Queries with Negation and Inequalities over Lightweight Ontologies

Victor Gutiérrez-Basulto, Yazmín Ibáñez-García, Roman Kontchakov, Egor V. Kostylev

Abstract

While the problem of answering positive existential queries, in particular, conjunctive queries (CQs) and unions of CQs, over description logic ontologies has been studied extensively, there have been few attempts to analyse queries with negated atoms. Our aim is to sharpen the complexity landscape of the problem of answering CQs with negation and inequalities in lightweight description logics of the DL-Lite and \(\mathcal{EL}\) families. We begin by considering queries with safe negation and show that there is a surprisingly significant increase in the complexity from \(\text{AC}^0\) to undecidability (even if the ontology and query are fixed and only the data is regarded as input). We also investigate the problem of answering queries with inequalities and show that answering a single CQ with one inequality over DL-Lite with role inclusions is undecidable. In the light of our undecidability results, we explore syntactic restrictions to attain efficient query answering with negated atoms. In particular, we identify a novel class of local CQs with inequalities, for which query answering over DL-Lite is decidable.

Keywords: description logics, ontological query answering, conjunctive queries with negation, inequalities, DL-Lite, EL

1. Introduction

In recent years, the use of ontologies to access data has become one of the most prominent applications of description logic (DL) technologies in the Semantic Web. In the ontology-based data access (OBDA) setting, the ‘plain’ data is enriched with the background domain knowledge, which is represented in the form of a DL ontology. This distinguishing feature of the OBDA paradigm provides the user with a friendlier vocabulary for accessing data and extends information systems with a means of querying potentially incomplete data.

In classical database theory, conjunctive queries (CQs) have long played a key role due to their attractive theoretical properties. Following in these footsteps, a vast amount of research on answering CQs in the context of OBDA has been conducted in the last decade, so that we now have a fairly clear landscape of the computational complexity of answering CQs over both lightweight and expressive ontology languages. Moreover, with the aim of achieving a realistic use of OBDA in data-intensive Web applications, special efforts have been invested into the design of ontology languages with the following two desirable properties. First, they must be expressive enough to capture essential modelling aspects of the application domain. Second, they must allow OBDA systems to scale to large amounts of data. The latter can be achieved, for example, by delegating query evaluation to a relational database management system (RDBMS) or a datalog engine. DLs in the DL-Lite (Calvanese et al., 2007b; Artale et al., 2009) and \(\mathcal{EL}\) (Baader et al., 2005) families were designed to meet these two requirements and underpin, respectively, the OWL 2 QL and OWL 2 EL profiles of the OWL 2 ontology language. Notably, answering CQs and unions of CQs (UCQs) over OWL 2 QL ontologies is in \(\text{AC}^0\) in data complexity, which enables a pure query rewriting approach to query answering in this case. Intuitively, one can rewrite a given query by including the knowledge provided by the ontology into an SQL query, which can then be answered by the RDBMS; see, e.g., (Calvanese et al., 2007b; Kikot et al., 2012) and references therein. Answering CQs (and UCQs) over OWL 2 EL ontologies is more complex, P-complete, and a pure query rewriting approach is not possible anymore. However, the so-called combined approach (Lutz et al., 2009; Kontchakov et al., 2010) allows one still to delegate query evaluation to the RDBMS. Roughly speaking, in the combined approach, not only the given query is rewritten but also the data is ‘completed’ with the knowledge of the ontology. A number of OBDA systems implementing these (and other) ideas have been developed; see, e.g., (Rodríguez-Muro et al., 2013; Lutz et al., 2013) and references therein.

 Conjunctive queries belong to the positive existential fragment of first-order logic and therefore, lack any means of expressing ‘complementation’ or ‘difference’. However, some natural queries require these constructs: for instance, retrieve ‘all staff members who do not belong to any trade union’ or retrieve ‘all students whose month of birth is not (i.e., different

\[1\] www.w3.org/TR/owl2-profiles
In order to overcome these shortcomings, extensions of CQs with some form of negation have been investigated in classical database theory and in different areas related to management of (incomplete) information, such as data exchange and reasoning about semi-structured data. In particular, the following three forms of negation have been advocated in the literature as important extensions of CQs: safe negation (CQ\(^\neg\)), guarded negation (NCQ) and inequalities (CQ\(^\neg\neg\)). Recently, the DL community, with a similar motivation, have also taken a look at extensions of CQs with safe negation and inequalities (Rosati, 2007; Gutiérrez-Basulto et al., 2012, 2013).

A well-known fact from database theory is that answering CQs with negated atoms can be much harder than answering plain CQs; this is the case, for instance, for open-world query answering under integrity constraints (Rosati, 2006), query answering in the context of data exchange (Fagin et al., 2005) or query answering using materialised views (Abiteboul and Duschka, 1999). Rosati (2007) and Gutiérrez-Basulto et al. (2012) showed that the increase in the complexity is unfortunately dramatic in the OBDA setting: in striking contrast to the highly tractable AC\(^0\) upper bound for data complexity of unions of CQs, the problems of answering unions of CQ\(^\neg\) and unions of CQ\(^\neg\neg\) turned out to be undecidable even over a very basic ontology language of \(DL-Lite_\text{core}\). The situation is similar for safe negation over \(EL:\) answering unions of CQ\(^\neg\) is undecidable. Remarkably, Klenke (2010) showed that in the language of \(EL\) extended with the empty concept (⊥) or, alternatively, under the standard unique name assumption (UNA), answering a single CQ\(^\neg\) is also undecidable. Interestingly, extending CQs and UCQs with negation has an effect not witnessed before in ontological query answering: there is a difference in the computational behaviour of unions of CQs and single CQs. In particular, a proof of undecidability of answering UCQs\(^\neg\) (or UCQs\(^\neg\neg\)) cannot be straightforwardly adapted to the case of CQs\(^\neg\neg\) (respectively, CQs\(^\neg\)). The intuitive reason is that, in the reduction of undecidable problems (such as the \(\mathbb{N} \times \mathbb{N}\)-tiling problem), each component of the union takes care of one of the several ‘conditions’ in the undecidable problem (colouring condition, matching condition, etc.), and it is not entirely obvious how to obtain a similar effect using a single query instead.

The addition of negation to CQs not only brings an increase in the computational complexity but also introduces further technical difficulties for the development of algorithmic approaches since negated atoms are not preserved under homomorphisms (Deutsch et al., 2008). As a consequence, to devise algorithms for answering CQ\(^\neg\) and CQ\(^\neg\neg\) over lightweight DLs we cannot directly use techniques based on the construction of the canonical model or the chase (Calvanese et al., 2007b; Kontchakov et al., 2010). Due to this reason, up to now, the only known results for answering CQs with negation over lightweight DLs are coNP-hardness for answering CQ\(^\neg\) and CQ\(^\neg\neg\) over \(DL-Lite_\text{core}\) (Rosati, 2007; Gutiérrez-Basulto et al., 2012), and the remarkable undecidability for CQ\(^\neg\) over \(EL_A\) (Klenke, 2010). Hence, the aim of this article is to sharpen the complexity picture for answering queries with safe negation and inequalities over lightweight ontologies.

In view of the additional complexity introduced by the presence of negative atoms in CQs, we also explore different syntactic restrictions on CQ\(^\neg\) and CQ\(^\neg\neg\) proposed in the literature. A robust approach to attain decidability for undecidable logics is to allow only for guarded quantification; this is the case, for example, of the guarded fragment of first-order logic and its extension with fixpoint operators (Andréka et al., 1998; Grädel and Walukiewicz, 1999). Inspired by these ideas, the notion of guarded negation was recently introduced in the context of decidable fragments of first-order logic, and later studied as an extension of positive existential queries (Bárány et al., 2011, 2012). In particular, Bárány et al. (2012) showed that, under the open-world semantics, answering first-order queries with guarded negation over frontier-guarded tuple-generating dependencies (fg-tgds) is decidable. Using this result as a departure point, we study the impact of guarded negation on answering CQ\(^\neg\neg\) over lightweight DLs. In another line, we look at restrictions on inequality atoms. Specifically, in the spirit of Arenas et al. (2011), we investigate possible ways of limiting the ‘binding’ of the variables occurring in inequalities. Finally, it has been observed that the number of negated atoms in a query can have an impact on the complexity (Klug, 1988; Fagin et al., 2005; Arenas et al., 2011; Bárány et al., 2012). So, we analyse the influence of this parameter on the complexity of answering CQs with negated atoms over lightweight DLs.

Summary of the Obtained Results. Our contributions can roughly be divided according to the two different forms of negation we explored: safe (including guarded) negation and inequalities; see Table 1 for a summary.

For CQs with safe negation, we first construct a CQ\(^\neg\) with a single negated atom and an ontology in \(EL_L\), an expressive member of the \(EL\) family, such that answering the query over the ontology amounts to checking whether the Turing machine encoded in the ontology terminates on the input encoded in the data. It follows that answering CQ\(^\neg\) over \(EL_L\) is undecidable even in the case where only the data is regarded as input (the ontology and the query are fixed, which corresponds to the data complexity). Having this result at hand, we describe how \(EL_L\) concept inclusions can be translated into a union of CQ\(^\neg\) over a \(DL-Lite_\text{core}\) ontology and thereby establish undecidability of answering unions of CQ\(^\neg\) over \(DL-Lite_\text{core}\). We then show that the union of CQ\(^\neg\) constructed in our undecidability proof can be replaced (preserving answers) by a single CQ\(^\neg\) but at a price of adding a number of concept and role inclusions to the ontology. Consequently, answering CQ\(^\neg\) over \(DL-Lite_\text{ext}\) is undecidable. (We note in passing that the transformation, however, is more general and applicable to a large class of unions of CQ\(^\neg\) and CQ\(^\neg\neg\) over ontologies in languages with role inclusions.) Finally, we refine the borderline of undecidability for answering unions of CQ\(^\neg\) and observe that the result holds for a fixed union of three CQ\(^\neg\) over \(DL-Lite_\text{core}\) and a fixed union of two CQ\(^\neg\) over \(EL_A\).

In the light of these negative results for safe negation we turn to a more restricted form of negation, guarded negation. Since frontier-guarded tuple-generating dependencies subsume \(EL_L\) and CQs with guarded negation can express negative constraints in the ontology (concept and role inclusions with ⊥), the results
by Bárány et al. (2012) apply to both \(E.LI^\perp \) and \(DL-Lite^H \): answering unions of CQs with guarded negation is in coNP in data complexity and in P if each of the constituent CQs contains at most one negated atom. We thus concentrate on establishing the matching lower complexity bounds: we construct an ontology with one negative concept inclusion (which belongs to all our DLs) and a CQ with one unary negated atom for P-hardness and a CQ with two unary negated atoms for coNP-hardness in data complexity.

The second form of negation in CQs we consider is inequalities. First, we prove that answering CQs\(^*\) over \(DL-Lite^H \) is undecidable. This result could be established using the method mentioned above: since answering unions of CQs\(^*\) over \(DL-Lite^H \) is undecidable (Gutiérrez-Basulto et al., 2012), one could use additional concept and role inclusions to ‘encode’ the union into a single query. Following this route we would, however, obtain a query with multiple inequalities. Instead, we provide a more elaborate but direct proof using a CQ\(^*\) with a single inequality. Using the ideas developed for safe negation, we also establish undecidability of answering unions with at least three CQs\(^*\) over \(DL-Lite^H \).

As the next step, we consider a restriction on the ‘binding’ of variables occurring in inequality atoms and identify a novel class of CQs\(^\ast\), local CQs\(^\ast\), for which the query answering problem over \(DL-Lite^H \) ontologies is decidable. We also establish the lower complexity bounds over \(DL-Lite^H \). P-hardness with one local inequality and coNP-hardness with two local inequalities; only coNP-hardness over \(DL-Lite^H \) was known (Rosati, 2007).

Plan of the Article. In Section 2, we introduce the basics of our DLs and query languages. In Section 3, we focus on queries with safe negation. We begin by presenting our undecidability results for answering CQs\(^\ast\) and then show the lower complexity bounds for answering CQs with guarded negation. In Section 4, we present our results on answering queries with inequalities. We first establish undecidability of answering CQs\(^*\) with one inequality over \(DL-Lite^H \). Then, in order to attain decidability, we introduce a syntactic restriction on inequalities, show the lower complexity bounds for this case and develop a decision procedure to prove decidability of the restricted problem.

This article is an extended and improved version of the conference paper (Gutiérrez-Basulto et al., 2013). Specifically, we extend our results along two directions: the range of DLs in-
cludes ontology languages of the \(E\mathcal{L}\) family; the range of query languages includes \(CQs\) with guarded negation (Section 3.3) and local inequalities (which is a novel class that guarantees decidability, see Section 4.3). We also improve the presentation of the proofs, establish close connection between \(E\mathcal{L}\), concept inclusions and \(CQs\) with safe negation over \(DL-Lite^H\) ontologies and sharpen the undecidability boundary in terms of the number and structure of \(CQs\) with safe negation over \(DL-Lite\) and extensions of \(E\mathcal{L}\).

2. Preliminaries

2.1. Ontology Languages

Ontology languages use a vocabulary that comprises individual names \(c_1, c_2, \ldots\), concept names \(A_1, A_2, \ldots\), and role names \(P_1, P_2, \ldots\). Ontologies (TBoxes in the DL parlour) consist of concept and role inclusions built from concepts and roles using the constructors available in the ontology language, as described below.

Roles \(R\) and basic concepts \(B\) in \(DL-Lite\) (Artale et al., 2009) are defined by the following grammar:

\[
R ::= P_i | P_i^\neg, \quad (1)
\]

\[
B ::= \top | A_i | \exists R. \quad (2)
\]

Roles of the form \(P_i^\neg\) are called inverse roles and concepts of the form \(\exists R\) are called unqualified existential restrictions. We identify \(R^\neg\) with \(P_i\) if \(R = P_i^\neg\). A TBox in \(DL-Lite^H\) is a finite set of positive and negative concept inclusions of the following form, respectively:

\[
B_1 \sqsubseteq B_2, \quad B_1 \cap B_2 \sqsubseteq \bot.
\]

A TBox in \(DL-Lite^H\) can also contain a finite number of positive and negative role inclusions of the form

\[
R_1 \sqsubseteq R_2, \quad R_1 \cap R_2 \sqsubseteq \bot.
\]

Concepts in \(E\mathcal{L}\) (Baader et al., 2005) are constructed from concept names by means of (qualified) existential restrictions and intersection; more precisely, they are defined by the following grammar:

\[
C ::= \top | A_i | \exists R.C | C_1 \cap C_2,
\]

where \(R\) is a role; see (1). An \(E\mathcal{L}\) TBox is a finite set of positive and negative concept inclusions of the form

\[
C_1 \sqsubseteq C_2, \quad C \sqsubseteq \bot.
\]

An \(E\mathcal{L}\) TBox contains only positive inclusions. Existential restrictions of \(DL-Lite\) are a particular kind of existential restrictions in \(E\mathcal{L}\): \(\exists R\) is a shortcut for \(\exists R. \top\). Thus, every concept inclusion in \(DL-Lite\) is also a concept inclusion in \(E\mathcal{L}\).

Concepts in \(E\mathcal{L}\) are defined in the same way as in \(E\mathcal{L}\) except that they cannot use inverse roles. An \(E\mathcal{L}\) TBox is a set of positive and negative inclusions for \(E\mathcal{L}\) concepts, while an \(E\mathcal{L}\) TBox contains only positive inclusions.

An ABox \(\mathcal{A}\) is a finite set of assertions of the form \(A_i(c_j)\) and \(P_i(c_j, c_k)\). A knowledge base (KB) \(\mathcal{K}\) is a pair \((T, \mathcal{A})\), where \(T\) is a TBox and \(\mathcal{A}\) an ABox. The size \(|T|\) (respectively, \(|\mathcal{A}|\)) of a TBox \(T\) (respectively, an ABox \(\mathcal{A}\)) is the number of symbols required to write it down.

An interpretation \(I = (\Delta^I, \tau^I)\) is a non-empty domain \(\Delta^I\) with an interpretation function \(\tau^I\) that assigns an element \(c_i^I \in \Delta^I\) to each individual name \(c_i\), a subset \(\Delta^I_j \subseteq \Delta^I\) to each concept name \(A_i\), and a binary relation \(P_i^I \subseteq \Delta^I \times \Delta^I\) to each role name \(P_i\).

Remark 1. We do not adopt the unique name assumption (UNA), which requires \(c_i^I \neq c_j^I\) for all distinct individual names \(c_i\) and \(c_j\). Our results on safe and guarded negation in Section 3 clearly do not depend on this choice. For inequalities, the proofs in Section 4, which concern \(DL-Lite\), are applicable to the case of UNA as well. Some undecidability and lower complexity bounds constructions, however, can be streamlined if the UNA is adopted (possible simplifications are indicated in the proofs). It is of interest to note that CQ\(^*\) answering over \(E\mathcal{L}\) is tractable in general (Rosati, 2007) and undecidable if the UNA is adopted (Klenke, 2010). In the \(DL-Lite\) family, on the other hand, the UNA does not make such a drastic effect because the languages have negative concept inclusions (which can express a sort of local UNA).

The interpretation function \(\tau^I\) is extended to roles and complex concepts in the standard way:

\[
(P_i^\neg)^I = \{ (d', d) \in \Delta^I \times \Delta^I \mid (d, d') \in P_i^I \},
\]

\[
\tau^I = \Delta^I,
\]

\[
(\exists R.C)^I = \{ d \in \Delta^I \mid \text{there is } d' \in C^I \text{ with } (d, d') \in R^I \},
\]

\[
(C_1 \cap C_2)^I = C_1^I \cap C_2^I.
\]

The satisfaction relation \(\models\) is also standard:

\[
I \models C_1 \sqsubseteq C_2 \iff C_1^I \subseteq C_2^I,
\]

\[
I \models C_1 \sqsubseteq \bot \iff C_1^I = \emptyset,
\]

\[
I \models R_1 \sqsubseteq R_2 \iff R_1^I \subseteq R_2^I,
\]

\[
I \models R_1 \cap R_2 \sqsubseteq \bot \iff R_1^I \cap R_2^I = \emptyset,
\]

\[
I \models A_i(c_j) \iff c_j^I \in A_i^I,
\]

\[
I \models P_i(c_j, c_k) \iff (c_j^I, c_k^I) \in P_i^I.
\]

A KB \(\mathcal{K} = (T, \mathcal{A})\) is consistent (satisfiable) if there is an interpretation \(I\) satisfying all inclusions in \(T\) and assertions in \(\mathcal{A}\). In this case we write \(I \models \mathcal{K}\) (as well as \(I \models T\) and \(I \models \mathcal{A}\)) and say that \(I\) is a model of \(\mathcal{K}\) (as well as of \(T\) and \(\mathcal{A}\)). We also write \(T \models \alpha\) if a concept or role inclusion \(\alpha\) is satisfied in all models of \(T\); in this case we say that \(\alpha\) is entailed by \(T\).

Remark 2. In \(DL-Lite^H\) TBoxes, we will often use concept inclusions of the form \(B \sqsubseteq C\), where \(B\) is a basic concept and \(C\) an \(E\mathcal{L}\) concept. This is justified because, given such a concept inclusion, one can construct (in polynomial time) a \(DL-Lite^H\) TBox \(T\) which is a model conservational extension of \(\alpha\): that is,
2. Query Languages

A conjunctive query (CQ) $q(x)$ is a first-order formula of the form $\exists y \varphi(x, y)$, where x and y are tuples of variables and φ is a conjunction of concept atoms $A_i(t)$ and role atoms $P_i(t', t)$ with t and t' terms, i.e., individuals or variables from x, y. We call variables in x answer variables and those in y (existentially quantified) variables.

A conjunctive query with safe negation (CQ$^-$) is an expression of the form $\exists y \varphi(x, y)$, where φ is a conjunction of literals, that is, positive (concept and role) atoms and negated atoms, such that each variable occurs in at least one positive atom. A CQ$^+$ is a CQ$^-$ with at most one negative atom. A CQ$^+$ is said to be a conjunctive query with guarded negation (GNCQ) if, for each negative atom, the query contains a positive atom, a guard, containing all the variables of the negative atom (thus, in contrast to general CQ$^-$s, all variables of any negative atom in a GNCQ must occur in the same positive atom).

A conjunctive query with inequalities (CQ$^\#$) is an expression of the form $\exists y \varphi(x, y)$, where φ is a conjunction of positive atoms and inequalities $t \neq t'$, for terms t and t'.

A union of conjunctive queriers (UCQ) is a disjunction of CQs that share the same tuple of answer variables; a UCQ$^-$ and UCQ$^+$ are defined accordingly. Without loss of generality, in this article we always assume that the tuples of quantified variables in UCQ components are pairwise disjoint.

Given a query $q(x)$, we usually write q if x is clear from the context (or irrelevant). The size $|q|$ of q is the number of symbols required to write it down.

We will often regard a CQ q (possibly, with negative atoms) as a set of its atoms and assume that q contains $P_i(t, t')$ if it contains $P_i(t', t)$ (and similarly for the negative atoms). We extend this convention to basic concepts and assume that q contains unary ‘atoms’ $B(t)$ and $B'(t')$ if it contains $R(t, t')$, where $B = \exists R$ and $B' = \exists R'$. We will also associate with q an undirected graph, called the primal graph of q, whose vertices are the terms of q and which has an edge between t and t' if and only if the query contains a positive atom of the form $R(t, t')$ (note that the negative atoms are not taken into account).

A query $q(x)$ is called Boolean if x is empty. A Boolean CQ$^-$ is tree-shaped if it does not contain individuals as terms and its primal graph is a tree (a tree is any connected undirected graph without simple cycles).

Let $q(x) = \exists y \varphi(x, y)$ be a query with $x = x_1, \ldots, x_k$, I an interpretation and π a map from the set of terms of q to Δ^I with $\varphi(c) = c'$, for all individual names c in q. We call π a match for q in I if I (as a first-order model) satisfies φ under a variable assignment mapping each variable z of φ to $\pi(z)$. A k-tuple of individual names $c = c_1, \ldots, c_k$ is an answer to q in I if there is a match for q in I with $\pi(c_1) = c_1'$ (in this case π is also a match for the Boolean query $q(c)$ in I). We say that c is a certain answer to q over a KB K and write $K \models q(c)$ if c is an answer to q in all models of K. For a Boolean query q, if there is a match for q in every model of K, that is, if the empty tuple is a certain answer, then we say that the certain answer is yes (or that q has a positive answer over K).

2.3. Canonical Interpretation for DL-Lite$^H_\text{core}$

Let $K = (\mathcal{T}, \mathcal{A})$ be a DL-Lite$^H_\text{core}$ knowledge base. We can consider the ABox \mathcal{A} as an interpretation and extend the notation for the satisfaction relation \models to roles: $\mathcal{A} \models R(c, c')$ abbreviates $P(c, c') \in \mathcal{A}$ if $R = P$ and $P'(c, c') \in \mathcal{A}$ if $R = P'$. Similarly, for a basic concept B, we use $\mathcal{A} \models B(c)$ as a shortcut for $A(c) \in \mathcal{A}$ if $B = A$ and for $\mathcal{A} \models R(c, c')$, for some c', if $B = \exists R$.

The canonical interpretation C_K of K is an interpretation with the domain Δ^K comprising all elements of the form d_{B_1, \ldots, B_n}, for an individual name c and roles R_1, \ldots, R_n, $n \geq 0$, such that

- if $n \geq 1$ then there is a basic concept B with $\mathcal{A} \models B(c)$ and $\mathcal{T} \models B \sqsubseteq \mathcal{R}_1$ but $\mathcal{A} \not\models B(c, c')$, for all c' and R with $\mathcal{T} \models R \sqsubseteq R_1$;
- $\mathcal{T} \models \exists R_{i-1} \sqsubseteq \mathcal{R}_i$ but $\mathcal{T} \not\models R_{i-1} \sqsubseteq R_i$, for each $i, 1 < i \leq n$.

and the interpretation function C_K defined for individual names c, concept names A and role names P as follows:

$$C_K = d_c, \quad A^K = \{ d_c \mid \mathcal{A} \models B(c) \text{ and } \mathcal{T} \models B \sqsubseteq A \} \cup \{ d_{B_1, \ldots, B_n} \mid n \geq 1, \mathcal{T} \models \exists R^c \sqsubseteq A \},$$

$$P^K = \{ (d_{c_1}, d_{c_2}) \mid \mathcal{A} \models R(c_1, c_2) \text{ and } \mathcal{T} \models R \sqsubseteq P \} \cup \{ (d_{B_1, \ldots, B_n}, d_{B'_1, \ldots, B'_n}) \mid n \geq 1, \mathcal{T} \models R_\mathcal{B} \sqsubseteq P^\mathcal{B} \} \cup \{ (d_{R_1, \ldots, R_n}, d_{R'_1, \ldots, R'_n}) \mid n \geq 1, \mathcal{T} \models R_\mathcal{B} \sqsubseteq P^\mathcal{B} \}.$$
2.4. Data Complexity

In OBDA scenarios the size of the query and the TBox (ontology) is usually much smaller than the size of the ABox (data). This is why we explore the data complexity (Vardi, 1982) of the query answering problem, that is, we assume that only the ABox is considered as part of the input. Formally, let \(T \) be a TBox and \(q(x) \) a query in one of the classes defined above. We are interested in the following family of problems:

\[
\text{CERTAIN ANSWERS}(q, T)
\]

\textbf{Input:} An ABox \(\mathcal{A} \) and a tuple of individuals \(c \).

\textbf{Question:} Is \(c \) a certain answer to \(q(x) \) over \((T, \mathcal{A}) \)?

3. Answering CQs with Safe and Guarded Negation

In this section we study queries with safe and guarded negation. Rosati (2007) established initial results on the complexity of answering such queries. Specifically, it was shown that answering CQs\(^{-1}\) over knowledge bases that admit so-called saturated models (and, in particular, contain no negative inclusions) has the same complexity as answering CQs; this result thus applies to \(\mathcal{EL} \), \(\mathcal{ELI} \) and the RDFS fragment of \(\mathcal{DL-Lite}_{\text{core}} \). It was also shown that, in contrast, answering unions of CQs with safe negation over \(\mathcal{DL-Lite}_{\text{core}} \) and \(\mathcal{EL} \) is undecidable. The proofs of the undecidability results regard, along with the ABox, both the TBox and the query as part of the problem input, which corresponds to the combined complexity (Vardi, 1982). We begin this section by a transparent reduction of the halting problem for deterministic Turing machines to answering a single fixed Boolean CQ\(^{-1}\) over \(\mathcal{ELI} \) KBs with a fixed TBox (Theorem 3), which proves undecidability of CQ\(^{-1}\) answering over \(\mathcal{ELI} \) even in data complexity. Then, in Lemma 4 we establish a close correspondence between \(\mathcal{ELI} \) TBoxes and unions of CQs\(^{-1}\) over \(\mathcal{DL-Lite}_{\text{core}} \) TBoxes, which in particular implies undecidability of answering unions of CQs\(^{-1}\) over \(\mathcal{DL-Lite}_{\text{core}} \) in data complexity (Corollary 5). Another result following from Theorem 3 is undecidability of answering unions of two CQs\(^{-1}\) over \(\mathcal{EL} \) (Corollary 6); the case of one CQ\(^{-1}\) is, however, left open.

We then proceed to show, in Lemma 7, that the union of tree-shaped CQs\(^{-1}\) in the proof of Corollary 5 can be replaced by a single CQ\(^{-1}\) and a number of role inclusions. Thus, we extend the undecidability result to the problem of answering CQs with safe negation over \(\mathcal{DL-Lite}_{\text{core}} \). We point out that the transformation of Lemma 7 is general and may be of wider interest; in particular, it is also applicable to plain CQs and CQs with inequalities.

In Theorem 9, we explore the limits of undecidability and prove that answering unions of three CQs\(^{-1}\) over \(\mathcal{DL-Lite}_{\text{core}} \) (without role inclusions) is undecidable. We leave the case of unions with one or two disjuncts as an open problem.

Finally, we turn to the problem of answering CQs with guarded negation, which is known (Bárány et al., 2012) to be decidable and in coNP in data complexity (in P for GNCQs with one negated atom) over lightweight DLs, and establish matching lower bounds over a \(\mathcal{DL-Lite}_{\text{core}} \) TBox with a single negative concept inclusion.

3.1. Safe Negation: Undecidability over \(\mathcal{ELI} \)

Our undecidability results are obtained by reduction of the halting problem for deterministic Turing machines. The key observation is that a configuration of a Turing machine (that is, the content of the tape, the current state and the position of the head at a particular step of a computation) can be written down on a sequence of domain elements with a role, \(T \), pointing to the representation of the next cell of the tape. Then a computation of the Turing machine can be thought of as a two-dimensional grid, where another role, \(S \), points to the representation of the cell in the successive configuration.

In order to establish the required two-dimensional grid, we are going to use the following Boolean CQ\(^{-1}\): \(q_1 \):

\[
\exists x_1, y_1, z_1, u_1 \ (S(x_1, y_1) \land T(x_1, z_1) \land S(z_1, u_1) \land \neg T(y_1, u_1)).
\]

(3)

It can be readily seen that in any interpretation \(I \) where \(q_1 \) has a negative answer, that is, \(I \not\models q_1 \), for every four elements forming the three sides of a square, there is a \(T \)-edge that completes the square, as shown in Fig. 1. This property can also be expressed by the following first-order sentence:

\[
S(x_1, y_1) \land T(x_1, z_1) \land S(z_1, u_1) \rightarrow T(y_1, u_1),
\]

where all variables are universally quantified. Indeed, sentence (3') holds in every model of a KB \(\mathcal{K} \) if and only if query (3) has a negative answer over \(\mathcal{K} \). In other words, sentence (3') is equivalent to the negation of the query. In the sequel, we will often prefer to represent Boolean CQs with safe negation (as well as with inequalities) in their negated form, that is, as implications with all variables universally quantified.

Once the grid has been established, we can use the expressive description logic \(\mathcal{ELI} \) to ensure that the elements of the grid encode successive configurations in a computation of a given deterministic Turing machine. This observation leads us to our first undecidability result.

Theorem 3. There are a Boolean CQ\(^{-1}\) \(q \) and an \(\mathcal{ELI} \) TBox \(T \) such that the problem \text{CERTAIN ANSWERS}(q, T) is undecidable.
Let q be the Boolean CQ$^{=i}$ given by (3) and let T be an \mathcal{ELL}_\bot TBox containing the following concept inclusions:

$$H_q \cap C_a \subseteq \exists S.(C_{a'} \cap D^i_{\sigma}),$$

for $\delta(q, a) = (q', a', \sigma')$, (4)

$$H_0 \cap C_a \subseteq \exists S.C_a,$$

for $a \in \Gamma$, (5)

$$H_0 \subseteq D_{-1} \cap D_{+1},$$

for $q \in Q$, (6)

$$\exists T.D^i_{-1} \subseteq H_q,$$

for $q \in Q$, (7)

$$\exists T.D^i_{+1} \subseteq H_q,$$

for $q \in Q$, (8)

$$\exists T.D_{-1} \subseteq H_0 \cap D_{-1},$$

(9)

$$\exists T.D_{+1} \subseteq H_0 \cap D_{+1},$$

(10)

$$I \subseteq \exists T.(I \cap C_{\bot}),$$

(11)

$$H_{\bot} \subseteq \bot.$$

(12)

For every input $w = a_1 \ldots a_n \in \Gamma^*$, we take the following ABox \mathcal{A}_w with individual names c_1, \ldots, c_n:

$$H_{q_0}(c_1), \quad C_{a_i}(c_i) \quad \text{and} \quad T(c_i, c_{i+1}), \quad \text{for } 1 \leq i < n, \quad I(c_n).$$

We claim that $(T, \mathcal{A}_w) \not\models q$ if and only if M does not accept w.

Consider a model I of (T, \mathcal{A}_w) with $I \not\models q$. Then, by the definition of the ABox and (11), there exists an infinite sequence of (not necessarily distinct) domain elements d_1, d_2, \ldots that encode the initial configuration in the sense that $(d_i, d_{i+1}) \in T^i$ for all $i \geq 1$, $d_i \in H^i_{q_0}, \quad d_i \in C^i_a$, for each $1 \leq i \leq n$, and $d_i \in C^i_\bot$ for all $i > n$. By (6) and (10), $d_i \in H^i_0$ for all $i > 1$. Then, by (4) and (5), there exist elements d'_i, d''_i, \ldots such that $(d_i, d'_i) \in T^i$. Since $I \not\models q$, they form another T-connected segment, that is, $(d'_i, d''_i) \in T^i$ for all i, which represents the second configuration of the computation. Indeed, by (5), the symbols in the cells not under the head are preserved by the transition. On the other hand, by (4), the symbol in the cell under the head is changed according to the transition function δ of M, and the new head position and state are recorded in the concept D^i_{σ}. By (7) and (8), the recorded head position and the state are passed onto the correct cell. Then, by (6), the domain element representing the head, say, d_{i}', belongs to $D^i_{\sigma'}$, whence, by (10), all d'_{i} with $i > k$ belong to $D^i_{\sigma'}$ and H^i_0. Similarly, by (6) and (9), $d'_{i} \in H^i_0$ for all $i < k$. Therefore, again, all cells that are not under the head belong to H^i_0. By the same argument, there exists a respective sequence of elements for each configuration of the computation. Finally, (12) guarantees that the accepting state never occurs in the computation, that is, M does not accept w.

Conversely, if the computation of M on w is non-accepting then we can encode it by an infinite two-dimensional grid interpretation satisfying (T, \mathcal{A}_w) but not q.

Since the problem of deciding whether a given deterministic machine accepts a given input is undecidable, we obtain the claim of the theorem.

Unlike \mathcal{ELL}_\bot, DL-Litecore does not have qualified existential restrictions and so, we cannot propagate information about the contents of the tape and the position of the head using concept inclusions (4)–(5) and (7)–(11). Nevertheless, we show that
\(\mathcal{ELI}_c\) concept inclusions can be `encoded` over \(\mathcal{DL-Lite}_c\) with the help of additional concept inclusions and unions of CQs\(^{-1}\).

We illustrate the main idea of our second undecidability result for answering unions of CQs\(^{-1}\) over \(\mathcal{DL-Lite}_c\) on two examples. Consider first the following Boolean CQ\(^{-1}\) \(q_2\):

\[
\exists x_2, y_2 \ (T(x_2, y_2) \land \neg R(y_2, x_2)),
\]

or in negated form:

\[
T(x_2, y_2) \rightarrow R(y_2, x_2).
\]

It can be easily seen that \(I \not\models q_2\) if and only if \(I \models T \subseteq R\), for any interpretation \(I\). Thus, one can think of a role inclusion as a negated CQ\(^{-1}\). Then, by Remark 2, we can encode any \(\mathcal{ELI}_c\) concept inclusion of the form \(B \sqsubseteq C\), for a basic concept \(B\), as a \(\mathcal{DL-Lite}_c\) TBox and a Boolean UCQ\(^{-1}\). Note that a set of role inclusions is true in an interpretation \(I\) if and only if none of the corresponding queries have a positive answer in \(I\), that is, their union has a negative answer in \(I\).

For our second example, consider an \(\mathcal{ELI}_c\) concept inclusion \(B_1 \sqcap \exists R_2B_2 \sqsubseteq A\). Evidently, this concept inclusion is satisfied in \(I\) if and only if the following Boolean CQ\(^{-1}\) has a negative answer in \(I\):

\[
\exists x, y \ (B_1(x) \land R(x, y) \land B_2(y) \land \neg A(x)).
\]

So, we can also think of concept inclusions of the form \(C \sqsubseteq A\), for an \(\mathcal{ELI}\) concept \(C\) and a concept name \(A\), simply as (tree-shaped) Boolean queries with one safe negation.

Taking stock, any \(\mathcal{ELI}_c\) concept inclusion can be encoded as a \(\mathcal{DL-Lite}_c\) TBox and a Boolean UCQ\(^{-1}\), and we thus arrive at the following lemma.

Lemma 4. For any \(\mathcal{ELI}_c\) TBox \(T\), one can construct a \(\mathcal{DL-Lite}_c\) TBox \(T'\) and a Boolean UCQ\(^{-1}\) \(q'\) such that

- every model \(I\) of \(T\) with \(I \not\models q'\) is also a model of \(T'\), and
- every model of \(T\) can be extended to a model \(I\) of \(T'\) with \(I \not\models q'\) by interpreting fresh names in \(T'\).

As a corollary of Theorem 3 and Lemma 4 we immediately obtain undecidability of answering unions of CQs\(^{-1}\) over \(\mathcal{DL-Lite}_c\) KBs.

Corollary 5. There is a Boolean UCQ\(^{-1}\) \(q\) and a \(\mathcal{DL-Lite}_c\) TBox \(T\) such that \(\text{CertainAnswers}(q, T)\) is undecidable.

Observe that the TBox in the proof of Theorem 3 belongs to \(\mathcal{EL}\) except for concept inclusions (8), (10) and (12). Consider now a UCQ\(^{-1}\) comprising \(\exists x H_{\phi}(x)\) and queries (3) and (13). By replacing the inverse role \(T^{-}\) in (8) and (10) by \(R\) and removing the negative concept inclusion (12), we can strengthen the undecidability result for UCQ\(^{-1}\) over \(\mathcal{EL}\) KBs established by Rosati (2007).

Corollary 6. (i) There are a union \(q\) of two Boolean CQs\(^{-1}\) and an \(\mathcal{ELI}_c\) TBox \(T\) such that \(\text{CertainAnswers}(q, T)\) is undecidable.

\[
q_1 = \exists x_1, y_1, z_1, u_1 \ (S(x_1, y_1) \land T(x_1, z_1) \land S(z_1, u_1) \land \neg T(y_1, u_1)),
\]

\[
q_2 = \exists x_2, y_2 \ (T(x_2, y_2) \land \neg R(y_2, x_2));
\]

(ii) There are a union \(q\) of a Boolean CQ and two CQs\(^{-1}\) and an \(\mathcal{EL}\) TBox \(T\) such that \(\text{CertainAnswers}(q, T)\) is undecidable.

(iii) There are a union \(q\) of a Boolean CQ and a CQ\(^{-1}\), and an \(\mathcal{ELI}_c\) TBox \(T\) such that \(\text{CertainAnswers}(q, T)\) is undecidable.

The last result is in stark contrast to P-completeness of answering single CQs\(^{-1}\) (Rosati, 2007) and unions of CQs over \(\mathcal{ELI}\) TBoxes (Ortiz et al., 2006).

3.2. From UCQs to CQs: the Case of \(\mathcal{DL-Lite}_H\)

We now proceed to show that under rather mild restrictions, any union of tree-shaped Boolean CQs\(^{-1}\) can be transformed into a single Boolean CQ\(^{-1}\) that has the same answers over knowledge bases with TBoxes extended by a number of concept and role inclusions. This will allow us to obtain undecidability of answering a single CQ\(^{-1}\) over \(\mathcal{DL-Lite}_H\) (in contrast to Corollary 5, which holds for the language without role inclusions).

We illustrate the transformation by considering a Boolean UCQ\(^{-1}\) \(q\) comprising the two queries from Section 3.1:

\[
q_1 = \exists x_1, y_1, z_1, u_1 \ (S(x_1, y_1) \land T(x_1, z_1) \land S(z_1, u_1) \land \neg T(y_1, u_1)),
\]

\[
q_2 = \exists x_2, y_2 \ (T(x_2, y_2) \land \neg R(y_2, x_2));
\]

these queries are also given in negated form by (3\(^{-}\)) and (13\(^{-}\)), respectively. Note first that the sets of variables in \(q_1\) and \(q_2\) are disjoint, and therefore, we can merge them into a single CQ\(^{-1}\) without introducing a connection between the primal graphs of the constituents. Then, we take a fresh variable \(x\) and consider a Boolean CQ\(^{-1}\) \(q'\) that consists of all the atoms of \(q_1\) and \(q_2\) together with \(G_1(x, x_1)\) and \(G_2(x, x_2)\), where \(G_1\) and \(G_2\) are fresh role names; see Fig. 3 on the right.

The resulting CQ\(^{-1}\) \(q'\) is in general not equivalent to \(q\). However, we can guarantee that, for any TBox \(T'\) satisfying some mild restrictions (to be defined below), there is a TBox \(T''\) such that the union \(q\) has the same answer over \((T', A)\) as \(q'\) over \((T \cup T'', A)\). The extension TBox \(T''\) is constructed in such a
way that from any model I of $(\mathcal{T}, \mathcal{A})$ we can obtain a model I' of $(\mathcal{T}' \cup \mathcal{T}'', \mathcal{A})$ that coincides with I on ΔI and satisfies the following properties:

1. the interpretation of a special concept name D contains every domain element in I;
2. for each CQ q_i, in the union q and every d in the interpretation of D, there is a map that sends x_i to d and matches all atoms (including the negative ones) of the merged q_i except, possibly, the atoms of q_i.

For example, consider a model I of \mathcal{T} with a single T-edge (d, d'); see the black arrow in Fig. 3 on the left. According to Item 1, the extended TBox should guarantee that both d and d' belong to the interpretation of D in the model I' of $\mathcal{T}' \cup \mathcal{T}''$. By Item 2, it should also guarantee that d has the dark-grey fragment attached to it to match all atoms of q' but q_1, and the light-grey fragment to match all atoms of q' but q_2 (d' should also be in the interpretation of D and, hence, have similar fragments in I', but they are not depicted to reduce clutter). Moreover, it should be clear that q' has a positive answer in I' if and only if either q_1 has a positive answer in I (the rest of q' is matched by the light-grey fragment) or q_2 has a positive answer in I (the rest of q' is matched by the dark-grey fragment), which is the same as their union, q, having a positive answer in I.

The fragments required to match the positive atoms of q_1 and q_2 can easily be generated, for example, by the DL-LiteH core concept inclusions

\[
D \sqsubseteq \exists G_1. Q_1, \quad Q_1 \sqsubseteq \exists T. \exists S \sqcap \exists S. N_1, \tag{14}
\]

\[
D \sqsubseteq \exists G_2. \exists G_1. Q_1, \quad Q_1 \sqsubseteq \exists T. \exists S, \quad Q_2 \sqsubseteq \exists T \sqcap N_2, \tag{15}
\]

where Q_1, N_1, Q_2 and N_2 are fresh concept names (see Fig. 3). We also need the following negative concept inclusions to ensure that the negative atoms of q_1 and q_2 can always be matched in the respective fragments of the model generated by the positive inclusions (14)–(15):

\[
N_1 \sqcap \exists T \sqsubseteq \perp \quad \text{and} \quad N_2 \sqcap \exists R \sqsubseteq \perp. \tag{16}
\]

We now generalise the intuition above and show that we can apply this transformation to a union of an arbitrary number of tree-shaped \mathcal{CQ}^+s.

It should be clear that any tree-shaped Boolean \mathcal{CQ}^+ gives rise to a DL-LiteH \mathcal{T}Box similar to (14)–(16). To make sure that the negative concept inclusions of the form (16) are not inconsistent with the positive inclusions of the form (14)–(15), we require an additional definition. We say that a variable z in a \mathcal{CQ}^+ q is T-loose (or loose, if T is clear from the context) in case $T \not\equiv B_1 \sqcap B_2$, for each pair of atoms $B_1(z)$ and $\neg B_2(z)$ in q (to simplify notation, the B_i refer here to basic concepts; similarly to positive atoms, the query is assumed to contain $\neg \exists P(z_1)$ and $\neg \exists P'(z_2)$ if it contains $\neg P(z_1, z_2)$). For instance, in the example above, variable y_1 is loose in q_1 provided that the original TBox does not entail $3S^\perp \sqsubseteq T$; in other words, if (the interpretation of) $3S^\perp$ may contain a domain element that is not in $3T$—otherwise the first negative inclusion in (16) would imply emptiness of D with the extended TBox (indeed, the S-successor of an element in Q_1 would have to belong to $3S^\perp$ and N_1, which are subsets of the disjoint $3T$ and N_1, respectively. Also, u_1 is loose in q_1 if the original TBox does not entail $3S^\perp \sqsubseteq 3T$; similarly, both x_2 and y_2 are loose in q_2, provided that the original TBox does not entail $3T \sqsubseteq 3R$ and $3T \sqsubseteq \exists R$, respectively. Note, however, that both of these concept inclusions will hold in any interpretation I with $I \not\equiv q_2$, because the query ‘encodes’ the role inclusion $T \sqsubseteq R$. These examples show that the requirement for each negative atom to have a loose variable is not particularly restrictive and, in fact, not much stronger than simply non-entailment of the negation of the constituent \mathcal{CQ}^+ by the original \mathcal{T}Box alone.

Lemma 7. Let T be a DL-LiteH TBox and q a Boolean \mathcal{CQ}^+ such that each component q_i of q is tree-shaped and each negative atom in each q_i contains a T-loose variable. Then there exist a DL-LiteH TBox T' and a \mathcal{CQ}^+ q' such that

$$(T, A) \models q' \quad \text{iff} \quad (T' \cup T'', A) \models q', \quad \text{for every ABox } A.$$

Proof. Let q_i be of the form $\exists y_1. \varphi_i(y_1)$, for $1 \leq i \leq n$. Since tree-shaped queries contain no individuals, each y_i is non-empty and we can fix a variable, say, y_1, in each y_i. Let y be a fresh variable and, for each $1 \leq i \leq n$, let G_i be a fresh role name. Define $\varphi_i'(y, y_i) = G_i(y_1) \land \varphi_i(y_1)$, where φ_i is the result of replacing each concept name A with a fresh \hat{A} and each role name P with a fresh \hat{P} in φ_i. Consider

$$q' = \exists y_1 \ldots \exists y_n \bigwedge_{1 \leq i \leq n} \varphi'_i(y, y_i).$$

Let D be a fresh concept name. Let T_D consist of $A \sqsubseteq \hat{A}$ and $A \sqsubseteq \hat{D}$, for each concept name A occurring in \mathcal{T} or q_i, and $P \sqsubseteq \hat{P}$, $\exists P \sqsubseteq D$ and $\exists P' \sqsubseteq D$, for each role name P in \mathcal{T} or q_i. Thus, in any model of T_D, the interpretation of D contains the interpretations of all concepts of \mathcal{T} and q_i, including domains and ranges of its roles.

Since each $\varphi_i'(y, y_i)$ is tree-shaped, we can assume that its primal graph is a rooted tree with root y (so that each edge has a natural orientation away from the root); by construction, the root has a single successor, y_1. We write $z < z'$ if z is a (unique) immediate predecessor of z' in one of these trees. For each edge (z, z') with $z < z'$, we take a fresh role $E_{z'}$. Let T_G contain the following inclusions, for all $1 \leq i \leq n$:

\[
D \sqsubseteq \exists G_{i,0}, \tag{17}
\]

\[
\exists G_{i,j} \sqsubseteq \exists G_{j,1}, \quad \text{for } 1 \leq j \leq n \text{ with } j \neq i, \tag{18}
\]

\[
G_{i,k} \sqsubseteq G_{i,k}, \quad \text{for } k = 0, 1, \tag{19}
\]

\[
G_{i,1} \sqsubseteq E_{y_1}, \tag{20}
\]

\[
\exists E_{z'} \sqsubseteq \exists E_{z'}, \quad \text{for } z < z' < z'', \tag{21}
\]

\[
\exists E_{z'} \sqsubseteq \hat{A}, \quad \text{for all } \hat{A}(z') \in \varphi_i, \tag{22}
\]

\[
E_{z'} \sqsubseteq \hat{R}, \quad \text{for all } \hat{R}(z, z') \in \varphi_i, \tag{23}
\]

\[
\exists E_{z'} \sqsubseteq \hat{A}, \quad \text{for all } \neg \hat{A}(z') \in \varphi_i, \tag{24}
\]

\[
\exists E_{z'} \sqsubseteq \exists R, \quad \text{for all } \neg \hat{R}(z', z'') \in \varphi_i \text{ with loose } z', \tag{25}
\]

where $G_{i,0}$ and $G_{i,1}$ are fresh role names. Let $\mathcal{T}' \equiv T_D \cup T_G$. Note that it is crucial that z' is loose in both (24) and (25)—for
otherwise $T \cup T'$ would imply emptiness of any interpretation of D. We claim that T' and q' are as required.

Suppose first that $(T, A) \models q$ and let I be a model of $(T \cup T', A)$. As $I \models (T, A)$, we have $I \models q$. So, for some i, $1 \leq i \leq n$, there exists a match π for q_i in I. Since the negations in q are safe, $\pi(y_i)$ belongs to A_i^T, for some concept name A_i in T, or to $(3R)^T_i$, for some role R in T; whence, $\pi(y_i) \in D_i^T$. Let q_i consist of all atoms of q' that are not in $\bar{\phi}(y_i)$. Since $I \models T_0$, there exists a match π_0 for q_i in I with $\pi(y_i) = \pi(y_i)$. Indeed, by (20)–(23), the tree of the positive atoms of q_i can be matched in the tree rooted in the $G_{(i)}$-successor of $\pi(y_i)$; by (24) and (25), the negative atoms are also matched by π_0. Hence, $\pi \cup \pi_0$ is a match for q' in I.

Conversely, let I be a model of (T, A) with $I \not\models q$. Denote by I_0 an interpretation that coincides with I on all individuals and concept and role names of T or q, and, additionally, interprets D by A_i^T, and $\bar{\phi}$ by A_i^T and p_i^T, for each concept name A_i and role name P_i in T or q. By construction, $I_0 \models (T \cup T_0, A)$ and $I_0 \not\models q$. Denote by C_d the canonical interpretation of $(T_0, (D(A)))$, for $d \in D_i^T$ (we slightly abuse notation here and treat domain elements as fresh individual names assumed that $dC_d = d$). By definition, each C_d is finite and their domains are pairwise disjoint. Let I' be the union of I_0 with all C_d, $d \in D_i^T$. Since each negative atom of q contains a loose variable, I' does not violate any negative inclusions of T_0, that is, (24) and (25). Thus, $I' \models (T \cup T', A)$. Finally, for the sake of contradiction, suppose $I' \models q'$. Then there is a match π for q' in I'. By the definition of q', $\pi(y)$ must be the element in one of the C_d introduced to witness the existential restriction in (17). By (18), atoms corresponding to one of the components, say q_i, of q' must be matched in the part of the original model I_0, contrary to $I_0 \not\models q_i$, for all i, $1 \leq i \leq n$. \square

Consider now the UCQs and the TBox obtained in the proof of Corollary 5 from the query and the TBox in the proofs of Theorem 3 and Lemma 4. It can be verified that the components of the UCQs are tree-shaped and satisfy the conditions of Lemma 7. Thus, we obtain undecidability of CQs answering over DL-Lite$^{H}_{\text{core}}$ KBs.

Theorem 8. There exist a Boolean CQs q and a DL-Lite$^{H}_{\text{core}}$ TBox T such that CertainAnswers(q, T) is undecidable.

This solves the open problem of decidability of CQs answering over DL-Lite$^{H}_{\text{core}}$ (Rosati, 2007). However, since role inclusions are required in the transformation in Lemma 7, the decidability of the CQs answering problem over DL-Lite$^{H}_{\text{core}}$ remains open. On the other hand, by Corollary 5, answering unions of CQs over DL-Lite$^{H}_{\text{core}}$ is undecidable. The number of queries in the union constructed in the proof of Corollary 5 depends, however, on the size of the alphabet and the number of states of the universal Turing machine (more precisely, it is $(2 \cdot |Q| + 1) \cdot |I| + 4$). We can strengthen the negative result to an union of only three queries.

Theorem 9. There exist a union q of three Boolean CQss and a DL-Lite$^{H}_{\text{core}}$ TBox T such that CertainAnswers(q, T) is undecidable.

![Figure 4: Quadruples $\tau = (q' a', qa, q^* a', q' a')$.](image)

Proof. The proof again is by reduction of the halting problem for deterministic Turing machines. Let $M = (Q, \Sigma, q_0, q_1, \delta)$ be a deterministic Turing machine; see the proof of Theorem 3.

Similarly to the construction in the proof of Theorem 3, we represent computations of M in a two-dimensional grid, where role T points to the representation of the next cell on the tape and role S to the representation of the same cell in the successor configuration. However, we now use a role E to relate the representation of a cell containing $a \in \Gamma$ in a configuration with state $q \in Q$ and the head positioned over the cell to an individual e_q; if the head is not over the cell then its representation is E-related to e_0, where 0 is a no-head marker; the representation of the cells in the initial configuration beyond the input word is E-related to a special individual e_{Σ}, where Σ is the tape initialisation marker. We abbreviate pairs $(q, a) \in (Q \cup \{0, \Sigma\}) \times Q$ simply as qa and say that a cell contains such qa if it contains a and either it is under the head in the state $q \in Q$ or it is not under the head and $q \in \{0, \Sigma\}$.

Consider a set Ξ_M of quadruples of the form

$$(q' a', qa, q^* a', q' a')$$

that are defined by the transition function δ: if cells $i - 1$, i and $i + 1$ contain pairs $q' a'$, qa and $q^* a'$, respectively, then the cell i contains pair $q' a'$ in the successive configuration; see Fig. 4. Note that, since M is deterministic, the pair $q' a'$ is determined uniquely. We also include special quadruples in Ξ_M for initialisation of the tape beyond the input word: for $a, a' \in \Gamma$,

$$(0a', 0a, \Sigma, \Theta), \quad (0a, \Sigma, \Sigma, \Theta), \quad (\Sigma, \Sigma, \Sigma, \Theta).$$

We assume that the input word contains at least three symbols, and so none of the first three cells of the tape contain Σ.

In addition to individual names e_{qa} for the pairs qa, take an individual name e_τ for each quadruple $\tau \in \Xi_M$. Let P, P, P_τ and P' be role names and let ABox A_M contain assertions

$$(\Sigma, e_{qa}, e_\tau), \quad P(e_{qa}, e_\tau), \quad P\Sigma(e_{qa}, e_\tau), \quad P'(e_\tau, e_{qa'}),$$

for each quadruple $\tau = (q' a', qa, q^* a', q' a')$ in Ξ_M. Also, the ABox A_M uses a fresh concept name N to mark all the pairs with the accepting state $q_1 \in Q$ and contains

$$(e_{qa}), \quad \text{for all } a \in \Gamma.$$
Another ABox, \(\mathcal{A}_w \), encodes an input \(w = a_1, \ldots, a_n \in \Gamma^+ \) on the tape as follows:

\[
T(c_0, c_0), \quad E(c_0, e_{\text{init}}), \quad T(c_i, c_i), \quad E(c_i, e_{\text{init}}), \quad \text{for } 1 \leq i \leq n, \\
T(c_n, c_{n+1}), \quad E(c_{n+1}, e_\bot), \quad I(e_\bot),
\]

where \(c_1, \ldots, c_n \) are fresh individual names, corresponding to the cells of the input, \(c_0 \) and \(c_{n+1} \) are special individuals placed ‘before’ and ‘after’ the input word in the initial configuration of the tape, and \(I \) is a fresh concept name for initialisation of the tape beyond the input (note that there is a \(T \)-loop in \(c_0 \)).

Consider now a union \(q \) of the following three CQs\(^{\text{neg}} \) given in negated form (see Fig. 1 for the first and Fig. 5 for the last two):

\[
S(x, y) \land T(x, z) \land S(z, u) \rightarrow T(y, u), \\
E(x, y) \land P(y, z) \land S(x, x') \land P'(z, y') \land T(x, x) \land E(x, y) \land S(x, y) \land P(-y, -z) \land T(x, x') \land E(x, x') \land I(y) \rightarrow E(x', y'), \\
T(x, x) \land E(x, y) \land I(y) \rightarrow E(x, y).
\]

Let TBox \(T \) contain

\[
\exists T \subseteq \exists S, \quad \exists T^- \subseteq \exists T, \quad \exists E^- \cap N \subseteq \perp.
\]

We claim that \((T, \mathcal{A}_M \cup \mathcal{A}_w) \not\models q \) if and only if \(M \) does not accept \(w \).

Consider a model \(I \) of \((T, \mathcal{A}_M \cup \mathcal{A}_w) \) with \(I \not\models q \). Then there exists an infinite sequence of (not necessarily distinct) domain elements \(d_0, d_1, d_2, \ldots \) that encode the initial configuration in the sense that \((d_0, d_0) \in T^I \), \((d_i, d_{i+1}) \in T^I \) for all \(i \geq 0 \), and each element is connected by the interpretation of \(E \) to the element of the corresponding pair, that is, \(E^I \) contains \((d_0, e_{\text{init}}^I), (d_1, e_{\text{init}}^I), \ldots \) all \((d_i, e_{\text{init}}^I) \), for \(1 < i \leq n \), and all \((d_i, e_{\text{init}}^I) \), for \(i > n \). Note that \(d_0 = e_{\text{init}}^I \) is an auxiliary element before the tape, whose role is to match the (positive part of the) second component of \(q \) for the representation of the first cell, and \(e_\bot \) serves as a substitute for \(e_{\text{init}} \), which is necessary, along with concept \(I \) and the third component of \(q \), to initialise the tape beyond the input. By the first TBox inclusion, there exists a sequence of elements \(d'_0, d'_1, d'_2, \ldots \) such that \((d'_i, d'_i) \in S^I \). By the first component of \(q \), they form another \(T \)-connected sequence, that is, \((d'_i, d'_i) \in I^T \) for all \(i \). Moreover, since \(d_0 \) has a \(T^I \)-loop, \(d'_0 \) also has a \(T^I \)-loop. By \(\mathcal{A}_M \) and the second component of \(q \), the sequence represents the second configuration of the computation in the same way, except that now \(e_\bot \) is not used: instead, by the tape initialisation quadruples, all the cells beyond the working space are \(E^I \)-connected to \(e_{\text{init}} \). Note that \(d'_0 \) is also \(E^I \)-connected to \(e_{\text{init}} \). By the same argument, there exists a sequence of elements for each configuration of the computation. Finally, the negative concept inclusion in \(T \) and assertions in \(\mathcal{A}_M \) guarantee that the accepting state never occurs in the computation, and so \(M \) does not accept \(w \).

Conversely, if \(M \) has a non-accepting computation on \(w \) then it is routine to construct an infinite two-dimensional grid-like interpretation \(I \) satisfying \((T, \mathcal{A}_M \cup \mathcal{A}_w) \) but not \(q \) (all domain elements in the bottom row of the grid have a \(T^I \)-loop).

We note in passing that the query \(q \) in the proof of Theorem 9 is not tree-shaped, and therefore Lemma 7 is not applicable.

3.3. Guarded Negation: Decidability

In this section we narrow down the class of CQs with safe negation and concentrate on guarded negation. As follows from the results by Bárány et al. (2012), answering unions of GNCQs over ontologies in the language of the so-called frontier-guarded tuple-generating dependencies (fg-tgds) is decidable and is in \(\text{coNP} \) in data complexity; moreover, it is in \(P \) in data complexity if each GNCQ in the union contains at most one negated atom. Observe that (i) \(\mathcal{ELI} \) concept and role inclusions are a particular form of frontier-guarded tgds, and that (ii) negative concept and role inclusions can be viewed as negated CQs. Therefore, the upper complexity bounds also apply to \(\mathcal{ELI}_1 \) and \(\mathcal{DL-Lite}^\text{core} \) KBs. We establish the matching lower complexity bounds even for a TBox \(T_0 \) containing a single negative concept inclusion

\[
V \cap F \subseteq \perp
\]

(by definition, \(T_0 \) is in both \(\mathcal{ELI}_1 \) and \(\mathcal{DL-Lite}^\text{core} \)).

Lemma 10. There exists a Boolean GNCQ \(q \) with one negated atom such that the problem \(\text{CertainAnswers}(q, T_0) \) is \(P \)-hard.

Proof. The proof is by reduction of the complement of Horn-3SAT, the satisfiability problem for Horn clauses with at most three literals, which is known to be \(\text{P-complete} \); see, e.g., (Papadimitriou, 1994). Suppose we are given a conjunction \(\psi \) of Horn clauses of the form \(p \lor \neg p \lor p_1 \land p_2 \rightarrow p \), where \(p, p_1 \) and \(p_2 \) are propositional variables. Consider a Boolean GNCQ \(q \) with the following negated form:

\[
N_1(x_1, y) \land V(x_1) \land N_2(x_2, y) \land V(x_2) \land R(y, z) \rightarrow V(z);
\]

see Fig. 6 (a). Note that \(q \) does not depend on \(\psi \).

Next, we construct an ABox \(\mathcal{A}_g \) such that \(\psi \) is satisfiable iff \((T_0, \mathcal{A}_g) \not\models q \). The ABox \(\mathcal{A}_g \) uses an individual name \(c_i \) for each variable \(p \) in \(\psi \) and an individual name \(c_j \) for each clause.

![Figure 5: The last two components of the query in the proof of Theorem 9.](image-url)
γ of the form \(p_1 \land p_2 \rightarrow p \) in \(\psi \). For every clause \(\gamma \), the ABox \(\mathcal{A}_\psi \) contains the following assertions:

\[
V(c_p), \quad \text{if } \gamma = p, \\
F(c_p), \quad \text{if } \gamma = \neg p, \\
N_1(c_{p_1}, c_y), N_2(c_{p_2}, c_y), R(c_y, c_p), \quad \text{if } \gamma = p_1 \land p_2 \rightarrow p.
\]

Suppose first there is a model \(I \) of \((\mathcal{T}_0, \mathcal{A}_\psi) \) with \(I \not\models \psi \). We show that \(\psi \) is satisfiable. Observe that, for each clause \(\gamma \) of \(\psi \) of the form \(p_1 \land p_2 \rightarrow p \), if both \(c_{p_1} \in V^I \) and \(c_{p_2} \in V^I \) then \(c_p \in V^I \). Thus, we can define a satisfying assignment \(a \) for \(\psi \) by taking \(a(p) \) true iff \(c_p \in V^I \).

Conversely, if \(\psi \) is satisfiable then we can evidently construct a model \(I \) of \((\mathcal{T}_0, \mathcal{A}_\psi) \) with \(I \not\models \psi \).

Lemma 11. There exists a Boolean GNCQ \(\psi \) with two negated atoms such that \(\text{CERTAIN ANSWERS}(\psi, T_0) \) is coNP-hard.

Proof. The proof is by reduction of the complement of 2+2SAT, the satisfiability problem for clauses with two negative and two positive literals, which is known to be NP-complete (Schaerf, 1993). Suppose we have a conjunction \(\psi \) of clauses of the form \(\neg p_1 \lor \neg p_2 \lor p'_1 \lor p'_2 \), where each \(p_i \) and \(p'_i \) is either a propositional variable or one of the two propositional constants, \(\text{true} \) and \(\text{false} \). Consider a Boolean GNCQ \(\psi \) with the following negated form:

\[
N_1(x_1, y) \land V(x_1) \land N_2(x_2, y) \land V(x_2) \land R_1(y, z_1) \land R_2(y, z_2) \rightarrow V(z_1) \lor V(z_2);
\]

see Fig. 6. (b). Observe that the query is similar to the one in the proof of Lemma 10 except that now we have two \(R \)-atoms instead of one \(R \)-atom. Note again that \(\psi \) does not depend on \(\psi \).

Next, we construct an ABox \(\mathcal{A}_\psi \) such that \(\psi \) is satisfiable iff \((\mathcal{T}_0, \mathcal{A}_\psi) \not\models \psi \). The ABox \(\mathcal{A}_\psi \) uses individual names \(c_{\text{true}} \) and \(c_{\text{false}} \) for the two constants, an individual name \(c_p \) for each variable \(p \) in \(\psi \) and an individual name \(c_y \) for each clause \(\gamma \) in \(\psi \). It contains \(V(c_{\text{true}}) \), \(F(c_{\text{false}}) \) and the following assertions, for every clause \(\gamma \) of the form \(\neg p_1 \lor \neg p_2 \lor p'_1 \lor p'_2 \) in \(\psi \):

\[
N_1(c_{p_1}, c_y), N_2(c_{p_2}, c_y), R_1(c_y, c_p), R_2(c_y, c_p).
\]

Conversely, if \(\psi \) is satisfiable then we can evidently construct a model \(I \) of \((\mathcal{T}_0, \mathcal{A}_\psi) \) with \(I \not\models \psi \).

Summing up, we obtain the following result.

Theorem 12. The problems of answering GNCQs and unions of GNCQs over DL-Lite\(_{\text{core}}\), DL-Lite\(_{\text{core}}^{\text{NEQ}}\), EL\(_{\text{core}}\) and EL\(_{\text{core}}\) KBs are coNP-complete in data complexity. The problems are P-complete if the GNCQ and each component in the union, respectively, have at most one negation.

4. **Answering CQs with Inequalities**

In this section we first prove that CQ\(_{\text{in}}\) answering over DL-Lite\(_{\text{core}}^{\text{NEQ}}\) is undecidable, even if only one inequality may be used. Over DL-Lite\(_{\text{core}}\), we show undecidability for unions of three CQ\(_{\text{in}}\), as well as P- and coNP-hardness for CQ\(_{\text{in}}\). We then observe that one of the reasons for undecidability is applying inequalities to the non-ABox elements in interpretations and identify a class of CQ\(_{\text{in}}\), local CQ\(_{\text{in}}\), that require at least one of the arguments in any inequality to be an ABox element. We show that this restriction guarantees decidability of the query answering problem.

4.1. **CQs with Inequalities over DL-Lite\(_{\text{core}}^{\text{NEQ}}\): Undecidability**

We begin by establishing undecidability of CQ\(_{\text{in}}\) answering over DL-Lite\(_{\text{core}}^{\text{NEQ}}\). In principle, the technique of Lemma 7 could be adapted to queries with inequalities and by using, e.g., a modification of the proof of Theorem 1 in (Gutiérrez-Basulto et al., 2012), this would prove the claim. The resulting CQ\(_{\text{in}}\) would, however, contain many inequalities. Instead, we substantially rework some ideas of the undecidability proof for CQ\(_{\text{in}}\) answering over EL\(_{\text{core}}\) (Klenke, 2010) and show that even one inequality suffices for DL-Lite\(_{\text{core}}^{\text{NEQ}}\).

Theorem 13. There exists a Boolean CQ\(_{\text{in}}\) \(\psi \) with one inequality and a DL-Lite\(_{\text{core}}^{\text{NEQ}}\) TBox \(T \) such that \(\text{CERTAIN ANSWERS}(\psi, T) \) is undecidable.

Proof. Similarly to the proof of Theorem 3, we reduce the halting problem for deterministic Turing machines to \(\text{CERTAIN ANSWERS}(\psi, T) \). We also use a two-dimensional grid formed by roles \(T \) and \(S \). This time, however, the grid is established (along with functionality of certain roles) by means of a Boolean CQ\(_{\text{in}}\) \(\psi \) with the following negated form:

\[
S(x, y) \land T(x, z) \land S(z, v) \land T(y, u) \land T(u, w) \land T(u', w) \land R(t, v) \land R(t, v') \rightarrow (u' = v').
\]
Note that this sentence, in fact, implies $v = v' = u' = u$; see the shaded area in Fig. 7.

We present the construction of the TBox \mathcal{T} in a series of steps. As an aid to our explanations, we assume that an interpretation I with $I \not\models q$ is given; for each of the building blocks of \mathcal{T} we then show that if I, in addition, is its model then I enjoys certain structural properties. We say that the interpretation P' of a role P is functional in $d \in \Delta^I$ if $d' = d''$ whenever both (d, d') and (d, d'') are in P'. We also denote the composition of binary relations by \circ, for example:

$$S^I \circ T^I = \{ (d, d''') \mid (d, d', d'') \in S^I, (d', d'') \in T^I \}.$$

Let the first part, \mathcal{T}_G, of the TBox contain the following concept inclusions:

$$\exists S^- \subseteq \exists T^-, \quad \exists T^- \subseteq \exists T^-, \quad \exists S^\neg \subseteq \exists R^-.$$

We claim that if $I \models \mathcal{T}_G$ and $I \not\models \exists T \subseteq \exists S$ then the fragment of I rooted in element $d_{11} \in (\exists S^- \cdot \exists T^-)^I$ has a grid structure of the shaded area in Fig. 8 (each domain element in $(\exists S^- \cdot \exists T^-)^I$ also has an R^I-predecessor, which is not shown). Note that \mathcal{T}_G ensures that domain elements in $(\exists S^\neg)^I$ only have T^I- and $(R^-)^I$-successors but not necessarily S^I-successors (existence of S^I-successors will be guaranteed by concept and role inclusions (31)--(33), (41), (42) and \mathcal{T}_F to be defined below).

More formally, the domain elements in the shaded area enjoy the following property.

Claim 13.1. If $I \models \mathcal{T}_G$ and $I \not\models q$ then, for every $d \in \Delta^I$ with an S^I-successor and a $T^I \circ S^I$-successor,

(a) S^I is functional in any T^I-successor of d,

(b) T^I is functional in any S^I-successor of d,

(c) all $T^I \circ S^I$- and $S^I \circ T^I$-successors of d coincide,

(d) $(T^-)^I$ is functional in any $T^I \circ S^I \circ T^I$-successor of d,

(e) R^I is functional in any $T^I \circ S^I \circ (R^-)^I$-successor of d.

Proof of claim. There are domain elements d_{00}, d_{01}, d_{11} such that $(d, d_{10}) \in S^I$, $(d, d_{00}) \in T^I$ and $(d_{01}, d_{11}) \in S^I$.

(a) Let $(d, d_{00}) \in T^I$ and $(d_{00}, d_{11}), (d_{01}, d''_{11}) \in S^I$; see Fig. 9(a). Since $I \models \mathcal{T}_G$, the element d_{10} has a T^I-successor d', which in turn has a T^I-successor too; each of d_{11}, d_{1}'' and d_{1}''' has an R^I-predecessor (not shown in Fig. 9(a)). As $I \not\models q$, each of d_{11}, d_{1}'' and d_{1}''' coincides with d' and thus, S^I is functional in any T^I-successor of d.

(b) Let $(d, d_{10}) \in S^I$ and $(d_{10}, d_{11}), (d_{10}, d_{1}''_{11}) \in T^I$; see Fig. 9(b). Since $I \models \mathcal{T}_G$, the element d_{10} has a T^I-successor d', which in turn has a T^I-successor too; also, d_{11} has an R^I-predecessor (not shown in Fig. 9(b)); and both d_{1}''' and d_{1}''' have T^I-successors. As $I \not\models q$, each of d', d_{1}'' and d_{1}''' coincides with d_{11}. So, T^I is functional in any S^I-successor of d.

(c) Is not difficult to see now that all $T^I \circ S^I$-successors and all $S^I \circ T^I$-successors coincide. Denote this element by d'.

(d) and (e) By item (c), $(T^-)^I$ is functional in any T^I-successor of d' and R^I is functional in any R^I-predecessor of d'.

So, S^I and T^I are functional in all domain elements in the shaded area. However, S^I does not have to be functional in the bottom row and T^I in the left column (see Fig. 8); $(T^-)^I$ is functional in all domain elements in the shaded area except its bottom row but it does not have to be functional elsewhere; R^I does not have to be functional anywhere but in R^I-predecessors of the domain elements in the shaded area; finally, $(S^-)^I$ and $(R^-)^I$ do not have to be functional anywhere. For our purposes, however, it suffices that I has a grid structure starting from d_{11}; moreover, as we shall see, the non-functionality of $(S^-)^I$ plays a crucial role in the construction.

In addition to the grid-like structure of S^I and T^I, we also need functionality of S^I in domain elements outside the grid. Besides this, we require role R to be functional not only in R^I, predecessors of the grid elements but also in the grid elements themselves. To this end, we use a technique similar to the proof of Lemma 7.

Claim 13.2. Let $I \models \mathcal{T}_G$ and $I \not\models q$.

(a) If I satisfies

$$E \subseteq \exists T^- \cdot \exists S$$

then S^I is functional in every $d \in E^I$.

(b) If I satisfies

$$D \subseteq \exists R \cdot \exists S^- \cdot \exists T^- \cdot \exists S$$

then S^I is functional in every $d \in D^I$.

(29)

(30)
then R^I is functional in every $d \in D^I$.

Proof of claim. (a) Let $d \in E^I$ have an S^I-successor. Then d has a T^I-predecessor d_1, which, in turn, has an S^I-successor and a $T^I \succ S^I$-successor (the S^I-successor of d). Thus, by Claim 13.1 (a) applied to d_1, we obtain functionality of S^I in d.

(b) The argument is essentially the same as in (a) but we apply Claim 13.1 (e) instead.

We now describe the part of the TBox that encodes computations of a given Turing machine. Let $M = (\Gamma, Q, q_0, q_1, \delta)$ be a deterministic Turing machine (see the proof of Theorem 3) with a two-symbol tape alphabet $\Gamma = \{0, 1\}$.

We use concept H_j, for $q \in Q$, that contains the representations of all tape cells observed by the head of M (in state q); concept H_0 represents the cells not observed by the head of M.

We are now in a position to define the representation of Turing machine computations. Using the roles P_{q_0} from T_F, we can encode transitions:

\[\exists P_{q_0} \sqsubseteq \exists S_{q'} \sqcap \exists S_{q', \sigma}, \quad \text{for } \delta(q, a) = (q', a', \sigma), \]

\[S_a \sqsubseteq S, \quad \text{for } a \in \Gamma, \]

\[S_{q_0} \sqsubseteq S, \quad \text{for } q \in Q \text{ and } \sigma \in [-1, 1], \]

where S_{q_0-1} and S_{q_0+1} are fresh role names that are used to propagate the new state in the next configuration. Recall now that the ranges of roles P_0 identify cells that are not observed by the head of M; the symbols contained in such cells are then preserved with the help of concept inclusions

\[\exists P_{q_0} \sqsubseteq \exists S_a, \quad \text{for } a \in \Gamma. \]

The location of the head in the next configuration is ensured by the following inclusions:

\[\exists S_{q_0} \sqsubseteq \exists T_{q_0}, \quad \text{for } q \in Q \text{ and } \sigma \in [-1, 1], \]

\[\exists T_{q_0} \sqsubseteq H_q, \quad \text{for } q \in Q \text{ and } \sigma \in [-1, 1], \]

\[T_{q+1} \sqsubseteq T \quad \text{and} \quad T_{q-1} \sqsubseteq T^-, \quad \text{for } q \in Q, \]

where T_{q+1} and T_{q-1} are used to propagate the head in the state q along the tape (recall that, by Claim 13.1, both T^I and $(T^-)^I$ are functional in the grid); finally, the following concept inclusions are required to propagate the no-head marker H_0:

\[H_q \sqsubseteq \exists T_{0, q_1} \quad \text{and} \quad H_q \sqsubseteq \exists T_{0, q_1}, \quad \text{for } q \in Q, \]

\[T_{0, q_0} \sqsubseteq T \quad \text{and} \quad T_{0, q_0} \sqsubseteq T^-, \]

\[\exists T_{0, \sigma} \sqsubseteq \exists T_{0, \sigma} \cap H_0, \quad \text{for } \sigma \in [-1, 1]. \]
Next, the ABox \mathcal{A}_w that encodes an input $w = a_1, \ldots, a_n \in \Gamma^*$ of M is as follows:

\[
Z(c_{00}, c_{10}), \quad T(c_{10}, c_{11}), \quad H_{q_0}(c_{11}), \\
T(c_{0i-1}, c_{0i}) \text{ and } S_n(c_{0i}, c_{1i}), \quad \text{for } 1 \leq i \leq n,
\]

where Z is a fresh role name to start off an infinite sequence of configurations and T, a fresh role name to fill the rest of the tape in the initial configuration by blanks:

\[
\exists T^* \subseteq \exists Z, \quad Z \subseteq S, \quad (41) \\
\exists T^*_i \subseteq \exists S_i \cap \exists T^*_r, \quad T_i \subseteq T; \quad (42)
\]

see Fig. 10 (a). Finally, the following concept inclusion ensures that the accepting state $q_1 \in Q$ never occurs in a computation:

\[
H_{q_1} \subseteq \bot, \quad (43)
\]

Let T_M contain (31)–(43) encoding transitions of M and let $T = T_G \cup T_F \cup T_M$. If $(T, \mathcal{A}_w) \not= q$ then there is a model I of (T, \mathcal{A}_w) with $I \not= q$. It should then be clear that, by Claims 13.1 and 13.3, we can extract from I a computation of M that does not accept w (for a similar argument, see the proofs of Theorems 3 and 9).

Conversely, if M does not accept w then we can construct a model I of (T, \mathcal{A}_w) with $I \not= q$ as follows. First, it is routine to construct a model \mathcal{J}_0 of T_G such that $\Delta^{\mathcal{J}_0} = \{ d_{ij} \mid i \geq 0 \text{ and } j \in \mathbb{Z} \} \cup \{ d'_{ij}, d''_{ij} \mid i > 0 \text{ and } j \in \mathbb{Z} \}$, the d_{ij} form a three-way infinite grid structure on roles S and T (see Fig. 10 (b)), each d'_{ij} is an $R^{\mathcal{J}_0}$-predecessor of d_{ij} and each d''_{ij} is an $S^{\mathcal{J}_0}$-predecessor of d_{ij} (note that if $i > 0$ then d_{ij} has another $S^{\mathcal{J}_0}$-predecessor, $d_{i-1,j}$, and it is important that $S^{\mathcal{J}_0}$ is not functional in d_{ij}). The resulting \mathcal{J}_0 is clearly a model of T_G and $\mathcal{J}_0 \not= q$.

Next, we extend \mathcal{J}_0 to a model \mathcal{J} of T_M and \mathcal{A}_w by choosing the interpretation of concepts and roles on T_M on the domain of \mathcal{J}_0 in such a way that the part of \mathcal{J}_0 rooted in d_{11} encodes the computation of M on w (which is uniquely defined because M is deterministic). Specifically, we set $c^i_{ij} = d_{ij}$ for all $c_{ij} \in \mathcal{A}_w$.

Role Z follows the infinite chain of $S^{\mathcal{J}}$-successors from d_{00} and role T, the infinite chain of $T^{\mathcal{J}}$-successors from d_{00}. Then, the interpretation of H_q, S_a and S_q, for $q \in Q$, $a \in \Gamma$ and $\sigma \in \{-1, +1\}$, is determined by the computation assuming that the d_{ij} with $j \leq 0$ represent the blank cells (containing \bot) of the infinite extension of the tape ‘before’ the input, which is never visited by the head. It then should be clear how to interpret H_{q_0} and T_{q_0}, for $q \in Q \cup \{0\}$ and $\sigma \in \{-1, +1\}$. As the final step of the construction of \mathcal{J}, we define $A^{\mathcal{J}}$ and extend $R^{\mathcal{J}}$ as follows:

\[
(d'_{ij}, d_{ij}) \in P_{q_0}^{\mathcal{J}} \text{ and } (d_{ij}, d''_{ij}) \in R^{\mathcal{J}} \text{ if } d_{ij} \in H_q^{\mathcal{J}} \cap (\exists S_a)^{\mathcal{J}}, \\
(d''_{ij}, d_{ij}) \in P_{q_1}^{\mathcal{J}} \text{ and } (d_{ij}, d'_{ij}) \in R^{\mathcal{J}} \text{ if } d_{ij} \in H_q^{\mathcal{J}} \cap (\exists T_a)^{\mathcal{J}}.
\]

It remains to show that \mathcal{J} can be extended by new domain elements to satisfy T_M in such a way that the interpretation of concepts and roles of $T_G \cup T_M$ on the domain of \mathcal{J} remains unchanged.

Claim 13.4. \mathcal{J} can be extended to a model I of T_F so that

(a) $d_{ij} \in H_q^{\mathcal{J}} \cap (\exists S_a)^{\mathcal{J}}$ if $d_{ij} \in (\exists P_{q_0})^{\mathcal{J}}$, for every d_{ij};

(b) $A^{\mathcal{J}} \cap (\exists S_a)$ is determined by the computation assuming that the d_{ij} with $j \leq 0$ represent the blank cells containing \bot of the infinite extension of the tape ‘before’ the input, which is never visited by the head. It then should be clear how to interpret H_{q_0} and T_{q_0}, for $q \in Q \cup \{0\}$ and $\sigma \in \{-1, +1\}$. As the final step of the construction of \mathcal{J}, we define $A^{\mathcal{J}}$ and extend $R^{\mathcal{J}}$ as follows:

\[
(d'_{ij}, d_{ij}) \in P_{q_0}^{\mathcal{J}} \text{ and } (d_{ij}, d''_{ij}) \in R^{\mathcal{J}} \text{ if } d_{ij} \in H_q^{\mathcal{J}} \cap (\exists S_a)^{\mathcal{J}}, \\
(d''_{ij}, d_{ij}) \in P_{q_1}^{\mathcal{J}} \text{ and } (d_{ij}, d'_{ij}) \in R^{\mathcal{J}} \text{ if } d_{ij} \in H_q^{\mathcal{J}} \cap (\exists T_a)^{\mathcal{J}}.
\]

It remains to show that \mathcal{J} can be extended by new domain elements to satisfy T_M in such a way that the interpretation of concepts and roles of $T_G \cup T_M$ on the domain of \mathcal{J} remains unchanged.
that accepts \(w \) iff the empty input is accepted by the Turing machine encoded by \(w \). This finishes the proof of Theorem 13. \(\square \)

4.2. Hardness of CQs with Inequalities over DL-Lite_{core}

In the previous section we established undecidability of CQ\(\$ \) answering over DL-Lite_{core}. The reduction, however, essentially uses role inclusions. Leaving decidability of CQ\(\$ \) answering over DL-Lite_{core} as an open problem, we establish undecidability of answering unions of three CQ\(\$ \)s, as well as P- and coNP-hardness of answering single CQ\(\$ \)s.

Theorem 14. There exists a union of three Boolean CQ\(\$ \)s \(q \) with one inequality each and a DL-Lite_{core} TBox \(\mathcal{T} \) such that \text{CERTAIN\textsc{Answers}(}q,\mathcal{T}\text{)} is undecidable.

Proof. We adapt the ideas of the proof of Theorem 9 to the case of inequalities and provide here a sketch of the reduction of the halting problem for deterministic Turing machines.

Let \(M = (T, Q, q_0, q_1, \delta) \) be a deterministic Turing machine; see the proof of Theorem 3. Similarly to the proof of Theorem 9, we associate with a computation a two-dimensional grid on roles \(S \) and \(T \), where representations of the cells on the tape are related by role \(E \) to individuals \(e_{\alpha} \), for \((q, \alpha) \in (Q \cup \{0, +\}) \times 1 \) (recall that 0 is a no-head marker and + is a marker for initialising the tape beyond the input). We use the same ABox as in Theorem 9, comprising \(\mathcal{A}_M \) to encode the instructions of \(M \) (via quadruples \(\imath_M \)) and \(\mathcal{A}_e \) to encode an input \(w = a_1, \ldots, a_k \in 1^* \).

Consider a union \(q \) of the following three CQ\(\$ \)s given in negated form (see Fig. 12 for the first and the third; the second is similar to the one in Fig. 5 (a)):

\[
\begin{align*}
S(x, y) \land T(x, z) \land S(z, v) \land T(y', v) & \rightarrow (y = y'), \\
E(x, y) \land P(y, z) \land S(x, x') \land P'(z, y') \land E(x', y') \land T(x, x') \land E(x, y') \land T(x', y') & \land (y = y'), \\
T(x, x') \land E(x, y) \land I(y) \land E(x, y') & \rightarrow (y = y').
\end{align*}
\]

Observe that queries (26)–(28) from the proof of Theorem 9 are all similarly transformed as follows: in (26), for example, the conclusion of the implication, \(T(y, v) \), is moved into the premise, then one of its variables, \(y \), is replaced with a fresh copy, \(y' \), and an equality between the variable and its copy, \(y = y' \), is placed in the conclusion. The resulting queries (if viewed in negated form) can ‘identify’ certain points in an interpretation but require an extended TBox to achieve the effect of queries (26)–(28) with safe negation. To this end, let TBox \(\mathcal{T} \) contain

\[
\begin{align*}
\exists y^{-} \subseteq \exists y^-, \quad \exists y \subseteq \exists e, \\
\exists y^+ \subseteq \exists y, \quad \exists y^+ \subseteq \exists T, \\
\exists e^{-} \cap N \subseteq \bot.
\end{align*}
\]

The first two concept inclusions allow the components of query \(q \) to play the role of (26)–(28) in Theorem 9: they enforce any model to contain matches for the atoms moved from the conclusions to the premises, and then the (negated) inequalities reconnect the other ends in the model (these atoms are indicated by the dashed arrows in Fig. 12). Finally, note that the last three concept inclusions are the same as in the proof of Theorem 9.

It can be verified that \((T, \mathcal{A}_M \cup \mathcal{A}_e) \not\models q \) if \(M \) does not accept \(w \). We just note that, in any model \(T \) with \(T \not\models q \), the relation \((T^{-})^{-} \) is functional in all points with an \((S^{-})^{-} \circ T^{-} \circ S^{-} \)-predecessor but \(T^+ \) does not have to be functional anywhere (in fact, \(c_0 \) has a \(T \)-loop and another \(T \)-successor, \(c_1 \), in \(\mathcal{A}_M \)). \(\square \)

Theorem 15. There exist a Boolean CQ\(\$ \) \(q \) with one inequality and a DL-Lite_{core} TBox \(\mathcal{T} \) such that the problem \text{CERTAIN\textsc{Answers}(}q,\mathcal{T}\text{)} is P-hard.

Proof. We first show how the proof of Lemma 10, which shows P-hardness of answering GNCQs with one negated atom over DL-Lite_{core}, can be also adapted for the case of inequalities. Recall that the proof is by reduction of the complement of Horn-3SAT, the satisfiability problem for Horn clauses with at most three literals.

Suppose we are given a conjunction \(\psi \) of Horn clauses of the form \(p, \neg p \) and \(p_1 \land p_2 \rightarrow p \), where \(p, p_1 \) and \(p_2 \) are propositional variables. Consider the following Boolean CQ\(\$ \) \(q_1 \) in negated form:

\[
\begin{align*}
N_1(x_1, y) \land E(x_1, v) \land N_2(x_2, y) \land E(x_2, v) \land V(v) \land R(y, z) \land E(z, v') & \rightarrow (v = v').
\end{align*}
\]

This query follows the pattern of the GNCQ in the proof of Lemma 10, where unary predicate \(V \) served as a marker for variables \(p \) that are true in all models of \(\psi \). In this case, we use binary predicate \(E \) to connect all such variables \(p \) to a single fixed domain element in \(V \), which represents \textit{true} (as, e.g., in the proof of Theorem 14). So, we take \(T_1 \) that contains

\[
\exists \mathcal{R} \subseteq \exists \mathcal{E} \quad \text{and} \quad V \cap F \subseteq \bot,
\]

and let \(\mathcal{A}_{\psi,1} \) consist of \(V(e_{\text{true}}), F(e_{\text{false}}) \) and, for each clause \(\gamma \) in \(\psi \), the following assertions:

\[
\begin{align*}
E(c_p, e_{\text{true}}), & \quad \text{if } \gamma = p, \\
E(c_p, e_{\text{false}}), & \quad \text{if } \gamma = \neg p,
\end{align*}
\]

\[
N_1(c_p, c_1), \quad N_2(c_p, c_2), \quad R(c_{\gamma}, c_p), \quad \text{if } \gamma = p_1 \land p_2 \rightarrow p,
\]

where \(c_p \) and \(c_1 \) are individual names for every \(p \) and \(\gamma \), respectively, and \(e_{\text{true}} \) and \(e_{\text{false}} \) are the individual names for \textit{true} and \textit{false}. (Without loss of generality, we assume that \(\psi \) does not contain both \(p \) and \(\neg p \), for the same variable \(p \).) It can be verified that \((T_1, \mathcal{A}_{\psi,1}) \not\models q_1 \) if \(\psi \) is satisfiable. Note that, if the
UNA is adopted, then the negative concept inclusion in T_1 is not required.

Next, we provide an alternative proof of this theorem, which uses a shorter query. It is also by reduction of the complement of Horn-3SAT. Given a conjunction ψ as above, fix a TBox T containing

$$V \subseteq \exists E, \quad \exists E^- \subseteq V, \quad V \cap F \subseteq \bot,$$

and a Boolean CQ$^+$ q with negated form

$$V(x) \land N(x, y) \land R(y, z) \land E(y, z') \rightarrow (z = z').$$

Note that T and q do not depend on ψ. Next, we construct an ABox A_0 such that ψ is satisfiable iff $(T, A_0) \not\models q$. The ABox A_0 uses an individual name c_p for each variable p in ψ, and individual names c_{y1} and c_{y2} for each clause γ of the form $p_1 \land p_2 \rightarrow p$ in ψ, and contains the following assertions, for each clause γ in ψ:

- $V(c_p)$, if $\gamma = p$,
- $F(c_p)$, if $\gamma = \neg p$,
- $N(c_{p1}, c_{y1}), R(c_{y1}, c_{y2}), V(c_{y1})$,
- $N(c_{p2}, c_{y2}), R(c_{y2}, c_p)$, if $\gamma = p_1 \land p_2 \rightarrow p$.

Suppose first there is a model I of (T, A_0) with $I \not\models q$. We show that ψ is satisfiable. For each clause γ of the form $p_1 \land p_2 \rightarrow p$, the model I contains a configuration depicted in Fig. 13. (Then the red nodes represent ABox individuals and the white ones—anonymous individuals generated by the TBox). If $c^{T}_{p_1} \in V^I$ then the E^T- and R^T-successors of c^{T}_{y1} coincide, whence $c^{T}_{y2} \in V^I$, which triggers the second ‘application’ of the query to identify c^{T}_{p} with the E^T-successor of c^{T}_{y2} resulting in $c^{T}_{p_2} \in V^I$ but only if $c^{T}_{p_1} \in V^I$. So, as follows from the argument above, we can define a satisfying assignment a for ψ by taking $a(p)$ true iff $c^{T}_{p_1} \in V^I$.

Conversely, if ψ is satisfiable then we can construct a model I of (T, A_0) with $I \not\models q$.

Theorem 16. There exist a Boolean CQ$^+$ q with two inequalities and a DL-Lite core TBox T such that the problem CertainAnswers(q, T) is coNP-hard.

Proof. We begin with a remark that we could follow the lines of the first proof of Theorem 15 and adapt the proof of Lemma 11, which is by reduction of 2+2SAT, the satisfiability problem for clauses with two negative and two positive literals. This would require the following query in negated form:

$$N_1(x_1, y) \land E(x_1, v) \land N_2(x_2, y) \land E(x_2, v) \land V(v) \land R_1(y, z_1) \land E(z_1, v_1) \land R_2(y, z_2) \land E(z_2, v_2) \rightarrow (v = v_1) \lor (v = v_2),$$

and the following TBox:

$$\exists T^- \subseteq \exists E, \quad \exists T^- \cap \exists F^- \subseteq \bot, \quad A_1 \cap A_2 \subseteq \bot,$$

and a Boolean CQ$^+$ q with the following negated form:

$$V(x) \land R(x, y) \land T(x, y_1) \land F(x, y_2) \rightarrow (y = y_1) \lor (y = y_2).$$

Claim 16.1. Let I be a model of T with $I \not\models q$. If $d \in V^I$ and $(d, d_1), (d, d_2) \in R^I$ with $d_1 \neq d_2$ then

- either $(d, d_1) \in T^I$ and $(d, d_2) \in T^I$,
- or $(d, d_1) \in T^I$ and $(d, d_2) \not\in T^I$.

Proof of claim. Since $I \not\models q$, each pair (d, d_k) belongs either to T^I or F^I. To prove the claim, suppose to the contrary that $(d, d_k) \in T^I$ for both $k = 1, 2$ (the other case, with both pairs in F^I, is similar). Consider a map π with $\pi(x) = d$, $\pi(y) = d_1$, $\pi(y_1) = d_2$ and an F^T-successor of d as $\pi(y_2)$. Since π cannot be a match for q in I but $d_1 \neq d_2$, we must have $y = y_2$, whence $(d, d_1) \in F^T$ contrary to disjointness of $\exists T^-$ and $\exists F^-$. □

Again, T and q do not depend on ψ. The ABox A_0 is constructed as follows. Let t and f be two individuals with $A_1(t)$ and $A_1(f)$ in A_0. For each propositional variable p of ψ, take
the following assertions, for \(k = 1, 2 \), with five individuals \(v_p, c_{t_p} \) and \(c_{p} \):

\[
A_2(v_p), \quad R(c_{t_p}, v_p), \quad R(c_{p}, f), \quad F(c_{t_p}, f), \quad R(c_{p}, v_p), \quad R(c_{t_p}, t), \quad T(c_{p}, t),
\]

where the \(c_{t_p} \) and \(c_p \) represent the literals \(p \) and \(\neg p \), respectively, see Fig. 14.

Let \(I \) be a model of \((T, \Delta_0)\) with \(I \not\models q \). Observe that \(v_p^I \neq t^I \). By Claim 16.1, if \((c_{t_p})^I \in V^I \) then \(v_p^I \in (\exists F^-)^I \), that is, if the literal \(\neg p \) is chosen (by means of \(V \)) then \(p \) must be false. Conversely, if \(\neg p \) is not chosen (that is, \((c_{t_p})^I \notin V^I \)) then \(v_p^I \) does not have to be in \((\exists F^-)^I \) and \(p \) can be either true or false. Similarly for \((c_{p})^I \) with \(v_p^I \in (\exists T^-)^I \).

Next, for each clause \(\gamma \) of the form \(\ell_1 \lor \ell_2 \lor \ell_3 \) in \(\psi \), let \(\Delta_0 \) contains the following assertions, where \(c_{y_1} \) and \(c_{y_2} \) are fresh individuals:

\[
V(c_{y_1}), \quad R(c_{y_1}, c_{i_1}), \quad A_1(c_{i_1}), \quad R(c_{y_1}, c_{y_2}), \quad A_2(c_{y_2}), \quad R(c_{y_2}, c_{i_2}), \quad A_1(c_{i_2}), \quad R(c_{y_2}, c_{y_1}), \quad A_2(c_{i_1}).
\]

It can be verified that \(\psi \) is satisfiable if \((T, \Delta_0) \not\models q \). Indeed, if there is a model \(I \) of \((T, \Delta_0) \) with \(I \not\models q \) then, by Claim 16.1 and the observation above, we can construct a satisfying assignment \(a \) for \(\psi \) by taking \(a(p) \) true if \(v_p^I \in V^I \). The converse direction is straightforward.

Note that the construction can be simplified if the UNA is adopted: in this case, there is no need for \(A_1, A_2 \) and the two copies of the individuals \(c_{i_k} \), for \(k = 1, 2 \), representing literals.

\[\square\]

4.3. Local CQs over DL-Lite\(_{\text{core}}^H\) : Decidability

In this section we identify a restriction on CQs\(^*\) and DL-Lite\(_{\text{core}}^H\) TBoxes with decidable query answering problem. In a nutshell, decidability is attained by ensuring that each inequality has a term that can only be matched by ABox individuals.

Let \(T \) be a DL-Lite\(_{\text{core}}^H\) TBox. A basic concept \(B \) is said to be \(T \)-local if there is no existential restriction \(\exists R^- \) occurring on the right-hand side of a concept inclusion in \(T \) such that \(T \models \exists R^- \subseteq B \).

Intuitively, this condition guarantees that \(B \) contains only individuals in the canonical interpretation.

Definition 17. A CQ\(^*\) \(q \) is \(T \)-local (or local when \(T \) is clear from the context) if, for each inequality \(y_1 \neq y_2 \) between existentially quantified variables \(y_1 \) and \(y_2 \) in \(q \), the query also contains either \(B(y_1) \) or \(B(y_2) \) such that \(B \) is a \(T \)-local basic concept.

Recall that we say that \(q \) contains \(B(y) \), for \(B = \exists R \), if it contains \(R(y, t) \), for some term \(t \). Remarkably, local CQs\(^*\) can express quite complex patterns: see the proofs of Theorems 15 and 16; on the other hand, the first component of the union in the proof of Theorem 14 is not local (but the other two components are).

To establish decidability of query answering we require the following notions. Given two interpretations \(J \) and \(I \), we say that \(J \) is a sub-interpretation of \(I \) and write \(J \subseteq I \) if \(\Delta^J \subseteq \Delta^I \) and \(\Delta^J \) is the restriction of \(\Delta^I \) onto \(\Delta^J \); in particular, \(\Delta^I = \Delta^J \), for all individuals \(c \).

Let \(K = (T, \mathcal{A}) \) be a DL-Lite\(_{\text{core}}^H\) knowledge base. The set of interpretations \(d_c \) of individuals \(c \) in the canonical interpretation \(C_K \) of \(K \) is denoted by \(\text{ind}_K \). A branch \(b \) is a (finite or infinite) sequence \(d_c, d_R, d_{R,R}, \ldots \) of elements in \(\Delta^\mathcal{K} \) such that it cannot be extended to a longer sequence of this form in \(C_K \). A trim of the canonical interpretation \(C_K \) is an interpretation \(\Delta \subseteq C_K \) whose domain \(\Delta^\mathcal{J} \) is closed in the following sense: \(d_c \in \Delta^{\mathcal{J}} \) whenever \(d_c \in \Delta^\mathcal{J} \). Observe that, on the one hand, the first element of every branch is in \(\text{ind}_K \); on the other hand, by the definition of the sub-interpretation, the domain \(\Delta^\mathcal{J} \) contains \(\text{ind}_K \). Hence, the first element of every branch belongs to \(J \). A branch \(b \) is said to be complete in \(J \) if each element of \(b \) is in \(\Delta^J \). The number of elements of \(b \) in \(\Delta^J \), which may be infinite, is denoted by \(|b_J| \); if \(b \) is complete in \(J \) then \(|b_J| \) is its length.

The image \(h(J) \) of a trim \(J \) under a mapping \(h \) from the domain of \(J \) is an interpretation defined by taking

\[
\Delta^{h(J)} = \{ h(d) \mid d \in \Delta^J \}, \quad c^{h(J)} = h(c^J), \quad A^{h(J)} = \{ h(d) \mid d \in \Delta^J \}, \quad p^{h(J)} = \{ (h(d), (d')) \mid (d, d') \in \Delta^J \}, \quad \text{for individual names} \ c, \ \text{for concept names} \ A, \ \text{for role names} \ P.
\]

Let \(I \) be the image \(h(J) \) of \(J \) under a mapping \(h \). By definition, \(h \) is a surjective homomorphism from \(J \) onto \(I \), and so we often write \(J : \Delta \rightarrow I \) to indicate that \(I \) is the image of \(J \) under \(h \). We say that \(h \) is an identification if each \(d \in \Delta^J \) \(\setminus h(\text{ind}_K) \) has at most one pre-image. Note that only interpretations of individuals, that is, elements in \(h(\text{ind}_K) \), can have multiple pre-images in an identification \(h \). It is readily verified that, for every identification \(h : J \rightarrow I \), we have the following partial converse of the homomorphism condition:

\[\begin{align*}
\text{(id) } & \text{ if } (d_1, d_2) \in R, \text{ for a role } R, \text{ and } d_1 \neq h(\text{ind}_K) \text{ then there is a unique } \tilde{d}_1 \in J \text{ such that either } \\
& \quad d_1 = h(\tilde{d}_1), \quad d_2 = h(\tilde{d}_2) \quad \text{ and } \quad T \models S \subseteq R, \\
& \quad \text{or } d_1 = h(\tilde{d}_2), \quad d_2 = h(\tilde{d}_1) \quad \text{ and } \quad T \models S \subseteq R' , \quad \text{for some role } S.
\end{align*}\]

Let \(k > 0 \) and \(h : J \rightarrow I \) be an identification for a trim \(J \). We define the equivalence relation \(\sim_k^h \) on elements of \(J \) by taking \(d_{\alpha w} \sim_k^h d_{\alpha w} \) iff the following two conditions hold for every \(w \) with \(|w| \leq k \):

\[\begin{align*}
\text{(eq-t) } & \text{ } d_{\alpha w} \text{ is in } J \text{ iff } d_{\alpha w} \text{ is in } J; \\
\text{(eq-c) } & \text{ } d_{\alpha w} \text{ is in } J \text{ then either } h(d_{\alpha w}) = h(d_{\alpha w}) \text{ in } h(\text{ind}_K) \text{ or } h(d_{\alpha w}), h(d_{\alpha w}) \not\in h(\text{ind}_K).
\end{align*}\]

A pair \((d_{w_1}, d_{w_2})\) of distinct elements in \(J \) is called a \(k \)-block under \(h \) in case \(d_{w_1} \sim_k^h d_{w_2} \) and \(d_{w_1} \neq_k^h d_{w_2} \) for any distinct proper prefixes \(w'_1 \) and \(w'_2 \) of \(w_1, w_2 \). It should be clear that each equivalence class is determined by a tree of depth \(k \).
and branching factor of at most $|\mathcal{T}|$, each element of which indicates that it does not belong to \mathcal{S}, or it belongs to \mathcal{S} but its h-image is not in ind_K, or it belongs to \mathcal{S} and its h-image coincides with one of the ind_K. This gives rise to at most $(2 + |\mathcal{A}|)^{|\mathcal{T}|^2}$ equivalence classes. Therefore, under any identification, every sufficiently long branch of the canonical interpretation has a k-block simply because some equivalence class will have to appear twice on the branch.

Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a consistent DL-Lite$_{\text{core}}^H$ KB and q a \mathcal{T}-local Boolean CQ^Δ. (Recall that queries can contain individual names, and so, without loss of generality, we may assume that the query does not have answer variables.) An interpretation I is called a k-certificate for q and \mathcal{K} if

- $I \not\models q$,
- I satisfies all negative inclusions in \mathcal{T},
- there is a trim \mathcal{J} of C_K and an identification h: $\mathcal{J} \to I$ such that, for each branch b in C_K,
 - (b$_1$) if b is complete in \mathcal{J} and contains a k-block (d_{w_1}, d_{w_2}) under h then $|b|_I \leq |w_1|_2 + k$;
 - (b$_2$) if b is incomplete in \mathcal{J} then it contains a k-block (d_{w_1}, d_{w_2}) under h and $|b|_I = |w_1|_2 + k$.

