Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Tritophic phenological match-mismatch in space and time

Burgess, Malcolm, Smith, Ken, Evans, Karl, Leech, Dave, Pearce-Higgins, James, Branston, Claire, Briggs, Kevin, Clark, John, du Feu, Chris, Lewthwaite, Kate, G, Nager Ruedi, C, Sheldon Ben, Smith, Jeremy, C, Whytock Robin, G, Willis Stephen and B, Phillimore Albert 2018. Tritophic phenological match-mismatch in space and time. Nature Ecology and Evolution 2 , pp. 970-975. 10.1038/s41559-018-0543-1

PDF - Accepted Post-Print Version
Download (181kB) | Preview


Increasing temperatures associated with climate change may generate phenological mismatches that disrupt previously synchronous trophic interactions. Most work on mismatch has focused on temporal trends, whereas spatial variation in the degree of trophic synchrony has largely been neglected, even though the degree to which mismatch varies in space has implications for meso-scale population dynamics and evolution. Here we quantify latitudinal trends in phenological mismatch, using phenological data on an oak–caterpillar–bird system from across the UK. Increasing latitude delays phenology of all species, but more so for oak, resulting in a shorter interval between leaf emergence and peak caterpillar biomass at northern locations. Asynchrony found between peak caterpillar biomass and peak nestling demand of blue tits, great tits and pied flycatchers increases in earlier (warm) springs. There is no evidence of spatial variation in the timing of peak nestling demand relative to peak caterpillar biomass for any species. Phenological mismatch alone is thus unlikely to explain spatial variation in population trends. Given projections of continued spring warming, we predict that temperate forest birds will become increasingly mismatched with peak caterpillar timing. Latitudinal invariance in the direction of mismatch may act as a double-edged sword that presents no opportunities for spatial buffering from the effects of mismatch on population size, but generates spatially consistent directional selection on timing, which could facilitate rapid evolutionary change.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Biosciences
Publisher: Nature Publishing Group
ISSN: 2397-334X
Date of First Compliant Deposit: 23 April 2018
Date of Acceptance: 14 February 2018
Last Modified: 20 Jan 2021 06:49

Citation Data

Cited 12 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics