Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Penalty-free Nitsche method for interface problems

Boiveau, Thomas, Burman, Erik and Claus, Susanne 2018. Penalty-free Nitsche method for interface problems. Published in: Bordas, Stephane P. A., Burman, Erik, Larson, Mats G. and Olshanskii, Maxim A. eds. Geometrically Unfitted Finite Element Methods and Applications. Lecture Notes in Computational Science and Engineering New York: New York; Springer; 1999, pp. 183-210. 10.1007/978-3-319-71431-8_6

Full text not available from this repository.

Abstract

Nitsche’s method is a penalty-based method to weakly enforce boundary conditions in the finite element method. In this paper, we present a penalty free version of Nitsche’s method to impose interface coupling in the framework of unfitted domain decomposition. Unfitted domain decomposition is understood in the sense that the interface between the domains can cross elements of the mesh arbitrarily. The pure diffusion problem with discontinuous material parameters is considered for the theoretical study, we show the convergence of the L2 and H1-error for high contrast in the diffusivities. Then, we give the corresponding numerical results for the pure diffusion problem, additionally we consider the Stokes problem. We compare the performance of the penalty free method with the more classical symmetric and nonsymmetric Nitsche’s methods for different cases, including for the error generated in the interface fluxes.

Item Type: Conference or Workshop Item (Paper)
Date Type: Published Online
Status: Published
Schools: Engineering
Publisher: New York; Springer; 1999
ISBN: 9783319714301
ISSN: 1439-7358
Last Modified: 18 May 2018 14:56
URI: http://orca.cf.ac.uk/id/eprint/110450

Citation Data

Cited 1 time in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item