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How random is the random forest ? Random forest 
algorithm on the service of structural imaging 
biomarkers for Alzheimer’s disease: from Alzheimer’s 
disease neuroimaging initiative (ADNI) database

Introduction
Machine learning techniques, including feature selection and 
classification, have been one of the most important develop-
ment of computational science over the last years to satisfy the 
daily demands of clinicians for an accurate and automatic di-
agnosis and prognosis of various brain diseases and disorders 
(van Ginneken et al., 2011). Nowadays, the mental workload 
of radiologists has increased while the number of radiologists 
on National Health Systems (NHS) worldwide is still limited 
(Reiman, 2017). Simultaneously, the health care cost of imag-
ing is rising very fast. We can clearly state that the inconsisten-
cy of the interpretation of the results among radiologists and 
the better performance of algorithms demand new approaches 
to handle neuroimaging data. Computer-aided diagnosis 
(CAD) may be the solution to speed up the diagnosis, increase 
the accuracy of the diagnosis, reduce the total cost of NHS and 
further improve any quantitative measurement related to the 
fast and accurate diagnosis and prognosis.

Alzheimer’s disease (AD) is a neurodegenerative disorder 
that mostly affects elderly individuals (Berchtold and Cot-

man, 1998). AD is the most common type of dementia and as 
the elderly populations grows, the number of AD patients will 
also rise. The prevalence of AD in Europe was 3.31% in men 
and 7.13% in women while the incidence was 7.02% per 1000 
person-years in men and 13.25% per person-years in women 
(Niu et al., 2017). In China, the burden of dementia seems 
to be increasing faster than in other countries and under the 
rules of international health community (Chan et al., 2013).

The characteristic features of AD is the decline of cog-
nitive function, progressive loss of memory, language and 
also reasoning (Collie and Maruff, 2000). Mild cognitive 
impairment (MCI) is an intermediate stage between healthy 
aging and AD where the individual can handle its daily 
activities without any interference. The cognitive status of 
MCI remains constant for many years, while the incidence 
of progression from MCI to AD has been evaluated between 
10–15% per year (Palmqvist et al., 2012). Till now, there is 
no acceptable cure for AD but only several treatments that 
attempt to delay the decay of the progression of the disease. 
For that reason, it is extremely significant to define biomark-
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ers that can detect accurately the MCI individuals that are at 
risk to convert to AD.

The diagnosis of AD over control healthy aging is based 
on a large set of potential features (variables and factors) like 
the genetic information, neuropsychological tests, demo-
graphics, brain imaging data and variables derived from ce-
rebrospinal fluid (CSF). Especially for the risk of conversion 
from MCI to AD, the change of every individual variable 
and also the alteration of a combination of a subset of those 
variables could weight their importance over that risk. Espe-
cially in neuroimaging, a large repertoire of technologies like 
magnetic resonance imaging (MRI), diffusion MRI (dMRI), 
functional MRI (fMRI), diffusion tensor imaging (DTI) and 
positron emission tomography (PET) have been applied 
successfully for the study of MCI and AD (Acosta-Cabronero 
and Nestor, 2014). The choice of each neuroimaging modal-
ity could be altered, based on the severity of the disease and 
their sensitivity to detect alterations of the brain, both struc-
turally and functionally. For example, fMRI and PET can 
detect metabolic abnormalities while DTI could investigate 
microstructural changes of the white matter and its proper-
ties (e.g., myelination) while d-MRI can give us a clear view 
of the myelination assessment. 

The high dimensionality of all these features that are tak-
en into consideration for the diagnosis of AD and for the 
progression from MCI to AD and also their complicated in-
teractions makes the whole effort to select the best subset of 
them very difficult. CAD, in general, represents an automatic 
software system that supports the clinicians to manipulate in 
a fast and accurate way the large number of case studies. At 
first level, this CAD system should be taught by the clinicians 
in a supervised mode. Pattern analysis and machine intelli-
gence (PAMI) algorithms have been proven valuable for the 
classification of AD subjects versus healthy controls (HC) and 
also for the discrimination of stable MCI (sMCI) and pro-
gressive MCI (pMCI) that finally converted to AD (Trzepacz 
et al., 2014). Figure 1 illustrates the steps of the proposed 
CAD system for AD using MRI brain images. T1-MRI images 
were collected by the neuroimaging labs contributed to AD 
Neuroimaging Initiative (ADNI)’s database. MRI images can 
be segmented according to anatomically oriented region of 
interests (ROIs) using an anatomical template. Then, mor-
phological features can be extracted using various free aca-
demic softwares. Machine learning techniques can be applied 
afterward starting with feature selection and a classification 
approach on a training dataset with known labels (e.g., 0 for 
healthy control, 1 for AD). The performance can be evaluated 
by a radiologist/neurologist in a new sample.

The majority of machine learning neuroimaging studies 
relied on the support vector machine (SVM), linear discrim-
inant analysis (LDA), or naïve Bayes algorithms. In the last 
few years, ensemble algorithms proved to be an alternative 
pathway to single classifiers, based on a better performance 
than the latter, especially in the case where multi-modality 
features-variables were combined. Among all ensembles ap-
proaches, random forest (RF) (Breiman, 2001) produced the 
best classification accuracies in many scientific fields and in 
many neurological diseases apart from AD and only during 
the last few years researchers started paying attention to it 
(Sarica et al., 2017; Dimitriadis et al., 2018). In particular, 

RF demonstrated its advantage over other methodologies 
regarding their potentiality to manipulate non-linear vari-
ables, while it is a robust method to noise and can be easily 
tuned and processed in parallel (Caruana and Niculescu-Mi-
zil, 2006). Additionally, RF introduces an initial feature 
selection step that can reduce the variable space by ranking 
the value of each feature.

Section 2 discusses in detail classification of neuroimaging 
data tailored to AD while section 3 is devoted generally to 
the latest review of Machine Learning Techniques in Neu-
roimaging Data. In section 4, we described all the necessary 
information for the International Challenge for Automated 
Prediction of MCI from MRI Data and also our approach that 
gave us the 1st position. Finally, section 5 describes briefly the 
methodology reported from the best teams giving an expla-
nation of why our approach gave the highest accuracy. Future 
directions of machine learning in neuroimaging for the de-
signing of reliable biomarkers is given in the discussion part.

A Review of RF Algorithm for the 
Classification of Neuroimaging Data in AD
Focusing on neuroimaging single or multi-modal studies 
tailored to AD that adapted RF in their analysis, we found 
heterogeneous analytic strategies. Particularly, for the classes 
diagnosis (healthy controls (HC), stable or progressive MCI, 
AD), two studies investigated the binary classification be-
tween AD patients and HC (Tripoliti et al., 2007; Lebedev et 
al., 2014), four studies focused on AD, HC and MCI (Cabral 
et al., 2013; Sivapriya et al., 2015; Maggipinto et al., 2017;  
Son et al., 2017), two studies explored the classification on 
AD, HC, stable MCI (sMCI), and progressive MCI (pMCI, 
converted to AD) (Gray et al., 2013; Moradi et al., 2015), two 
had only sMCI and pMCI (Wang et al., 2016; Ardekani et 
al., 2017), one had HC and MCI (Lebedeva et al., 2017) and 
one last one had AD, HC, and Lewy-body dementia (LBD) 
patients (Oppedal et al., 2015). 

Two studies integrated FDG-PET and DTI measurements 
in their analysis (Cabral et al., 2013; Maggipinto et al., 2017) 
while others investigated structural MRI as a single neuro-
imaging modality (Lebedev et al., 2014; Moradi et al., 2015; 
Ardekani et al., 2017; Lebedeva et al., 2017) or in combi-
nation with features from other modalities like FDG-PET 
(positron emission tomography) (Gray et al., 2013; Sivapriya 
et al., 2015), fMRI (Tripoliti et al., 2007; Son et al., 2017), 
florbetapir-PET (Wang et al., 2016) and FLAIR (fluid-atten-
uated inversion-recovery) (Oppedal et al., 2015) .

Based on the aforementioned studies, two of them didn’t 
specify the number of trees in the RF model (Moradi et al., 
2015; Son et al., 2017) while in the rest eight cased, they 
reported a feature selection strategy (Tripoliti et al., 2007; 
Cabral et al., 2013; Lebedev et al., 2014; Moradi et al., 2015; 
Sivapriya et al., 2015; Ardekani et al., 2017; Lebedeva et al., 
2017; Maggipinto et al., 2017). 

Only a small portion of neuroimaging studies applied a 
multi-class classification approach. Cabral et al. (2013) suc-
ceeded an accuracy of 64.63% for the discrimination of AD 
vs. MCI vs. HC based on FDG-PET. Oppedal et al. (2015) 
reported an accuracy of 85% for HC vs. AD vs. LBD using 
texture features extracted from the T1 images in the white 
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matter lesions masks. Sivapriya et al. (2015) showed an ac-
curacy of 96.3% for the ternary problem AD vs. MCI vs. HC 
using MRI and FDG-PET. Finally, Son et al. (2017)  report-
ed a low accuracy (53.33%) for the problem of separating 
AD vs. MCI vs. HC using resting-state fMRI and 3T-MRI 
using RF classifier.

Of great interest is the study of Lebedev et al. (2014) 
where they reported robust classification accuracies between 
ADNI and ADDNEUROMED Consortium based on mor-
phological features extracted from 1.5T MRI. Importantly, 
they succeeded to quantify the sensitivity of morphological 
features to predict the conversion of MCI to AD focusing 
on follow-up studies. Figure 2 illustrates how RF works in 
a classification problem. RF are an ensemble of k untrained 
decision trees which are trees with only a root node with 
M bootstrap samples. RF are trained using a variant of the 
random subspace method, which is a method of training 
multiple RF models by randomly samples the initial feature 
space. The main reason of this ensemble learning method is 
to reduce the correlation between the estimators by training 
different RF with random samples of features.
The procedure for training a RF is as follows:
1. At the current node, randomly select p features from 
available features D. The number of features p is usually 
much smaller than the total number of features D.
2. Compute the best split point for tree k using the specified 
splitting metric (Gini Impurity, Information Gain, etc.) and 
split the current node into daughter nodes and reduce the 
number of features D from this node on.
3. Repeat steps 1 to 2 until either a maximum tree depth l 
has been reached or the splitting metric reaches some ex-
trema.
4. Repeat steps 1 to 3 for each tree k in the forest.
5. Vote or aggregate on the output of each tree in the forest.

A Review of Machine Learning Techniques in 
Neuroimaging Data  
PAMI methods can detect alterations of MR-protocol dif-
ferences in disease groups compared to controls and also in 
intervention protocols after intense cognitive and physical 
training tasks (Rathore et al., 2017). Another relevant issue 
that PAMI algorithms stress and demands the decision of 
the neuroscientist is the analysis of the original high-dimen-
sional neuroimaging dataspace versus neuro-anatomical 
parcellated atlases with brain areas defined be atlases like the 
automated anatomical labeling (AAL) (Tzourio-Mazoyer 
et al., 2002), Oxford-Harvard atlas, etc. or adaptive atlases 
(Lu et al., 2015). These ROIs are separated according to his-
tological and functional activation maps. Parcelled features 
have many advantages in terms of memory cost, computa-
tional time, preprocessing time and the derived results can 
be compared with many other existing studies. However, 
this type of analysis, fixed for every subject, in any disease 
state, condition, intervention protocol and across the lifes-
pan introduced a significant bias. In contrast, the analysis 
of the original high-dimensional feature human brain space 
is unbiased but it is more difficult to handle using PAMI al-
gorithms that fit to the problem like in other problems, like 
computer vision, 3D video processing, etc. Another problem 

with the high-dimensional space is the case where the num-
ber of measurements (e.g., estimates within every voxel or 
ROIs) is much larger than the number of observations (e.g., 
number of subjects in a study) and it is often called as “curse 
of dimensionality” (Bellman, 1961). This term can be used in 
many events when manipulating high-dimensional features 
that always hampers the efficacy of the adopted model. For 
that reason, a preparatory step of feature selection and di-
mensionality reduction is more than significant.

Neuroimaging gave the opportunity to neuroscientists to 
quantify alterations of pathological brain in various diseases 
such as the AD (Rathore et al., 2017) and also in neuropsy-
chiatric disorders (Liu et al., 2015). Especially the integration 
of neuroimaging with machine learning techniques im-
proved our knowledge about the structural and functional 
changes in the pathological brain. A recent systematic review 
on classification of neuroimaging reported that there is no 
single neuroimaging modality that can reach alone to an 
absolute accuracy for an automated AD prediction but only 
the integration of the best features from different modalities 
can effectively transform a pipeline into a clinical reality 
(Rathore et al., 2017). A recent study discussed the promises 
and pitfalls of single-subject prediction in brain disorders 
in neuroimaging (Arbabshirani et al., 2017). By surveying 
over than 200 studies focusing on schizophrenia, MCI, AD, 
depressive disorders, autism spectrum disease (ASD) and 
attention-deficit hyperactivity disorder (ADHD), they found 
that the most common pitfall of the reported classification re-
sults were the procedure of feature selection, cross-validation 
and the distinction of training-testing dataset, presentation of 
classification performance, avoiding overfitting, optimizing 
parameters like in kernels in SVM etc. Additionally, the need 
of a higher number of subjects per class was also discussed 
which is a common drawback in many studies. This pitfall 
will be changed by the increased number of open multimodal 
neuroimaging databases like the ADNI (Petersen et al., 2010), 
ENIGMA (Spurdle et al., 2012), Cambridge Centre for Age-
ing and Neuroscience (Cam-CAN) (Taylor et al., 2017), etc.

A recent review study tailored to AD and RF models sup-
ported the idea that there is a complementary information 
between the modalities that can boost the accuracies of pre-
diction and this richness of features should be explored by 
combining alternative classifiers compared to a single one 
(Sarica et al., 2017).

RF’s feature selection capabilities can be considered as 
very effective, while alternative algorithms have been pro-
posed for the reduction of the feature space and in some cas-
es, further improved the accuracy of the RF model (Tuv et 
al., 2009). Given in the previous section the effectiveness and 
promise of RF as a bagging ensemble model, we encouraged 
neuroscientists to compare and integrate this algorithm with 
alternative machine learning techniques like deep learning 
(Vieira et al., 2017).

In the future, the integration of multi-PAMI approaches 
(RF, Deep-learning and SVM), multimodal imaging-based 
features (MRI, DTI, PET; Wang et al., 2016) and multi-site 
data repositories (Abraham et al., 2017) would drastically 
increase the effectiveness and reliability of potential auto-
mated prediction neuroimaging pipelines of clinical reality.
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International Challenge for Automated 
Prediction of MCI from MRI Data 
In a recent international challenge for automated prediction 
of MCI from MRI data, we succeeded in getting the 1st place 
among 19 worldwide teams (https://www.kaggle.com/c/
mci-prediction). The feature input was morphometric mea-
sures extracted from 3D T1 brain MRI images for ADNI1 
cohort, including 60 HC, 60 early MCI, 60 late MCI (cMCI) 
and 60 stable AD. This was the very first attempt to simulta-
neously classify the four groups using a single MRI modali-
ty. An extra blind dataset of 160 subjects (HC: n = 40, MCI: 
n = 40, cMCI: n = 40 and AD: n = 40) was used by the orga-
nizers of the competition to evaluate the proposed machine 
learning scheme and to rank the participating teams.

In the following sections, we describe how the organizers 
selected the datasets from the ADNI database, the pre-process-
ing steps , the proposed RF model, the feature selection strate-
gy, the final results and also the machine learning algorithms. 

Materials and Methods  
Participants 
In particular, MRIs were selected from the ADNI. ADNI is 
an international project that collects and validates neurolog-
ical data, such as MRI and PET images, genetics or cogni-

tive tests. Organizers randomly and automatically selected 
subjects by employing the data analytics platform Konstanz 
Information Miner (KNIME).

This dataset was obtained by grouping a balanced number 
of subjects (n = 100) for each of the four classes (HC, AD, 
MCI, cMCI) by various diagnostic criteria.

Finally, the whole dataset of 400 subjects was split by the 
organizers into a training dataset of 240 subjects (60 subjects 
for each of the four groups) and a testing dataset of 160 sub-
jects (40 subjects for each of the four groups) (Table 1).

MR image acquisition 
All participants were scanned on a Philips 3 T Achieva MRI 
scanner. The MRI data acquisition protocol is described in 
ADNI’s official webpage (http://adni.loni.usc.edu/methods/
mri-analysis/mri-acquisition/) .

Freesurfer processing and features extraction
T1-weighted MRI were pre-processed by the organizers of 
Neuroimaging Challenge/Competition for an automated 
classification of MCI. Further details of the adapted pipeline 
can be found at https://inclass.kaggle.com/c/mci-prediction.
MRIs were pre-processed by Freesurfer (v5.3) with the stan-
dard pipeline (recon-all-hippo-subfields) on a GNU/Linux 

Table 1 The demographics of the training and testing datasets, 
including the average age, the gender contribution and the average 
Mini-Mental State Examination (MMSE)

Age (year) Gender (M/F, n) MMSE

Training dataset
HC 72.3±5.7 62/58 29.2±1.1
MCI 72.2±7.5 66/54 28.3±1.6
cMCI 73.0±7.3 60/60 27.2±1.9
AD 74.8±7.4 56/64 23.4±2.1

Testing dataset
HC 74.9±5.6 18/22 29.0±1.1
MCI 72.4±8.1 23/17 27.6±1.9
cMCI 71.7±6.3 25/15 27.6±1.8
AD 73.1±8.2 23/17 22.7±2.0

Data are expressed as the mean ± SD in age and MMSE, and number in 
gender. There are 60 participants in each group in the training dataset, 
and 40 participants in each group in the testing dataset. HC: Healthy 
controls; MCI: mild cognitive impairment;  cMCI: late MCI;  AD: 
Alzheimer’s disease; M: male; F: female.

Figure 2 Classification process based on the random forest 
algorithm
A redesign of the original inspired figure found from the following 
website: https://www.linkedin.com/pulse/random-forest-algorithm-in-
teractive-discussion-niraj-kumar/.

Figure 1 Outline of the proposed computer-aided diagnosis (CAD) system tailored to Alzheimer’s disease using magnetic resonance imaging 
brain images.
ROI: Region of interest.
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Ubuntu 14.04 with 16 CPUs and 16 Gb RAM.
They used the KNIME plugin K-Surfer (Sarica et al., 2014)   

for extracting numerical data produced by Freesurfer into a 
table format. Organizers of the competition then enriched 
this table with both demographical and clinical parameters. 
The set of features employed for the training procedure are: 
• MMSE_bl - Mini-mental state examination total score at 
the baseline of the subject
• Age
and 
• (i) cortical thickness,(ii) cortical surface area, (iii) cortical 
curvature, (iv) grey matter density, (v) the volume of the 
cortical and subcortical structures, (vi) the shape of the hip-
pocampus and (vii) Hippocampal subfields volume

Problem formulation
The organizers of the International Challenge for Automat-
ed Prediction of MCI from MRI data generated an addi-
tional 340 artificial test observations that were joined with 
the real blind test set (4  ×  40  =  160) to form a combined 
test set of 500 observations. This testing sample was used in 
the online Kaggle competition platform for the evaluation 
of the classification performance (Sarica et al., 2017). This 
set, which can be called an artificial − Challenge dataset, was 
split into a public and private test set. The competition start-
ed online on 21st December 2016 and finalized on 1st June 
2017. Every team that participated in this neuroimaging 
competition had the option of one submission per day. After 
every submission, the organizers returned, via the kaggle 
web system, the accuracy estimated over 500 subjects, where 
only 160 subjects were the real blind dataset. The rest (340 
subjects − dummy) were created via a model based on the 
features from the training dataset. By the end of the chal-
lenge on 1st June 2017, the best performance of each team 
was evaluated and selected based on the private test set. The 
final evaluation and the ranking of the teams in terms of the 
classification accuracy was realized based on the Challenge 
test set which contains the real test data. Finally, the labels 
of the Challenge real test data and the related confusion ma-
trices were released to the participants and teams that were 
invited to contribute to a special issue in Journal of Neuro-
science Methods, dedicated to the international challenge 
for the automated prediction of MCI using MRI data. Our 
team won the 1st position in this neuroimaging challenge.

The proposed RF model from our team
Our best submission was built around an ensemble of five 
classification models. The construction of these models was 
based on the well-known RF machine learning method and 
its operational capabilities. More specifically, in all models, 
we performed feature selection using the Gini impurity in-
dex, a type of feature importance measurement commonly 
used in RF. In addition, we employed early fusion, as well as 
weighted fusion by means of late fusion schemes based on 
internal mechanisms provided by RF, namely the out-of-bag 
error and proximity ratios.

In what follows, the theoretical background of the involved 
methodologies, as well as a description of each classification 
model that was utilized in our experiments, are provided.

Our study focused on different scenarios with respect to 

the analysis and ranking of the feature space. We finally 
used an ensemble of five classification models and the final 
prediction of the blinded dataset’s labels was estimated via a 
majority voting scheme. More specifically:

1. The first model included the training of a RF classifier 
using the whole feature set and a feature selection strategy 
based on the Gini importance measure (a feature impor-
tance measurement typically used in RF), which provided 
the selected features for the final retrained RF model.

2. In the second model, we decided to split the initial fea-
ture space into left and right hemispheres (step A). Then, we 
ranked the hemisphere-specific features using the Gini im-
portance measure (step B), we retrained the two RF classifiers 
using the selected features (step C) and finally, we applied 
weighted fusion for the formulation of the final predictions 
from the two RF models (Step D). The proximity ratio late 
fusion strategy (Liparas et al., 2014), derived from an opera-
tional feature of RF, namely the proximity matrix, was utilized 
in the weighted fusion step. This matrix includes the proximi-
ties between all data cases and is constructed for the entire RF 
model. For computing the weights for each considered class 
and for each hemisphere – modality, the ratio values between 
the inner-class and the intra-class proximities (for each class) 
are used (Zhou et al., 2010). For more details on the proximity 
ratio late fusion strategy, we refer to Dimitriadis et al. (2018).

3. In the third model, we adopted the same strategy as in 
the second model, but regarding the weighted fusion step, 
the out-of-bag (OOB) late fusion strategy (Liparas et al., 
2014) was used instead of the proximity ratio scheme. This 
late fusion strategy is based on the OOB error estimate, 
another operational feature of RF. For the weight computa-
tion step, the OOB accuracy values are computed separately 
for each considered class. These values are normalized (by 
dividing them by their sum) and serve as weights for each 
hemisphere – modality. For more details on the OOB late 
fusion strategy, please see Dimitriadis et al. (2018).

4. In the fourth model, instead of retraining RF classifiers 
for the two modalities (as in Step C – second model) with 
the use of the final feature subsets, we trained Support Vec-
tor Machine (SVM) classification models. Finally, as a fusion 
step (step D – second model), we averaged the probability 
scores provided by the SVM models.

5. In the fifth model, steps A and B from the second model 
were applied in the same way, with the only difference be-
ing the use of a different threshold for the Gini importance 
measure (step B). Then, early fusion (also called feature-level 
fusion) was applied to the resulting feature space, produced 
by the concatenation of the two feature subsets from the two 
hemispheric modalities and finally, a new RF model was 
trained with the use of this new feature vector.

In the final step, the labels of the unknown cases were pre-
dicted with the use of the outputs of the classification mod-
els in the ensemble, and more specifically, a majority voting 
scheme was adopted. Practically, the predicted label for each 
blind sample was the one receiving the highest number of 
votes from the five classification models. In the case of ties, 
the highest probability estimate, derived from any of the ad-
opted models, was used for the final prediction.

Regarding the parameters used in the experiments for the 
RF models of the ensemble, the following values were uti-
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lized for the number of trees for each RF model, as well as 
for the number p of the subset of variables used to determine 
the best split for each node during the growing of a tree (for 
each RF model):
• First model: Number of trees = 2000, p = 53
• Second and third models: Number of trees = 2000, p =   
(where D is the total number of features)
• Fifth model: Number of trees = 1000, p  = 9

In Figure 3, the graphical layout of the ensemble’s five 
models, along with the parameter values used for the RF 
models, are provided. Additionally, boxplots for 9 features 
(for each class) that were selected as important in the over-
all classification process are depicted in Figure 4. The more 
significant features were: the mini-mental state examination 
score, the bilateral hippocampal volume, the age, the CSF, the 
bilateral amygdala volume and the bilateral inferior lateral 
ventricle volume.

We finally achieved a remarkable 61.9% classification 
performance for the simultaneous discrimination of four 
groups (HC, MCI, cMCI and AD) in the second blind data-
set. It is the very first time in the literature where classifica-
tion is performed simultaneously in a four-class AD-based 
problem using a single modality, namely MRI. We can 
clearly state that this performance is closed to plateau for 
the four-class problem using morphometric features from 
the MRI modality. A possible increment of this classification 
performance could be achieved by a subject-specific parcel-
lation scheme and also by the adaptation of other features 
from neuropsychological battery, cerebrospinal analysis and 
other modalities, including BOLD activity and brain con-
nectivity at resting-state and in cognitive tasks.

Comparison with the Alternative Models from 
the Competitive Teams  
Salvatore and Castiglioni (2018)  adapted a Fisher’s dis-
criminant ratio (FDR) for the feature ranking and a f wrap-
per-optimization procedure was applied in order to identify 
the optimal subset of features to be used for the classifi-
cation. They used SVM (support vector machine) with a 
linear kernel and C hyperparameter equals to 1. They ran 
100 times the 5-fold cross-validation scheme via a binary 
scheme. For each subject, the six labels derived from the six 
binary classifications of the four groups were combined via 
three alternative voting schemes. Finally, the voting scheme 
mainly based on the binary-classification performances on 
the different four groups is the best choice to model the 
multi-label decision function for AD.

Amoroso et al. (2018) adapted a RF feature selection ap-
proach while they performed 100 times a 5-fold cross-val-
idation scheme. For each round, they selected the 20 most 
important features. As a proper classification scheme, they 
used a Deep Neural Network (DNN) while for comparison a 
fuzzy logic algorithm has been applied. For a better robust-
ness of the DNN model, they performed 30 different ini-
tializations. Finally, the label with the highest score derived 
from the sum from each model is assigned to every subject

Ramírez et al. (2018) proposed a novel scheme tailored 
to the competition. Τhey standardized the features to 
zero mean and unit variance while they used, a one-way 

vs. -rest  analysis of variance (ANOVA) feature selection 
algorithm. To further reduce the feature space, a partial 
least square (PLS) model was fitted to the training set. The 
highest performance for this team was succeeded with a 
bagging-trained ensemble of one-vs.-rest multiclass classi-
fiers using PLS scores as input features. They adapted a RF 
classifier (Breiman, 2001) using bagging, or bootstrap aggre-
gating, forming an ensemble of classification and regression 
tree like classifiers. The final outcome of the classifier was 
determined by the majority vote across the trees’ outcome.

Nanni et al. (2018) tested four different feature selection 
algorithms (Kernel PLS (KPLS), Fisher score (FS), Lagrange 
Multipliers (LM) and Mutual Information (MI)) and for 
well-known classifiers (Support Vector Machine (SVM), 
Gaussian Process Classifier (GPC), Random Subspace of 
Adaboost (RS AB), Random Subspace of Rotation Boosting 
(RS RB)). To improve further the resulted classification per-
formance, they designed an ensemble of classifiers based on 
a variation of the Static Classifier Selection which succeeded 
to give their best performance.

Sørensen et al. (2018) reported its best performance with 
an ensemble of support vector machines (SVMs) that com-
bined bagging without replacement and a feature selection 
strategy. They selected the best feature set via sequential for-
ward feature selection method and using SVM as an evalu-
ator. The design of their best approach has been inspired by 
RF algorithm and it contained a combination of data subsets 
and feature subsets in ensemble SVM construction.

The superiority of our approach compared to the compet-
itor teams is due to different strategies. First of all, we adapt-
ed different models to count in the final majority vote on 
the Challenge test dataset. These five models included four 
RF approaches and also one with SVM. Secondly, we ranked 
our features using the whole set and also by splitting them 
into left and right hemisphere. Third, in our second model, 
features were ranked with the Gini importance measure, 
RF classifiers were retrained using the selected features and 
finally, a weighted fusion step based on the proximity ratio 
late fusion strategy, a feature based on the operational capa-
bilities of RF, was applied for the final predictions. Fourth, 
in our third model, we applied the OOB late fusion strate-
gy instead of the proximity ratio scheme. Fifth, in another 
model, we set a different threshold for the Gini importance 
measure while an early fusion has been applied to the select-
ed features. All these approaches outperformed even groups, 
where also RF has been applied to the train set.

It is important to mention here that in all our experi-
ments, we used the training set as a training set without 
splitting it into train and test for internal cross-validation. 
Table 2 summarizes the ranking of classifiers’ accuracies as 
released by the organizers after the end of the competition.

Discussion  
Recent advances in machine learning in neuroimaging con-
clude that the AD pathological brain can be reliable detected 
(Perrin et al., 2009). The majority of neuroimaging studies 
based on AD/MCI classification and also prediction of AD 
conversion used various modalities such as structural MRI, 
functional MRI, DTI, and PET (Rathore et al., 2017). The 
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second most frequent set of features are derived from genet-
ics, cognitive scores, neuropsychological assessments and 
also cerebrospinal fluid biomarkers (Melah et al., 2016). The 
majority of multimodal neuroimaging studies tailored to the 
design of biomarkers for the detection of prodromal stages 
of AD aggregated features from all these modalities and with 
the available feature selection algorithms, they finally choose 
the most informative giving also a ranking of the modalities 
according to their contribution (Liu et al., 2013; Korolev et 
al., 2016; Yu et al., 2016).

Apart from univariate features extracted from structural 
MRI, functional MRI, DTI, and PET modalities, functional 
and structural connectivity have contributed also on this 
race of designing reliable biomarkers for prodromal stages 
of MCI. Jie et al. (2014) proposed the extraction of both local 
and global features from fMRI-based connectivity approach 
at resting-state condition and a multi-kernel SVM for MCI 
classification. Khazaee et al. (Khazaee et al., 2015) estimated 
network metrics from fMRI-based functional brain networks 
at resting-state that quantify integration and segregation, and 
using Fisher score for feature selection and SVM for classifi-

Table 2 Ranking of classifiers’ accuracies as calculated at the closing 
of the competition, not including the entire test set without the 
fake set. For each team, the best result between the automatically-
selected submission and the chosen submission is reported

Team Final ranking
Team Final ranking (Automatically 
Selected or Chosen by Teams) 

Stavros Dimitriadis – Dimitris 
Liparas (Dimitriadis et al., 2018)

0.61875

SiPBA-UGR (Ramirez et al., 2018) 0.5625
Salvatore C. | Castiglioni I.* 
(Salvatore and Castiglioni, 2018)

0.55

Loris Nanni (Nanni et al., 2018) 0.55
Sørensen (Sørensen et al., 2018) 0.55
Bari Medical Physics Group 
(Amoroso et al., 2018)

0.55

Figure 3 Graphical layout of the ensemble’s classification models.
RF: Random forest.

Figure 4 Boxplots for 9 features (for each class), selected as 
important in the ensemble’s models.
HC: Healthy controls; MCI: mild cognitive impairment; cMCI: late 
MCI; AD: Alzheimer’s disease. 
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cation. They succeeded a 100% classification between healthy 
controls and AD patients. The functional connectivity-based 
neuroimaging methods performed very well in binary classi-
fication approaches (97.00% for AD/MCI (Challis et al., 2015) 
and 91.90% for MCI/controls (Jie et al., 2014)) but they have 
never be tested on multi-class approach like with structural 
MRI during the international competition.

Structural-based MRI-based studies tailored to the detec-
tion of best biomarkers for AD focused on the extraction 
of morphological features like volumes, thickness etc. (Liu 
et al., 2013) and also on the estimation of density maps of 
white matter (WM), grey matter (GM), and cerebrospi-
nal fluid using the well-known voxel-based morphometry 
(VBM) (Ashburner and Friston, 2000). Liu et al. (2015) 
succeeded an overall 79% for the detection of stable versus 
progressive mild cognitive impairment.

In the majority of the machine learning multimodal neu-
roimaging studies (Liu et al., 2013; Melah et al., 2016) and 
also the aforementioned here attempted to select the best 
features from each modality rather than to select the best 
modality among the available. The selection of the most in-
formative modality could be more important than the set of 
feature selection and the classification algorithms (Sabuncu 
and Konukoglu, 2015).

The most common feature selection/reduction algorithm 
is linear discriminant analysis (LDA). Park et al. (2013) ap-
plied LDA to cortical features from MRI images and trained 
SVM on MCI, healthy controls and tested on subjects that 
converted to AD. They reported a remarkable 83% on the 
prediction of MCI to AD.

The most common classifier reported on neuroimaging 
machine learning studies for AD is SVM (Rathore et al., 
2017). Recent studies also reported very good results with RF 
using single or multimodal features, binary and also three-
class classification problems. We reported those studies in 
section 4. However, the major take home message from the 
international competition was the plateau of a single modal-
ity to simultaneously differentiate the four groups using RF. 
We totally agree with neuroinformaticians that our main goal 
should be to combine different models derived from vari-
ous classifiers and also their modifications as we performed 
during the challenge. Moreover, the available modalities share 
complementary information and a sophisticated aggregation 
of the best features across all modalities can further enhance 
the reliability of the biomarkers (Sarica et al., 2017).

In order to design multi-site biomarkers for AD, its pro-
dromal stages and also for the accurate prediction of the 
subjects converted from MCI to AD, we will need large 
opened shared multimodal databases (Poline et al., 2012), 
e.g., ADNI (Petersen et al., 2010). However, the last decade, 
hundreds of papers have been published with ADNI data-
base that practically cannot be compared because of differ-
ent non-shared analytic pipelines and also different sub-co-
horts that are not public available. From the release of ADNI 
database, a large amount of studies revealed their results en-
hancing our knowledge about AD so far. However, it is very 
difficult to compare all these studies because they used a dif-
ferent subset of subjects from the original cohort, different 
pre-processing pipelines with open or in-house software and 
also different features derived from different modalities and 

also from different anatomical atlases (Liu et al., 2015). For 
that reason, neuroimaging preprocessing approaches should 
be also released by the authors under a common software 
package (Gorgolewski et al., 2015 ; Savio et al., 2017). Final-
ly, any methodological advance of machine learning applied 
to neuroimaging for the scope of the design of a biomarker 
with a clinical evaluation should be tested over multi-sites 
across different neuroimaging labs with the same or differ-
ent systems/equipments (Abraham et al., 2016) .
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