Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Systemic inhibition of the membrane attack complex impedes neuroinflammation in chronic relapsing experimental autoimmune encephalomyelitis

Michailidou, Iliana, Jongejan, Aldo, Vreijling, Jeroen P., Georgakopoulou, Theodosia, de Wissel, Marit B., Wolterman, Ruud A., Ruizendaal, Patrick, Klar-Mohamad, Ngaisah, Grootemaat, Anita E., Picavet, Daisy I., Kumar, Vinod, van Kooten, Cees, Woodruff, Trent M., Morgan, B. Paul ORCID: https://orcid.org/0000-0003-4075-7676, van der Wel, Nicole N., Ramaglia, Valeria, Fluiter, Kees and Baas, Frank 2018. Systemic inhibition of the membrane attack complex impedes neuroinflammation in chronic relapsing experimental autoimmune encephalomyelitis. Acta Neuropathologica Communications 6 (1) , 36. 10.1186/s40478-018-0536-y

[thumbnail of System inhibition of membrane Acta Neuro Coomm BPMORGAN.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (15MB) | Preview

Abstract

The complement system is a key driver of neuroinflammation. Activation of complement by all pathways, results in the formation of the anaphylatoxin C5a and the membrane attack complex (MAC). Both initiate pro-inflammatory responses which can contribute to neurological disease. In this study, we delineate the specific roles of C5a receptor signaling and MAC formation during the progression of experimental autoimmune encephalomyelitis (EAE)-mediated neuroinflammation. MAC inhibition was achieved by subcutaneous administration of an antisense oligonucleotide specifically targeting murine C6 mRNA (5 mg/kg). The C5a receptor 1 (C5aR1) was inhibited with the C5a receptor antagonist PMX205 (1.5 mg/kg). Both treatments were administered systemically and started after disease onset, at the symptomatic phase when lymphocytes are activated. We found that antisense-mediated knockdown of C6 expression outside the central nervous system prevented relapse of disease by impeding the activation of parenchymal neuroinflammatory responses, including the Nod-like receptor protein 3 (NLRP3) inflammasome. Furthermore, C6 antisense-mediated MAC inhibition protected from relapse-induced axonal and synaptic damage. In contrast, inhibition of C5aR1-mediated inflammation diminished expression of major pro-inflammatory mediators, but unlike C6 inhibition, it did not stop progression of neurological disability completely. Our study suggests that MAC is a key driver of neuroinflammation in this model, thereby MAC inhibition might be a relevant treatment for chronic neuroinflammatory diseases.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Medicine
Publisher: BioMed Central
ISSN: 2051-5960
Date of First Compliant Deposit: 21 May 2018
Date of Acceptance: 16 April 2018
Last Modified: 05 May 2023 19:33
URI: https://orca.cardiff.ac.uk/id/eprint/111602

Citation Data

Cited 33 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics