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Abstract:   31 

There is an ever-increasing recognition that bile acids are not purely simple surfactant 32 

molecules that aid in lipid digestion, but are a family of molecules contributing to a diverse 33 

range of key systemic functions in the host.  It is now also understood that the specific 34 

composition of the bile acid milieu within the host is related to the expression and activity of 35 

bacterially-derived enzymes within the gastrointestinal tract, as such creating a direct link 36 

between the physiology of the host and the gut microbiota.  Coupled to the knowledge that 37 

perturbation of the structure and/or function of the gut microbiota may contribute to the 38 

pathogenesis of a range of diseases, there is a high level of interest in the potential for 39 

manipulation of the gut microbiota-host bile acid axis as a novel approach to therapeutics.  40 

Much of the growing understanding of the biology of this area reflects the recent 41 

development and refinement of a range of novel techniques; this study applies a number of 42 

those techniques to the analysis of human samples, aiming to illustrate their strengths, 43 

drawbacks and biological significance at all stages.  Specifically, we used microbial profiling 44 

(using 16S rRNA gene sequencing), bile acid profiling (using liquid chromatography-mass 45 

spectrometry), bsh and baiCD qPCR, and a BSH enzyme activity assay to demonstrate 46 

differences in the gut microbiota and bile metabolism in stool samples from healthy and 47 

antibiotic-exposed individuals.     48 

 49 

1. Introduction: 50 

1.1. Overview: 51 

The last few years have been associated with a rapid increase in understanding of the 52 

profound contribution of the gut microbiota to the health of the host, as well as its potential 53 

roles in the onset and maintenance of a range of diseases.  Much initial interest in the gut 54 

microbiota has focused on observational studies which defined changes to the structure of 55 

the microbiota in different scenarios (e.g. different disease states, impact of diet or 56 

antibiotics, etc).  However, more recent emphasis has moved away from solely defining the 57 

structure of the microbiota, but refocused upon better defining its function, and specifically 58 

the many complex routes of communication (including metabolic pathways, immune axes, 59 

etc) between the gut microbiota and the host [1].  Given that a key regulator of the 60 

composition of the bile acid pool within mammals is the action of bacterially-derived enzymes 61 

within the gastrointestinal tract [2], an improved understanding of the close interplay 62 
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between the gut microbiota and the host’s bile acid metabolism is an area of particular 63 

interest.   64 

 65 

1.2. Gut microbiota-bile acid interactions in vivo: 66 

Primary bile acids (BA) are synthesised from cholesterol in the liver, where they are 67 

conjugated with glycine or taurine.  These conjugated bile acids subsequently enter the 68 

gallbladder, and are released into the duodenum following the intake of food.  Once in the 69 

small bowel, the bile acids undertake one of their key physiological roles, the emulsification 70 

and solubilisation of dietary lipids.  Bile acids will continue along the small intestine, towards 71 

the terminal ileum; whilst approximately 95% of bile acids will be reabsorbed via the 72 

enterohepatic circulation pathway, the remaining 5% (~400-800 mg per day) are not 73 

recovered, and will continue through the distal gut of the terminal ileum and on to the colon 74 

[3]. 75 

 76 

It is within the small intestine that bile acid modification by the gut microbiota is initiated, 77 

driven by enzymes that are produced and secreted by gut microbiota members, but which 78 

are not produced by the mammalian host.  The first stage of bile acid modification by the gut 79 

microbiota is from the enzymes named bile salt hydrolases (BSHs).  These enzymes 80 

deconjugate the taurine and glycine groups from conjugated bile acids via a hydrolysis 81 

reaction, and therefore reform the primary bile acids cholate (CA) and chenodeoxycholate 82 

(CDCA).  BSHs are found mainly within the bacterial phyla Firmicutes and Bacteroidetes, but 83 

are widely-distributed throughout most major bacterial divisions and archaeal species of the 84 

human gut microbiota [4].  At least eight different bsh genes exist (see Supplementary Figure 85 

1), with each form having specific properties relating to optimal pH, specificity for taurine- or 86 

glycine-conjugated bile acids and gene size [4].  The secondary enzymatic steps are 7--87 

dehydroxylation.  In these steps, the hydroxyl group of C-7 is removed, thus converting 88 

primary bile acids to secondary bile acids.  Specifically, in humans, this includes the conversion 89 

of cholate to deoxycholate (DCA), and the conversion of chenodeoxycholate to lithocholate 90 

(LCA), along with the biosynthesis of other secondary bile acids.  7--dehydroxylation is a 91 

complex, multi-step process, and only performed by strictly anaerobic bacteria with the bile 92 



Main document 

 

4 

 

acid-inducible (bai) operon.  Based on current microbial genomic annotation, it is estimated 93 

that only a very small percentage of gut microbiota members possess 7--dehydroxylation 94 

activity, with those organisms that do predominantly belonging to the genera Clostridium 95 

clusters XIVa and XI [5], [6].  Generation of secondary bile acids creates a more hydrophobic 96 

bile acid pool, facilitating the elimination of these bile acids within faeces.  A range of other 97 

gut microbial metabolic actions against bile acids are also described, including the 98 

epimerisation of CDCA to synthesise ursodeoxycholic acid, as well as other pathways that 99 

result in the generation of iso-, allo- and oxo-/keto-bile acids [2].    100 

 101 

There is now increasing recognition of the diverse roles of bile acids within the host, in 102 

particular via their role as endogenous ligands for host cell receptors.  These include the 103 

nuclear receptor farnesoid X receptor (FXR), and the G protein-coupled plasma membrane 104 

bile acid receptor TGR5, all exhibiting varying affinities for different bile acids and their 105 

moieties [2].  Bile acids as FXR and TGR5 agonists contribute to a wealth of host physiological 106 

processes including the modulation of lipid, glucose and energy homeostasis, as well as the 107 

regulation of bile acid synthesis, conjugation and transport.  To add to the complexity, there 108 

is also evidence that bile acids influence microbiota composition, both via direct and indirect 109 

actions [2].  Collectively, the growing evidence for the multiple functions of bile acids within 110 

the host – coupled with evidence demonstrating the complex interplay between bile acid 111 

metabolism and the gut microbiota – highlights that this axis is a key mechanism by which the 112 

gut microbiota directly influences a range of aspects of host physiology.   113 

 114 

Two of the most important questions in gut microbiome research are “who is there?” and 115 

“what are they doing?”.  In the context of bile metabolism we can describe changes in the gut 116 

microbiota at several different levels: we can use microbial DNA to define the composition of 117 

the gut microbiota and quantify the amount of bile metabolising genes, we can look at the 118 

amount of bile metabolising proteins expressed by measuring their enzymatic activity, and 119 

we can look at the metabolites being produced by characterising the quantity and 120 

composition of bile acid metabolites.  In this study we use a set of stool samples from 121 
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individuals exposed to antibiotics and non-antibiotic-exposed controls to demonstrate how 122 

researchers can apply a wide variety of techniques to more fully characterise microbiota-bile 123 

interactions in the gut.  These techniques include 16S rRNA gene sequencing, liquid 124 

chromatography-mass spectrometry-based bile acid profiling, BSH and 7-a-dehydroxylase 125 

qPCR, and a BSH enzyme activity assay.  In addition, we correlated metataxonomic and 126 

metabonomic data to gain a better understanding of the modulation of the bile acid pool by 127 

the gut microbiota.   128 

 129 

2. Material and methods: 130 

2.1. Study participants: 131 

The study was performed under approval from the UK National Research Ethics Centre 132 

(13/LO/1867).  Stool samples were collected from a total of eight healthy individuals, and five 133 

patients who had recently taken recurrent courses of antibiotics.  Antibiotics had been 134 

prescribed for a variety of indications, had been used for at least three continuous weeks 135 

within the past month, and had last been used between 3 – 6 days prior to sample collection 136 

(Supplementary Table 1).  Healthy individuals had not used antibiotics or been prescribed 137 

regular medications for at least six months prior to sample collection.  Stool specimens were 138 

put on ice within 15 minutes after collection, transferred to the hospital laboratory, and 139 

homogenised and aliquoted within 30 minutes.  Samples were frozen to and maintained at -140 

80oC prior to analysis. 141 

 142 

2.2. DNA extraction and 16S rRNA gene sequencing: 143 

DNA was extracted from 250 mg of stool using the PowerLyzer PowerSoil DNA Isolation Kit 144 

(Mo Bio, Carlsbad, CA, USA) following manufacturer’s instructions, with the addition of a bead 145 

beating step for 3 minutes at speed 8 in a Bullet Blender Storm (Chembio Ltd, St Albans, UK). 146 

DNA was stored at -80°C until it was ready to be used. 147 

 148 

Sample libraries were prepared following Illumina’s 16S Metagenomic Sequencing Library 149 

Preparation Protocol [7] with two modifications. Firstly, the V1-V2 regions of the 16S rRNA 150 
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gene were amplified using the primers listed in Table 1.  Additionally, the index PCR reactions 151 

were cleaned up and normalised using the SequalPrep Normalization Plate Kit (Life 152 

Technologies, Paisley, UK). Sample libraries were quantified using the NEBNext Library Quant 153 

Kit for Illumina (New England Biolabs, Hitchin, UK).  Sequencing was performed on an Illumina 154 

MiSeq platform (Illumina Inc., Saffron Walden, UK) using the MiSeq Reagent Kit v3 (Illumina) 155 

and paired-end 300bp chemistry.  156 

 157 

The resulting data was analysed using the Mothur package following the MiSeq SOP Pipeline 158 

[8].  The Silva bacterial database was used for sequence alignments (www.arb-silva.de/) and 159 

the RDP database reference sequence files were used for classification of sequences using the 160 

Wang method [9].  The non-metric multidimensional scaling (NMDS) plot and PERMANOVA 161 

p-values were generated using the UniFrac weighted distance matrix generated from Mothur, 162 

and analysed using the Vegan library within the R statistical package [10].  Family-level 163 

extended error bar plots were generated using the Statistical Analysis of Metagenomic 164 

Profiles software package using White’s non-parametric t-test with Benjamini-Hochberg FDR 165 

[11].  The α diversity (Shannon diversity index, H’) and richness (total number of bacterial taxa 166 

observed, Sobs) were calculated within Mothur and statistical tests (independent t-test and 167 

Mann-Whitney U test, respectively) were performed using IBM SPSS Statistics Software 168 

version 23. A p-value of 0.05 and a q-value of 0.05 was considered significant. 169 

 170 

2.3. Inference of gut microbiota function from 16S rRNA gene sequencing data: 171 

To predict the bile-metabolising ability of the microbial communities within the samples, an 172 

inferential tool, Piphillin, was applied [12].  This algorithm uses direct nearest-neighbour 173 

matching between 16S rRNA gene sequencing datasets and microbial genomic databases to 174 

infer the metagenomic content of the samples [12].  In this case, Piphillin was used online 175 

[13], using the KEGG May 2017 as reference database, and applying 97% identity cut-off.  176 

Inference of gene abundance was assessed for KEGG orthology K01442 (cholylglycine 177 

hydrolase, an alternative name for BSH), KEGG orthology K15870 (baiCD, a bacterial gene 178 

specific to the 7--dehydroxylation pathway) and KEGG pathway ko00121 (corresponding to 179 

the secondary bile acid biosynthesis pathway).   180 

 181 

http://www.arb-silva.de/
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2.4. Ultra performance liquid chromatography-mass spectrometry (UPLC-MS) profiling 182 

of faecal bile acids: 183 

Faecal samples were lyophilized for 24 hours using a VirTis Benchtop BTP 8ZL freeze dryer 184 

(BPS, UK).  The dried samples were weighed and bile acids were extracted using a 2:1:1 (vol) 185 

mixture of water, acetonitrile and 2-propanol in a Biospec bead beater with 1.0 mm Zirconia 186 

beads.  After centrifugation (16,000 x g, 20 minutes) the supernatant was filtered using 0.45 187 

μm microcentrifuge filters (Costar, Corning).  188 

 189 

Quality control (QC) samples were prepared using equal parts of the faecal filtrates. QC 190 

samples were used as an assay performance monitor[14], and as a proxy to remove features 191 

with high variation. QC samples were also spiked with mixtures of bile acid standards (55 bile 192 

acid standards including 36 non-conjugated, 12 conjugated with taurine, seven conjugated 193 

with glycine (Steraloids, Newport, RI, USA)) and were analysed along with the stool samples 194 

to determine the chromatographic retention times of bile acids and to aid in metabolite 195 

identification.  196 

 197 

Bile acid analysis of faecal extracts was performed using ACQUITY UPLC (Waters Ltd, Elstree, 198 

UK) coupled to a Xevo G2 Q-ToF mass spectrometer equipped with an electrospray ionization 199 

source operating in negative ion mode (ESI-), using the method described by Sarafian and 200 

colleagues [15].  201 

 202 

Waters raw data files were converted to NetCDF format and data were extracted using XCMS 203 

(v1.50) package with R (v3.1.1) software.  Probabilistic quotient normalisation [16] was used 204 

to correct for dilution effects and chromatographic features with coefficient of variation 205 

higher than 30% in the QC samples were excluded from further analysis. 206 

 207 

The relative intensities of the features were corrected to the dry weight of the faecal samples. 208 

 209 

2.5. Integration of 16S rRNA gene sequencing data and bile acid mass spectrometry data: 210 

Correlations between two “omic” datasets acquired from the same set of samples were 211 

determined using regularised Canonical Correlation Analaysis (rCCA).  rCCA modelling of 212 
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metataxonomic (16S rRNA gene sequencing) and metabonomic (bile acid mass spectrometry) 213 

data was employed in the mixOmics library within the R statistical package [17], [18].  The 214 

regularisation parameters were determined using the shrinkage method. The rCCA similarity 215 

scores between the variables were plotted as heatmaps using the clustered image maps (cim) 216 

function. Hierarchical clustering (complete linkage, Euclidean distance) was used to obtain 217 

the order of the variables. The correlation circle plot was generated using the plotVar 218 

function, which plots strong correlations between variables (plots variables with a correlation 219 

above 0.5 outside of the inner circle). 220 

 221 

2.6. Abundance and activity of bile-metabolising enzymes: 222 

2.6.1. Real-time PCR for the quantification of BSH and baiCD gene abundance: 223 

qPCR was performed using extracted DNA to quantify gene abundance.  Gene abundance was 224 

quantified for i) specified groups of bsh (using degenerate primer sets previously designed 225 

and optimised by our group (Table 2)) and ii) baiCD (using primers previously described in the 226 

literature [19]).  227 

 228 

A total reaction volume of 25µl was used for each reaction, consisting of 20µl master mix and 229 

5µl diluted DNA (12.5ng total per reaction). All DNA was diluted in buffer EB (Qiagen, Hilden, 230 

Germany). A standard master mix consisting of 5.5µl PCR grade water (Roche, Penzberg, 231 

Germany), 12.5µl of 2x SYBR green master mix (ThermoFisher Scientific, Waltham, 232 

Massachusetts, USA), 1µl of 10µM forward primer (Eurofins Genomics, Wolverhampton, UK) 233 

and 1µl of 10µM reverse primer (Eurofins Genomics) was used.  One bacterial strain from the 234 

relevant reference group was selected as a standard for each primer set (bsh group 1a – 235 

Bacteroides plebius; bsh group 1b – Bacteroides ovatus; bsh group 3c/e – Blautia obeum; 236 

baiCD – Clostridium scindens (DSMZ 5676, Braunschweig, Germany) (Supplementary 237 

Methods).  Serial dilutions of each isolate were used to create a standard curve. 238 

Thermocycling conditions for each primer set are summarised in Table 2.  A melt curve stage 239 

was performed post-cycling to confirm primer specificity. Products were also visualised using 240 

the 2200 Tapestation System (Aligent Technologies, Santa Clara, California, USA) in 241 

combination with D1000 Reagents and D100 Screentapes (Aligent Technologies), following 242 

the manufacturer’s protocol.  243 
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 244 

Copy number was calculated from qPCR data using the following formula: gene abundance = 245 

(quantity (ng) x 6.022 x 1023 (gene copy number/mol)) / (length of product x 1 x 109 (ng/g) x 246 

660 (g/mol)).  A mean copy number for each set of triplicates was calculated and divided by 247 

the total DNA per reaction to obtain average copy number per ng DNA. 248 

 249 

2.6.2. Bile salt hydrolase enzyme activity assay: 250 

Faecal water was prepared and total faecal protein quantified using a similar method to that 251 

previously-described by Morris and Marchesi [20], but with the addition of bacterial and 252 

mammalian protease inhibitor cocktails (G Biosciences, St Louis, MO, USA), as well as DTT to 253 

1mM final concentration (Roche, Welwyn Garden City, UK) to minimise enzyme oxidation 254 

[21].   255 

 256 

The BSH assay itself was an adaptation of a precipitation-based assay [21]–[23].  The assay 257 

was performed in a clear flat-bottomed 96-well microtitre plate and incubated at 37oC at pH 258 

5.8 for up to 8 hours.  In a total volume of 200l, 500g of faecal protein was incubated with 259 

sodium phosphate buffer (pH 5.8, final concentration of 0.02mM), and taurodeoxycholic acid 260 

(Merck, Damstadt, Germany) (at final concentration 1mM).  To prevent evaporation during 261 

incubation, wells were overlaid with 50l of light paraffin oil (0.85g/ml; PanReac AppliChem, 262 

Barcelona, Spain) [23].  Samples were assayed in triplicate, with precipitation of insoluble 263 

deoxycholic acid monitored by absorbance measurement at 600nm (A600) using a microplate 264 

reader (MultiSkan Go, Thermo Scientific, Dartford, UK).  Faecal protein incubated with 265 

phosphate-buffered saline served as a negative control, and faecal protein incubated with 266 

varying concentrations of deoxycholic acid (Merck) was used to establish a standard curve to 267 

quantify precipitate formation.   268 

 269 

2.6.3.  Statistical analysis: 270 

A Mann-Whitney U test was used to compare the BSH activity and the BSH and baiCD gene 271 

abundance data between the antibiotic treated and healthy cohorts.  A p-value of <0.05 was 272 

considered significant. 273 
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 274 

3. Results: 275 

3.1. 16S rRNA gene sequencing: 276 

16S rRNA gene sequencing analysis showed patients taking recurrent antibiotics had altered 277 

compositions of their gut microbiotas compared to healthy controls (Figure 1A, p < 0.01, 278 

PERMANOVA).  Patients taking recurrent antibiotics had lower microbial community diversity 279 

(Figure 1B, p < 0.001, independent t-test) and richness (Figure 1C, p < 0.01, Mann-Whitney U 280 

test) compared to healthy controls.  Statistical analysis showed that the altered microbiota in 281 

patients taking recurrent antibiotics were due to decreases in the relative abundances of the 282 

families Bacteroidaceae, Lachnospiraceae, Ruminococcaceae, and Oscillospiraceae, and 283 

increases in the relative abundance of the family Enterobacteriaceae compared to healthy 284 

controls (Figure 1D). 285 

 286 

3.2. Inference of gut microbiota function from 16S rRNA gene sequencing data: 287 

Results from Piphillin analysis are shown in Figure 2.  Predicted gene abundance for bsh (KEGG 288 

orthologue K01442) was significantly reduced in patients who had taken recurrent antibiotics 289 

(Figure 2A, p < 0.05, Mann-Whitney U test).  It was not possible to predict gene abundance 290 

counts for all samples for baiCD (KEGG orthologue K15870) at the cut-off of 97% identity used, 291 

implying very low counts.  Predicted secondary bile acid biosynthesis (ko00121) trended 292 

lower in patients with recurrent antibiotic use compared to controls, but this was not 293 

significant (Figure 2B, p = 0.08).   294 

 295 

3.3. Multivariate statistics analysis of UPLC-MS profiling data: 296 

The data table produced by XCMS after normalization to the dry weight of the samples was 297 

introduced to SIMCA 14.1 (MKS Umetrics AB).  Principal component analysis (PCA) was 298 

performed to visualise clustering of samples and assess the quality of the run using the QC 299 

samples (Figure 3A).  Furthermore, supervised OPLS-DA was performed (Figure 3B) to reveal 300 

the features that were responsible for the discrimination between the recurrent antibiotic-301 

treated and healthy control groups.  This feature identification was achieved using the S-plot 302 

presented in Figure 3C, where feature in the edges of the S-shaped cloud of features were 303 
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responsible for the separation.  Features on top right were higher in the healthy control 304 

group, and in bottom left higher in the group treated with recurrent antibiotics.  Annotated 305 

bile acids are highlighted in the plot. 306 

 307 

Univariate analysis for differences in specific bile acids between healthy participants and 308 

people treated with recurrent antibiotics was also performed; data are presented in 309 

Supplementary Figure 2.   310 

 311 

3.4. Integration of metataxonomic and metabonomic data: 312 

rCCA modelling was used to determine correlations between metataxonomic (16S rRNA gene 313 

sequencing) and metabonomic (bile acid mass spectrometry) data (Figure 4).  We found that 314 

correlations between bacterial families and bile acids clustered into three distinct groups 315 

(Figure 4). Group 1 consisted of correlations where bacterial families were positively 316 

associated with conjugated and unconjugated primary bile acids, and negatively correlated 317 

with secondary bile acids DCA and LCA.  Group 2 consisted of families positively correlated 318 

with ursodeoxycholic acid.  Group 3 consisted of families positively correlated with secondary 319 

bile acids DCA and LCA, and negatively associated with unconjugated primary bile acids CA 320 

and CDCA.  Enterobacteriaceae, which increased in the recurrent antibiotics group, clustered 321 

in group 1.  Bacteroidaceae, Lachnospiraceae, Ruminococcaceae, and Oscillospiraceae, which 322 

decreased in the recurrent antibiotics group, clustered in group 3. 323 

 324 

3.5. Abundance and activity of bile-metabolising enzymes: 325 

Results from qPCR assays are displayed in Figure 5.  Recurrent antibiotic use was associated 326 

with a significantly reduced abundance of bsh genes for all BSH groups tested compared to 327 

healthy control participants.  Specifically, after recurrent antibiotic use, there was reduced 328 

abundance of the genes of bsh group 1a gene (p < 0.01, Mann-Whitney U test), bsh group 1b 329 

gene (p < 0.05, Mann-Whitney U test), and bsh group 3c/e gene (p < 0.01, Mann-Whitney U 330 

test).  baiCD gene abundance also significantly reduced after recurrent antibiotic use (p < 0.05, 331 

Mann-Whitney U test).   332 

 333 
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Use of recurrent antibiotics is associated with marked reduction in BSH enzyme activity within 334 

faecal samples (Figure 6, p < 0.01, Mann-Whitney U test).   335 

 336 

4. Discussion and Conclusions: 337 

In this study, we performed a range of analyses upon stool samples taken from healthy 338 

participants and people with recent antibiotic use as a means of demonstrating a range of 339 

techniques that may be applied to delineate gut microbiota-host bile acid interactions.   340 

 341 

We found that patients taking recurrent antibiotics had gut microbiotas with reduced 342 

proportions of known bile-metabolising enzyme function, including the families 343 

Bacteroidaceae, Lachnospiraceae and Ruminococcaceae.  Consistent with this, recurrent 344 

antibiotic use was associated with enrichment of stool primary bile acids (both conjugated 345 

and unconjugated) and loss of secondary bile acids.  Correlation analysis showed a distinct 346 

clustering of bacterial families and bile acids into three groups, where Enterobacteriaceae was 347 

positively correlated with unconjugated primary bile acids, and Bacteroidaceae, 348 

Lachnospiraceae, Ruminococcaeceae and Oscillospiraceae were positively correlated with 349 

secondary bile acids.  Further analysis demonstrated a loss of BSH gene abundance and 350 

enzyme activity within the gut of antibiotic-treated patients, coupled with a loss of 7--351 

dehydroxylase baiCD gene abundance related to antibiotic use.  Most fundamentally, these 352 

results emphasise the close and complex interplay between the gut microbiota and bile acid 353 

metabolism, and reinforce that any perturbation of the gut microbiota (in this case by 354 

antibiotics) may result in marked changes to host physiology.  These findings are consistent 355 

with other comparable work within this area, including the demonstration that early life 356 

antibiotic exposure is associated with a long lasting reduction in bile salt hydrolase function 357 

[24].  Furthermore, it has also been recognised that Clostridium difficile infection (a 358 

gastrointestinal infection occurring predominantly in patients with antibiotic-associated gut 359 

dysbiosis) is associated with perturbation of host bile acid profiles, possibly mediated through 360 

alteration of gut bile metabolising enzyme functionality [25]–[27].   361 

 362 
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We used 16S rRNA gene sequencing to determine the differences in the composition of the 363 

gut microbiota between patients taking recurrent antibiotics and healthy controls.  We found 364 

an increase in the relative abundance of Enterobacteriaceae and a decrease in the relative 365 

abundance of Bacteroidaceae, Lachnospiraceae, Ruminococcaceae, and Oscillospiraceae in 366 

the recurrent antibiotic group compared to healthy controls. However, it is important to note 367 

that we are reporting changes in the relative abundances of these groups, not the absolute 368 

abundances.  The total read numbers per sample does not provide information on the total 369 

number of 16S rRNA gene copies in the sample [28].  This is especially important in samples 370 

where a change in the total bacterial biomass occurs, for example with antibiotic treatment 371 

(as is the case in this study).  While it is possible that the absolute abundance of 372 

Enterobacteriaceae increases after recurrent antibiotics, it is also possible that the absolute 373 

abundance of Enterobacteriaceae has remained unchanged, and there was a decrease in the 374 

total biomass due to a decrease in the absolute abundances of Bacteroidaceae, 375 

Lachnospiraceae, Ruminococcaceae, and Oscillospiraceae.  Studies can account for these 376 

changes in bacterial biomass by performing 16S rRNA gene qPCR, and weighting their relative 377 

abundance data to get a more informative representation of the microbial community 378 

composition. 379 

 380 

Whilst 16S rRNA gene sequencing data provides information on the bacterial composition of 381 

the sample, it does not provide information regarding the potential functional capabilities of 382 

the bacteria and subsequent interactions with the host.  Metagenomic sequencing provides 383 

information on the collection of genomes in a sample, followed by assembly or mapping to a 384 

reference database which allows gene annotation.  However, metagenomic sequencing is 385 

more expensive than metataxonomics, and the data analysis can be more challenging.  In this 386 

study, we used Piphillin [12] to indirectly infer the abundance of functional genes as a 387 

straightforward and cost-free addition to the study.  Piphillin has certain advantages 388 

compared to other inferential software tools (including its ease of use, speed of output and 389 

the ability to select a reference database of interest [12]), but has not to our knowledge been 390 

applied before now for analysis of human gut metataxonomic data.  Our intention was to use 391 

this method as an exploratory technique, to later confirm with additional methods of analysis 392 

(qPCR, LC-MS, and an enzyme assay).  The Piphillin results here predicted a reduced bsh gene 393 

abundance in the recurrent antibiotic group compared to healthy controls, and our qPCR data 394 
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and enzyme assay were consistent with this.  Whilst Piphillin predicted a trend towards 395 

reduced secondary bile acid biosynthesis within the recurrent antibiotic group, it was not able 396 

to specifically predict baiCD gene abundance, and we used qPCR to explore this instead.  Our 397 

experience here and in other work with inferential algorithms is that whilst they may be a 398 

helpful and broadly accurate additional tool to start exploring the function of the microbiota, 399 

the current limitations in metagenomic annotation mean that results obtained in this way 400 

must be interpreted with caution.  However, the constant improvements in metagenome 401 

annotation are likely to make such tools ever-more accurate over time.     402 

 403 

Mass spectrometric techniques are the workhorse of bile acids analysis due to their sensitivity 404 

and specificity compared to other assays. High resolution time-of-flight mass spectrometry 405 

using a soft ionization method (electrospray ionization, ESI) coupled with ultra-performance 406 

liquid chromatography is our analytical method of choice as it can provide comprehensive 407 

coverage of bile acids and lipids species from complex biological samples needing minimal 408 

sample pre-treatment [15].  In our study, we found that antibiotic exposure had a significant 409 

impact upon the composition of the bile acid pool, which could have implications on host 410 

physiology.  In order to develop interventions that target the bile acid metabolic pathway, 411 

researchers need to be able to identify specific bacterial taxa responsible for these bile acid 412 

conversions.     413 

 414 

One difficulty with ‘omics’ methodologies is the complexity of the datasets generated, often 415 

with very large numbers of variables.  Software packages such as mixOmics offer researchers 416 

useful exploratory approaches to highlight important correlations between bacteria and 417 

metabolites. Integration of metataxonomic and metabonomic data can provide researchers 418 

with information on the potential roles of microorganisms with in an ecosystem, however it 419 

is important to remember that correlation does not equal causation. Strong correlations 420 

between bacteria and metabolites must be confirmed with further experiments, such as 421 

assays in vitro where researchers can assess the direct effects of a substrate/metabolite on 422 

the growth or activity of a microorganisms of interest. Examples of assays in vitro which may 423 

be used include batch cultures, mammalian cell line assays, enzyme assays, etc. It is also 424 

important to note that there is no consensus on which data integration method is the best 425 
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method to integrate metataxonomic and metabonomic data sets, as this is an actively 426 

developing field of research. 427 

 428 

bsh qPCR primer sets were designed to quantify the differences in bsh gene abundance in our 429 

samples.  We found a statistically significant decrease in bsh group 1a, group 1b, and group 430 

G3c/e gene abundance, together with a significant reduction in that of baiCD, associated with 431 

antibiotic use.  Even though these primers were optimised by us to target a select group of 432 

BSH-producing bacteria and were confirmed to not cross-react between groups, the bacterial 433 

strains used from each group during the optimisation stage were subject to availability. 434 

Therefore, it is reasonable to suggest that, due to their degenerate nature, the primers could 435 

also target the bsh gene in other bacterial species within a group which were not tested during 436 

the optimisation stage, thereby potentially providing a more comprehensive assessment of 437 

bsh gene abundance within the faecal samples. DNA sequencing would be required to 438 

categorically confirm the BSH-producing bacterial species targeted by these primer sets.  We 439 

also performed qPCR of the baiCD operon; whilst this operon is not found in all bacteria with 440 

7--dehydroxylating ability, it is present within the two bacterial species with high activity of 441 

this enzyme, Clostridium scindens and Clostridium hiranonis, and most strains of these species 442 

will be amplified by this PCR [19].  Furthermore, Clostridium scindens is particularly of interest 443 

within this context, since its loss from the gut microbiota in association with antibiotic use has 444 

been associated with altered gut bile acid metabolism and a potential vulnerability to 445 

Clostridium difficile infection [27].  Whilst this qPCR will not amplify certain bacteria with low 446 

secondary bile acid biosynthesis functionality (including Clostridium leptum and Clostridium 447 

sordeii), good correlation has been noted between baiCD PCR assay results and 7--448 

dehydroxylase activity in an in vitro assay, demonstrating that this is still a highly useful assay 449 

[19]. 450 

 451 

Whilst qPCR of bacterial genes is useful, similar to metataxonomic data, there are concerns 452 

that what is being assessed relates to which bacterial genes are present, rather than if those 453 

genes are being actively transcribed and the resultant functional effects.  As such, 454 

metatranscriptomics – the sequencing of RNA from within a microbial community – is of great 455 

interest for its ability to more directly establish gene transcription and therefore microbiota 456 

functionality.  However, there remain certain practical difficulties in undertaking such studies, 457 
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including the considerable cost, the computational complexity, and the difficulties in high-458 

quality RNA extraction and sequencing given its relative instability compared to DNA.  459 

