and RGNF.

3.4 Texture image filtering

The following tables parameter settings for texture image filtering results.

Parameter Sunflower Giraffe
70 Tt 77 Filtered-1 | Filtered-2
A 100 100 100 10 10
n 1i. | 0.28[. | 0.20l. 11, 11,
) 0.2 0.2 0.2 0.2 0.2
v 0.15 | 0.15 0.15 0.1 0.08

Table G: Parameters for texture image filtering.

3.5 Mesh denoising

Below are the parameters for mesh denoising examples.

Method | Parameter | Bunny Fandisk | Twelve
r 2.0(2.7x) | 2.0(2.6x) | 2.0(2.6x)
GMNF Oy 0.55 0.30 0.27
Kiter 4 50 75
Viter 4 20 20
A 100 100 250
n 0.4, 0.7, 1.50,
Ours I 20 20 60
v 0.3 0.27 0.28
Weloseness 2.5 0.6 2
kiter 20 50 20
Viter 5 10 100

Table H: Parameters for mesh denoising.

3.6 Explanation of parameters
e /o [1] (Table F):

- A: weight for the L term in the target function.

— Bo: initial weight for the differential term.

p: it is the speed at increasing .
— Bmast max weight for the differential term.
- oy: initial weight for the regular term.

— [o: it is the speed at decreasing .
e RGNF [3] (Table F):

- 04 itis related to the scale size of geometry features.
— 0,: it is related to the desired smoothness of the final results.

— Niter: number of iterations for updating normals.
e GMNF [4] (Table H):

— r: radius for the geometrical neighborhood, also shown as the ratio with respect to the av-
erage distance between neighboring face centroids; not applicable if a topological neighbor-
hood is used.

- oy: variance of the range kernel.
— kiter: Number of iterations for updating normals.

— ujer:NUMber of iterations for a vertex update.

e Ours (Tables B, D, E, F, G, H) :

A: it controls the scale of the preserved geometry features.

7: it controls the neighborhood size.

u: it controls the desired smoothness.

v: it controls the desired filter scale.
— kiter: Number of iterations for updating vertex position from filtered normals.

— Uiter: NUmMber of times for performing SD normal filter.

4 Convergence of Fixed-Point Iteration

In this section, we prove that the fixed-point iteration without normalization (Equation (13) in the pa-
per) is guaranteed to convergence to a local minimum of the target function Esp (Equation (4) in the
paper). Note that each fixed-point iteration is a single step of Jacobi iteration for the linear system that
minimizes the following majorization function

3
PNy =Y ((N,- ~N)™D(N; — N;) +)\NZ-TM’“NZ-) :
i=1

where N; (i = 1,2, 3) are vectors that collect the -, y-, and z-coordinates of the face normal variables,
and N; are their values on the input mesh. The matrix N* is determined from the current variable
values N*, and the matrix D + AMF is symmetric positive and diagonally dominant. We will prove the
following

Proposition 1. The fixed-point iteration produces new variable values N*+1 for which F*(IN*+1) < FF(N¥),
unless N¥ is the minimum of F* in which case N¥+1 = N*.

Note that F¥(N) > Esp(N) for all N, and F*(N*¥) = Esp(NF). Moreover, if N* is a minimum of
F¥, then it is also a local minimum of Esp [2]. Therefore, we have Esp(IN¥) < F¥(NF) < FF(NF) =
FEsp(Nyg), unless Ny, is local minimum of Esp in which case N**! = N*, In other words, the fixed-point
iteration is guaranteed to decrease the target function Isp until it converges to a local minimum of Fgp.

We prove Proposition 1 by showing that a single step of the Jacobi iteration

Nk-‘rl — Q—l(DN _ RNk)

is guaranteed to decrease F* unless N¥ is the minimum. Here Q and R are the diagonal and off-
diagonal parts of the matrix D + AMP respectively, such that D + AM* = Q + R. Our proof is inspired
by a post from StackExchange user Hui Zhang !. First, we denote the minimum of F* by

N* = (D + AM*)"'DN,

and let
Pk _ Nk‘—i—l _ Nk Ek - N* — Nk.

Then we have

Q (D + \MF)EF = Q71D + AM*)(N* — N¥) = Q (DN — (D + AM*)N¥)
= Q (DN — (Q+R)NF) = Q /(DN — RN¥) - Q 'QN*
= N _NF = P*.

Therefore, when N¥ is the minimum of F’*, we have E¥ = 0 and as a result N*t! — N* = 0. If N is not
the minimum of ¥, then the above formula indicates that P* # 0 we denote K = D + AMF, then

Fk (Nk+1) _ Fk (Nk)

Co(NEF - NBTDN, 4 (NS - NTK(NSF - N8 4 2N - NG TN

[
_Mw

s
Il
-

3
—2(P})TKN; + (P})"KP} + 2(PH)"KNF = > "(P})TKP} — 2(P})"KE}
1 =1
3
(PHTKPF —2(P})"QP = > (P} (K - 2Q)P},
1 =1

I
NE

-
Il

[
_Mw

(2

where EF, P¥ denotes the columns of E¥, P¥, respectively. Note that the off-diagonal elements of K
are non-negative, while the diagonal elements of K are all positive, and K is diagonally dominant.
Therefore, with Q being the diagonal part of K, matrix K — 2Q is negative definite. And with P* £ 0,
we have 37 | (P¥)T(K — 2Q)P¥ < 0, meaning that F¥(N*+1) < FF(N¥).

References

[1] Lei He and Scott Schaefer. Mesh denoising via Lo minimization. ACM Trans. Graph., 32(4):64:1-64:8,
2013.

[2] Kenneth Lange. MM Optimization Algorithms. SIAM, 2016.

[3] Peng-Shuai Wang, Xiao-Ming Fu, Yang Liu, Xin Tong, Shi-Lin Liu, and Baining Guo. Rolling guid-
ance normal filter for geometric processing. ACM Trans. Graph., 34(6):173, 2015.

[4] Wangyu Zhang, Bailin Deng, Juyong Zhang, Sofien Bouaziz, and Ligang Liu. Guided mesh normal
filtering. Comput. Graph. Forum, 34(7):23-34, 2015.

IThttps://scicomp.stackexchange.com/questions/1478/jacobi-iteration-to-reduce-the-quadratic-function

