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ABSTRACT:Dispersion-corrected periodic DFT calculations have been
applied to elucidate the Langmidinshelwood (dissociative) and an Eley

result clearly suggests that via surface defects ammonia synthesis actinty C4s A
be enhanced at milder conditions on one of the most active catalysts ™ M;°°‘{M
ammonia synthesis.

nitrogen, in order to form ammonia at considerably milder conditions\This \E?\j ‘‘‘‘ H Z
Mo

INTRODUCTION Only a few previous DFT studies have attempted to model the
The development of alternative nitrog@tion processes kineFics of ammor)ia synthesis on this cata]yst, t?ased on I@near—
could have a profound economic and environmental impact,sﬁél'ng relaponshlps, that cc2>lrrelated the dlssomatlon_ barrier to
more that 50% of ammonia for soil fertilizers is produced Bje adsorption energy of N where an LH mechanism
man. The other 50% is produced naturally by nitrogienase Was assumedHowever, a detailed study of the elementary
nitrogen xationflants where the reductionad¢urs by the ~Mechanistic steps and the role of surface defects in particular is
FeMo-cofactdr.* Currently ammonia synthesis industrially iscurrently lacking. In two recent DFT studies we haveedenti
achieved mostly via the classical H8wsch (H-B) possible sites for the adsorption and activation of the reactants
process,’ with a FeK,O AlLO; catalyst, which operates of the ammonia synthesis reaction on a mod®logo
under high temperatures (>4@) and pressures (15200 surface with heterogeneity due to surface nitrogen vatancies.
atm). Some industrial plants have changed to the Kello§gch vacancies are present in large concentrations even at
advanced ammonia process that uses a graphite-suppacatetlient temperatures (i.e.*1@m?) and can eciently
alkali/alkaline-earth promoted Ru catalyst, which operatesastivate B> Our earlier work found that there are two
milder conditions but is expenSiResearchers are now activation sites for,Nthe rst is a surface cavity, whesésN
seeking catalytic materials that could potentially produggundside-oa Cq cluster at the #8Nycko site, where Ns
ammonia at low temperaturgs=(200 300°C) in order to  activated 21% (as measured by the percentage change in the
save energy. The generally accepted mechanism for ammenify pond length); the second, a somewhat weaker activation
synthesis on the iron K-promoted Fe catalyst is a Langmuigjie (1196) that was found to be located at surface 3f-nitrogen
Hinshelwood (L-H) mechanism which is dissoctaiven vacancies for which we have suggested that nitrogen vacancies
]t.)an participate in the elementary reaction steps toward the
{8rmation of ammorfiaindeed, recent DFT studies show that
eN-vacancies can partiogpah the mechanism for the
dectrochemical reduction of ammonia on Zr, Nb, Cr, and V
mononitride$?®> and in the two-step solar-energy driven

surfaces, via density functional theory (DFT) calculations
order to model the Rugraphite catalyst> The rate-
determining step (RDS) was found to be the activation st
for N,,">due to the high bond dissociation enthalpy (4%

kJ mol') compared to k(436 kJ mol).** An associative

mechanism has recently been found on Ru that proceéﬂ?mon'a synthesis on metal-mtﬁ?fésAdd|t|onaI_Iy, In a .
through a N,H intermediat&® recent DFT study, the electrochemical synthesis of ammonia

Co;MoxN is known to be a more active catalyst than the on&@s Studied for the Mawan Krevelen mechanism on group
currently used by the industry, especially when doped whh VIl transition metal nitrides and aNwas found to be
cesium?® ?° Although the high activity of this and related
materials has been established, there is a need to understarktitsived: December 15, 2017
origin and to elucidate the mechanism of ammonia synthesisblished: January 8, 2018
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suitable, whereas the other metal nitrides decompose to tregitmonia synthesis for two mechanistic pathways for ammonia

pure metal

RESULTS AND DISCUSSION
In this communication we have considered a Langmuidetail elsewhet& Activation barriers were obtained by the

Hinshelwood (L-H; se&chemesdnd3) and an EleyRideal/
Mars van Krevelen (E-R/MvK; seé&chemes 2and 4)
mechanism for ammonia synthesis ogM@HI-(111)

surfaces.

Scheme 1. Elementary Reaction Steps for the L-H

(Dissociative) Mechanism

+N2,g

* — N2,ads

N2,ads — 2Nads

2N

2N

ads

NHads + Hads + Nads —_— NH2,ads + Nads
NHZ,ads +N

NH2,ads + Nads + 2Hads — NHS,ads + Nads + Hads

NH3,ads + Nads +

+2H

+H
ads —

NH, 4+ H

ads ads

ads —

+
ads —gp

-NH
3,
Hads —i Nads + Hads

Nags T Hags — NHygg

NH,

NHads +2Hads _>NH2,ads + Hads

+H,,

ads 2 NHads +2H

NHZ,ads + Hygs — NH3,ads

2e 2N ads T 2Hags

+N

H
e NHZ,ads + Nads + 2Hacls

ads

M

Scheme 2. Elementary Reaction Steps for the E-R/MvK

(Associative) Mechanism
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synthesis on the (111)-surfaces g¥i@¢N in the presence of
surface defects, such as nitrogen vacancies and intrinsic surface
cavities. The comé)utational methodology has been described in

nudged elastic band (NEB) method in which the barrier was
modeled rst by 10 images to acquire the details of the
potential energy surface. Once the various intermediates were
found and fully optimized, the transition states were located by
a separate NEB run of 3 images. Remarkaby that there

are two possible mechanisms for ammonia synthesst;ishe

the commonly known L-H mechafiismown inScheme ;3

Scheme 3. L-H (Dissociative) Mechanism for Ammonia
Synthesis on GiMo;N

Ml A

{ QN' l

the second resembles an HRigleal/Marsvan Krevelen
(associative) mechanism in which surface lattice nitrogen
participates as showrbitheme.4The relative energy diagram
of the two reactions is showrigure 1

L-H (Dissociative) Ammonia Synthesis MechanisnN,
adsorbs generally less favorably than hydrogeaMmNGo
(111) surfaces. However, at the surface cavity, the adsorption of
both N, and H is slightly endothermic: 40 and 21 kJ/mol,
respectively (other less active adsorption sites have exothermic
adsorption energies), indicating that some pressure maybe
required. A detailed study of the various adsorption sites is
given in reR3 which showed that,ldnd N can essentially
coadsorb at the activation sites; the activation barriers of the L-
H mechanism has hydrogenation barriers higher than the
mechanism modeled on Ru(0001), which indicates that at
higher-T there maybe additional reaction mechanisms occur-

In particular, we have applied dispersion-corrected (D&ng on nitrogen free @do;N surfaces. Therefore, in the L-H
DFT in order to calculate the potential energy diagram fenodeled here the mechanism for; Nyththesis follows the
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Scheme 4. E-R/IMVK (Associative) Mechanism for Ammoniabridged-N forming ar’-azane intermediate (>NH), which,
Synthesis on GMosN due to steric congestion, causes the adjacent bridge-N to move
to a hollow position at Maites;E: H reacts with >NH
forming >NH at a bridge position formed betweep LWo;
F: another hydrogen chemisorbs dissociatively glasier;
G: the 3f-bound-N to the Mdollow moves due to surface
di usion to the adjacent Cldo, hollow, while displacing NH
chemisorbed on the gdusterH ,|: 3f-bound-N at GgyMo,
hollow moves to adjacent bridge position gtgaoting with
H and forming an®-azane intermediateanother hydrogen
dissociates on the gxuster forming twoH specieX: H
reacts with >-azane intermediate (>NH) forming*azane
intermediate (>N} at the adjacent GQ Mo site;L: H
reacts with >Nkforming surface-adsorbed ammorniiig)
on the CgclustersM: ammonia desorbs from the €lasters
in a relatively high barrier process; the surface cavity is free and
the catalytic cycle resumes, starting fronA.step

E-R/MvK (Associative) Ammonia Synthesis Mecha-
nism. In the E-R/MvK mechanism, ammonia is synthesized at
the 3f-nitrogen vacancy sites on theNMmmework. The
active site is shown in the boxSoheme 4nd has some
similarities with FeMo-cofactor in nitrogendsesiitrogen
adsorbs in an end-on cguration at a 3-fold N-vacancy on the
MosN framework with 11% activatiBn;gas phase hydrogen
reacts directly in an Eldgideal mechanism with surface
activated nitrogen forming ti@ns hydrazine intermediate
(>NNH,, similar to Mo NNH,?° and Fe NNH,*%, in a low
barrier process; : hydrogen adsorbs molecularly onto the
MosN framework adjacent to the nitrogen vacancy site, while
transhydrazine isomerizes into a conformation that can react
with H,; D : H, reacts with the hydrazine-like intermediate
forming diazane andH; E : Diazane readily decomposes due
routeA: gas phase nitrogen adsorbs side-on to the catalyst dadts positive charge into a tertiary amine &hd~: H
is activated by 21% by streching of tHé bbnd;B: activated  reacts with the tertiary amine forming an azane bound4o a Mo
N,* undergoes dissociation through a relatively low activatibollow;G : hydrogen adsorbs molecularly aiNViamework
barrier that results in two bridged-N intermedi@test, adjacent to where previously the nitrogen vacancy site was
adsorbs dissociatively on g €aster, forming two atomic H locatedH : the precursor-mediated adsorbed statereééts
speciesD: H chemisorbed on the g£duster reacts with a  with azane forming primary amine, through a high barrier step;
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Figure 1 Relative energy diagram of L-H (red) and E-R/MvK (black) mechanism for ammonia syntiMsiplauaces. Letter labels given
in Schemes 4
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