Furthermore, whilst protocols have been described that aim to simplify collection of stool and 460 

preserve samples for subsequent streamlined combined metagenomic and 461 

metatranscriptomic analysis (e.g. via the addition of ethanol or RNAlater to samples) [29], the 462 

implications of these preservatives upon the quality of the metabolic profile obtained from 463 

the sample remain undefined.   464 

 465 

The quantification of gene abundance using qPCR data, metagenomic data, and Piphillin data 466 

cannot categorically confirm gene expression and functionality in vivo.  Therefore, we 467 

developed an enzyme activity assay to measure the amount of BSH activity in each sample 468 

through substantial adaptation of a plate-based precipitation assay [21].  Other groups have 469 

used a ninhydrin assay to measure BSH activity [23], [30]; however, these studies used pure 470 

bacterial strains, and in our experience, this assay is not sensitive enough to detect BSH 471 

activity within faecal water.  Whilst BSH activity does not require strict anaerobic conditions, 472 

7--dehydroxylation does [33], complicating development of a similar activity assay.  473 

However, an assay applying thin layer chromatography and radiolabelled cholic acid to human 474 

caecal aspirate or stool obtained after enema use to assess 7--dehydroxylase activity has 475 

been described [33], [32].  476 

 477 

In this study, we compared healthy people with patients taking antibiotics, and did not match 478 

the participants for other demographics.  There are a variety of variables that have been 479 

shown to influence the composition and/or functionality of the gut microbiota, which (in 480 

addition to antibiotics/ microbial infections) include diet, age, surgery, stress, BMI, and 481 

pregnancy[34]–[36].  As such, we are unable to say if the differences seen between our groups 482 

related purely to antibiotic use, or if there was a contribution from other factors.  Where 483 

studies compare healthy and diseased groups in attempting to generate novel hypotheses 484 

regarding the contribution of gut microbiota-bile acid interactions to the disease process, 485 

regard for these factors must be taken to ensure that control groups are appropriate.   486 

   487 

Future challenges regarding methodology within this area remain.  The relationship between 488 

the gut microbiota, bile acid metabolism and the host is complex and bidirectional, and 489 
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methodologies that further delineate this relationship are required.  Development of 490 

standardised pipelines for analysing these complex datasets – coupled with more 491 

standardised methods for integration of different data sets – are key immediate challenges.     492 

At present, whilst there is growing sophistication in our ability to define and correlate gut 493 

microbial and bile acid profiles, there is little work (particularly within humans) that has linked 494 

this back to systemic host effects.  Given the growing recognition that bile acids are signalling 495 

molecules with complex systemic effects upon the host, it is clearly of interest and importance 496 

to be able to link microbial and bile acid interplay to host physiological function, in relation to 497 

health and disease.   498 
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 614 

 615 

Figure legends: 616 

Figure 1: Antibiotics alters the gut microbiota composition in patients taking recurrent 617 

antibiotics compared to healthy controls. (A) Nonmetric multidimensional scaling (NMDS) 618 

plot showing the difference in gut microbiota composition of patients taking recurrent 619 

antibiotics and healthy controls (p < 0.01, PERMANOVA). (B) α diversity was decreased in 620 

patients taking recurrent antibiotics compared to healthy controls (*** p < 0.001, 621 

independent t-test). (C) Richness (total number of bacterial taxa observed) was decreased in 622 

patients taking recurrent antibiotics compared to healthy controls (** p < 0.01, Mann-623 

Whitney U test). (D) Extended error bar plot comparing the differences in the mean 624 

proportions of significantly altered families and the difference in the proportions of the means 625 

(White’s non-parametric t-test with Benjamini-Hochberg FDR). Plot only shows families where 626 

the difference between the proportions was greater than 1%. 627 

 628 

Figure 2:  Inference of bile-metabolising function from 16S data using Piphillin.  (A) Bile salt 629 

hydrolase KEGG orthologue counts (K01442) (* p < 0.05, Mann-Whitney U test). (B) Secondary 630 

bile acid biosynthesis KEGG orthologue counts (ko00121) (p > 0.05, Mann-Whitney U test).   631 
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 632 

Figure 3:  Multivariate analysis of UPLC-MS bile acid profiling data. (A) PCA scores plot (B) 633 

OPLS-DA scores plot (C) OPLS-DA S-plot, showing the contribution of bile acids to the 634 

separation of the two groups.  AB:  recurrent antibiotic treated patients; HC:  healthy controls; 635 

QC: quality controls.   636 

 637 

Figure 4:  Regularized CCA (rCCA) modelling of metataxonomic (16S rRNA gene sequencing 638 

data, family-level) and metabonomic data (bile acid data). (A) The representation of units for 639 

the first two canonical variates showing the correlations between variables in patients 640 

receiving recurrent antibiotics and healthy controls. (B) Correlation circle plot showing strong 641 

correlations between metataxonomic and metabonomic data (plot only shows variables with 642 

a correlation above 0.5). Variables projected in the same direction from the origin have a 643 

strong positive correlation, and variables projected in opposite directions form the origin have 644 

strong negative correlations. Variables that are at a farther distance from the origin have a 645 

stronger correlation. (C) Heatmaps of the rCCA similarity scores between metataxonomic and 646 

metabolomic data. Bacterial families outlined in black boxes clustered according to 647 

correlations with distinct groups of bile acids.  648 

 649 

Figure 5:  qPCR to quantify gene abundance of bile metabolising genes.  (A) bsh group 1a gene 650 

(** p < 0.01, Mann-Whitney U test); (B) bsh group 1b gene (* p < 0.05, Mann-Whitney U test); 651 

(C) bsh group 3c/e (** p < 0.01, Mann-Whitney U test); (D) baiCD gene (p < 0.05, Mann-652 

Whitney U test).   653 

 654 

Figure 6:  Bile salt hydrolase (BSH) enzyme activity assay.  Taurodeoxycholic acid was used as 655 

the substrate for the enzyme assay, and results are therefore expressed as rate of deoxycholic 656 

acid formation (* p < 0.05, Mann-Whitney U test).     657 

Tables: 658 

 659 
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Table 1. Primers used for 16S rRNA gene sequencing on the Illumina MiSeq. The forward 660 

primer mix was composed of four different forward primers, mixed at a ratio of 4:1:1:1 (28F-661 

YM:28F-Borrellia:28FChloroflex:28F-Bifdo). Bases in bold are the MiSeq adapter sequences. 662 

Primer name Primer sequence 

28F-YM 

(forward 

primer) 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGTTTGATYMTGGCTCAG 

28F-Borrellia 

(forward 

primer) 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGTTTGATCCTGGCTTAG 

28FChlorofle

x (forward 

primer) 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAATTTGATCTTGGTTCAG 

28F-Bifdo 

(forward 

primer) 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGTTCGATTCTGGCTCAG 

388R 

(reverse 

primer) 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGCTGCCTCCCGTAGGAG

T 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 
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Table 2. Primers sequence and PCR conditions for bsh and baiCD qPCR. 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

Group Primer Sequence (5’-3’) F/R 
Cycling 

Conditions 

Expected 

Product 

Size (bp) 

1a 

CACATATTGTGGCACGAACAATH

GAR TGGGG 
F 

95C for 10 

min, (95C 

for 15 sec, 

55C for 1 

min) x 40 

cycles 

570 
CTGTGCCCGGATACAGATTAACR

TAR TTRTT 

 

R 

1b 

CGGCGTTCCGCATTTYTAYGARA

A 

 

F 

95C for 10 

min, (95C 

for 15 sec, 

55C for 1 

min) x 40 

cycles 

318 
GTTCAATGCCAATCGGAATATCR

AAR TTRTT 

 

R 

3c/e 

TTTTGGCCGAACACTGGAYTAYG

ARTT 

 

F 

95C for 5 

min, (95C 

for 15 sec, 

54C for 30 

sec, 72 for 

10 min) x 40 

cycles 

774 
TCAACGGAGCCCAGAATATGRA

ARA AYTG 

 

R 

baiCD 

GGWTTCAGCCCRCAGATGTTCTT

TG 

 

F 

94C for 2 

min, (94C 

for 20 sec, 

52C for 30 

sec, 69C 

for 90 sec) x 

35 cycles, 

68C for 10 

min 

1300 
GAATTCCGGGTTCATGAACATT

CTKCKAAG 

 

R 



Supplementary Material: 

Supplementary Methods: Isolation of bacteria used as standards for bsh gene qPCR: 

Bacteroides plebius, Bacteroides ovatus, and Blautia obeum were previously isolated from the 

stool of a healthy 29 year-old male donor. Bacteroides plebius was isolated from Fastidious 

Anaerobe Agar plates (Acumedia, USA) with 5% horse blood (VWR, USA), Bacteroides ovatus 

was isolated from nutrient agar plates (Sigma-Aldrich, USA), and Blautia obeum was isolated 

from de Man, Rogosa and Sharpe agar plates (Sigma-Aldrich). 

 

DNA extraction was performed on the isolates using the EZNA Isolation Kit Bacterial DNA 

(Omega, USA) with the addition of a bead beating using the Bullet Blender Storm (speed 8 for 

3 min). A ~900 bp region of the 16S gene was amplified using previously published primers 

[1] and DNA was sequenced at Macrogen Europe and isolates were identified by performing 

a standard nucleotide BLAST of the 16S rRNA sequences (NCBI). 

 

 

 

 

 

 

 

 

 

 

 

 



  

Supplementary Figure 1:  Bile salt hydrolase grouping map. 

 



 

Supplementary Figure 2:  Univariate analysis of differences in specific bile acids between 

healthy participants and people treated with recurrent antibiotics.  (A) Taurocholic acid (* p 

< 0.05, Mann-Whitney U test); (B) Glycocholic acid (* p < 0.05); (C) Cholic acid (** p < 0.01); 

(D) Taurochenodeoxycholic acid (** p < 0.01); (E) Glycochenodeoxycholic acid (* p < 0.05); (F) 

Chenodeoxycholic acid (** p < 0.01); (G) Deoxycholic acid (** p < 0.01); (H) Lithocholic acid 

(** p < 0.01). 

 

 

 

 

 



 

Patient characteristics Value 

Sex Male (n= 2), female (n= 3) 

Age 63+/- 14 years 

Prior antibiotics 
Penicillins (n=3), cephalosporins (n=1), 

fluoroquinolones (n=2) 

Significant co-morbidities 

Benign prostatic hypertrophy (n=1), 

diverticulitis (n=1), urinary tract 

infection (n=1), inguinal hernia repair 

within past three months (n=1), 

suspected lung carcinoma (n=1) 

Supplementary Table 1:  Key clinical characteristics of patients included within study.   
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