Note that the trim \mathcal{J} in the definition is finite because every branch has a k-block and the trim contains at most $|\mathcal{T}|^k$ elements beyond each k-block. It follows that any k-certificate is finite by definition.

Having these definitions at hand, we are ready to state and prove two key lemmas of this section.

Lemma 18. Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a consistent DL-Lite$_{\text{core}}^H$ KB, q a \mathcal{T}-local Boolean CQ^Δ and $k > 0$. If $\mathcal{K} \not\models q$ then there exists a k-certificate for q and \mathcal{K}.

Proof. Let $\mathcal{K} \not\models q$. Then there exists a model I_0 of \mathcal{K} such that $I_0 \not\models q$. Let h_0 be a homomorphism from the canonical interpretation C_K to I_0 (without loss of generality we assume that the domain of I_0 is disjoint from the domain of C_K). The homomorphism h_0 can be represented as a composition $h' \circ h$ of two mappings such that $h' \models q$ and with h_0 on all elements that are merged with images of individuals but is the identity on all other elements:

$$h(d) = \begin{cases} h_0(d), & \text{if } h_0(d) \in h_0(\text{ind}_K), \\ d, & \text{otherwise;} \end{cases}$$

it follows that h' is the identity on the interpretations of individuals and agrees with h_0 on all other elements. Let $I = h(C_K)$. By definition, h and h' are homomorphisms from C_K to I and from I to I_0, respectively; moreover, h: C_K to I is an identification. We have $I \not\models q$ for otherwise $I \models q$ would imply $I_0 \models q$ because h' is a homomorphism that does not identify anything with the interpretations of individuals and q is \mathcal{T}-local.

Consider the (finite) trim \mathcal{J} of C_K to all the elements d_w such that $|w| \leq |w_1|_2 + k$ for all k-blocks (d_{w_1}, d_{w_2}) under h with w_1w_2 being a prefix of w (in particular, d_w is included if there is no such k-block). Let $h_{\ell} = h(\mathcal{J}_{\ell})$. We claim that I_{ℓ} is a k-certificate for q and \mathcal{K}. Indeed, since $I_0 \subseteq I_{\ell}$, we have $I_{\ell} \not\models q$ and I_{ℓ} satisfies all negative inclusions in \mathcal{T}. On the other hand, all the k-blocks under h are also k-blocks under the restriction of h onto \mathcal{J}_{ℓ}; indeed, I_{ℓ} contains all the elements within the distance of k from k-blocks, therefore satisfying (eq4) and (eq-c) is inherited from I.

Lemma 19. Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a consistent DL-Lite$_{\text{core}}^H$ KB and q a \mathcal{T}-local Boolean CQ^Δ. Let k be the size of q. If there exists a k-certificate for q and \mathcal{K} then $K \not\models q$.

Proof. Let I_0 be a k-certificate for q and \mathcal{K}. Although $I_0 \not\models q$, the interpretation I_0 may not be a model of \mathcal{K}. We show how to extend I_0 to a model of \mathcal{K} without introducing a match for q.

Since I_0 is a k-certificate, there is a trim \mathcal{J}_0 of the canonical interpretation C_K and an identification h_0: $\mathcal{J}_0 \to I_0$ satisfying (b$_1$) and (b$_2$). In the sequel, for the sake of simplifying the presentation, we will often refer to k-blocks under h_0 simply as k-blocks.

For $\ell > 0$, denote by \mathcal{J}_{ℓ} the trim of C_K to all the elements d_{w_0} such that $d_{w_0} \in H^\Delta$ and $|w_0| \leq \ell$ (the trim \mathcal{J}_{ℓ} extends all branches of \mathcal{J}_0 by at most ℓ elements).

Claim 19.1. Let (d_{w_1}, d_{w_2}) be a k-block under h_0 and let $\ell > 0$. If $d_{w_1w_2}$ belongs to \mathcal{J}_{ℓ} then d_{w_1} belongs to $\mathcal{J}_{\ell-1}$.

Proof of claim. By the definition of the canonical interpretation, since $d_{w_1w_2}$ belongs to $\mathcal{J}_0 \subseteq C_K$, the element $d_{w_1w_2}$ also belongs to C_K. If $d_{w_1w_2}$ belongs to \mathcal{J}_0 then it clearly belongs to $\mathcal{J}_{\ell-1}$. Otherwise, all the branches containing $d_{w_1w_2}$ are incomplete in \mathcal{J}_0. Consider any of these branches. By (b$_2$), there exists a k-block $(d_{w_1w_2}, d_{w_1w_2}')$ on this branch. We know that $(d_{w_1w_2}, d_{w_1w_2}')$ is the first pair with $d_{w_1w_2} \triangleleft h_0 d_{w_1w_2}'$ on any branch containing $d_{w_1w_2}$ and so, w_1 is a proper prefix of w_1w_2', whence $|w_1| \leq |w_1w_2'| + k + \ell$. On the other hand, $d_{w_1w_2}$ belongs to \mathcal{J}_{ℓ} and so, $|w_1| \leq k + \ell$. Thus, $|w_1| \leq |w_1w_2'| + k + \ell$, or equivalently, $|w_1| \leq |w_1w_2'| + (k + \ell - 1)$. However, by (b$_1$) and (b$_2$), the trim \mathcal{J}_0 contains all k-blocks together with all the elements within the distance of k from the k-blocks. Therefore, $\mathcal{J}_{\ell-1}$ contains all elements of C_K that are within $k + \ell - 1$ steps from any k-block. In particular, $\mathcal{J}_{\ell-1}$ contains $d_{w_1w_2}$.

We construct a sequence of interpretations

$$I_0 \subseteq I_1 \subseteq \cdots \subseteq I_{\ell} \subseteq \cdots$$

with identifications h_{ℓ}: $\mathcal{J}_{\ell} \to I_{\ell}$ and show by induction that, for all $\ell \geq 0$, the interpretation I_{ℓ} satisfies all negative inclusions in \mathcal{T} and $I_{\ell} \not\models q$.

The basis of induction, $\ell = 0$, is by the definition of k-certificate: $I_0 = h_0(\mathcal{J}_0)$. Let $\ell > 0$, and suppose that $I_{\ell-1}$ and $I_{\ell-1} = h_{\ell-1}(\mathcal{J}_{\ell-1})$ have been constructed. To obtain h_{ℓ}, we extend $h_{\ell-1}$ to the elements $d_{w_1w_2}$ in \mathcal{J}_ℓ that are not in $\mathcal{J}_{\ell-1}$ as follows:

$$h_{\ell}(d_{w_1w_2}) = \begin{cases} h_{\ell-1}(d_{w_1w_2}), & \text{if } h_{\ell-1}(d_{w_1w_2}) \in h_{\ell-1}(\text{ind}_K), \\ \text{a fresh element,} & \text{otherwise.} \end{cases}$$
By Claim 19.1, the definition is correct. It also follows from the definition that $h_t(\text{ind}_K) = h_{t-1}(\text{ind}_K)$ and therefore, we will use $h(\text{ind}_K)$ for this set in the sequel.

Claim 19.2. Let (d_{w1}, d_{w2}) be a k-block under h_0. Then, for every d_{w1w2} in \mathcal{J}_t, we have

$$h_t(d_{w1w2}) \in h(\text{ind}_K) \iff h_t(d_{w1w2}) = h_{t-1}(d_{w1w2}).$$

Proof of claim. If $|w| \leq k$ then the claim is immediate from (eq-c) and the definition of h_0. If $|w| > k$ then, by (b1) and (b2), d_{w1w2} does not belong to \mathcal{J}_0. By the definition of h_t, either $h_t(d_{w1w2})$ and $h_t(d_{w1w})$ are equal and in $h(\text{ind}_K)$ or $h_t(d_{w1w2})$ is a fresh element, which, in particular, cannot be equal to $h_{t-1}(d_{w1w2})$.

Let $\mathcal{I}_t = h_t(\mathcal{J}_t)$. Clearly, $\mathcal{I}_{t-1} \subseteq \mathcal{I}_t$ and h_t is an identification. We show that $\mathcal{I}_t \neq q$. Suppose for the sake of contradiction that there is a match π for q in \mathcal{I}_t. We then construct a match π' for q in \mathcal{I}_{t-1}. To this end we require a set Θ of all variables in sequences $x_1, \ldots, x_m, m \geq 1$, such that $\pi(x_i) \notin h(\text{ind}_K)$ for $i \leq m$, $R(x_1, \ldots, x_i) \in q$ for $i < m$ and either

- $\pi(x_i) = h_t(d_i)$, for some d_i in \mathcal{J}_t but not in \mathcal{J}_{t-1}, or

- q contains $R_0(x_1, \ldots, x_i) \in q$ and $\pi(x_i) = h_t(d_{i_1})$, $\mathcal{T} \models S \subseteq R_0$, $\pi(t_0) = h_t(d_{i_2}) \in h(\text{ind}_K)$ and d_{i_2} in \mathcal{J}_t but not in \mathcal{J}_{t-1}.

Intuitively, the set Θ contains exactly those variables whose images under π are reachable from the new part in \mathcal{I}_t through anonymous elements by a chain of (images of) atoms in the query; see Figs. 15 (a) and (b) for the two cases.

Claim 19.3. For each $x \in \Theta$, there are a unique k-block (d_{w1}, d_{w2}) under h_0 and a unique non-empty w such that d_{w1w2} is in \mathcal{J}_t and $\pi(x) = h_t(d_{w1w2}).$

Proof of claim. Let x_1, \ldots, x_m be a sequence of elements of Θ such that $\pi(x_i) \notin h(\text{ind}_K)$, $R(x_1, \ldots, x_i) \in q$, for all i, and $x_m = x$.

Suppose first that $\pi(x_i) = h_t(d_i)$ for some d_i in \mathcal{J}_t but not in \mathcal{J}_{t-1}. Since $\pi(x_1) \notin h(\text{ind}_K)$ and h_t is an identification, such a d_1 is uniquely defined. By (b2), there are a unique k-block (d_{w1}, d_{w2}) and a unique w such that $d_1 = d_{w1w2}$. We show by (finite) induction that, for each x_i, there is a unique w' with $\pi(x_i) = h_t(d_{w1w2'})$ and $|w'| \geq k + t - (i - 1)$.

Since i ranges from 1 to m, it does not exceed the size of q, which in turn does not exceed k and thus, $i \leq k$. For the basis of induction, $i = 1$, the unique w' is constructed above; moreover, since d_1 is in \mathcal{J}_t but not in \mathcal{J}_{t-1}, we have $|w'| = k + t$. For the induction step suppose that (44) holds for some $i < m$. As $\pi(x_{i+1}) \notin h(\text{ind}_K)$ and $(\pi(x_{i+1}), (x_{i+1})) \in R^t$, by (id), there is a unique d_{i+1} with $\pi(x_{i+1}) = h_t(d_{i+1})$. Since $i < m \leq k$, w' is non-empty. Hence, $d_{i+1} = d_{w1w2'}$ with either $w2' = w'S$ or $w1' = w'S$, for some S. Thus, $|w1'| \geq |w1| - 1$ and (44) follows. Finally, we use (44) with $i = m$ to obtain $|w^m| > t$.

Suppose now that q contains $R_0(x_1, t_0)$ with $\pi(x_1) = h_{t_0}$, $\pi(t_0) = h_t(d_{i_1}) \in h(\text{ind}_K)$ and d_{i_1} in \mathcal{J}_t but not in \mathcal{J}_{t-1}. The argument and the construction are identical to the case above except that now $|w1| > k + t - i$, and thus $|w1| > t > 0$.

The mapping π' from the terms t of q to the domain of \mathcal{I}_{t-1} is constructed as follows.

- If $t \in \Theta$ then t is a variable. By Claim 19.3, we have $\pi(t) = h_t(d_{w1w2})$, for a k-block (d_{w1}, d_{w2}) and some w. By Claim 19.1, d_{w1w2} is in \mathcal{J}_{t-1}; so, let $\pi'(t) = h_{t-1}(d_{w1w2})$, which is in Δ_{t-1}.

- If $t \notin \Theta$ then $\pi(t)$ is in Δ_{t-1} (for otherwise t is in Θ); let $\pi'(t) = \pi(t)$.

We claim that π' is a match for q in \mathcal{I}_{t-1} and prove it by showing that the image of every atom in q under π' is true in \mathcal{I}_{t-1}.

1. Suppose $(\pi(s), \pi'(t)) \in R^{t_1}$. We show $(\pi(s), \pi'(t)) \in R^{t-1}$. There are four cases, depending on the way $\pi(s)$ and $\pi'(t)$ are constructed.

 Case 1.1: $s \in \Theta$, that is, $\pi(s) = h_t(d_{w1w2})$. If $\pi'(t) = h_t(d_{w1w2})$ and $\pi'(t) = h_t(d_{w1w'})$ with $w' = wS$. By Claim 19.3, both d_{w1w} and $d_{w1w'}$ belong to \mathcal{J}_{t-1} and, so, in any case, $(d_{w1w}, d_{w1w'})$ is Δ_{t-1}, whence $(\pi(s), \pi'(t)) \in R^{t-1}$.

 Case 1.2: $s \in \Theta$ and $t \notin \Theta$, that is, $\pi(s) = h_t(d_{w1w2})$ and $\pi'(t) = h_{t-1}(d_{w1w2})$ but $(\pi'(t)) = \pi(t)$. We have $(\pi'(t)) = h(\text{ind}_K)$, for otherwise we would include t in Θ by considering a sequence ending in t. By Claim 19.3, w is non-empty and uniquely defined, and so, by (id), we have $(\pi'(t)) = h_t(d_{w1w2})$ with either $w' = wS$ or $w' = wS$ with $T \models S \subseteq R$ or $w' = wS$ with $T \models S \subseteq R$. By Claim 19.1, both d_{w1w} and $d_{w1w'}$ are in \mathcal{J}_{t-1} and, so, in any case, $(d_{w1w}, d_{w1w'})$ is Δ_{t-1}. By Claim 19.2, $(\pi'(t)) = h_{t-1}(d_{w1w'})$,

 Case 1.3: $s \notin \Theta$ and $t \notin \Theta$ is the mirror image of Case 1.2.

 Case 1.4: $s \notin \Theta$, that is, $\pi(s) = \pi'(s)$ and $\pi(t) = \pi'(t)$. We have $(\pi(s), \pi(t)) \in R^{t_1}$. Consider first the case when at least one of these elements is not in $h(\text{ind}_K)$. Suppose that $\pi(s) \notin

[20]
$h(\text{ind}_K)$ (the other case is symmetric). By (id), either $\pi(s) = h(d_w)$ and $\pi(t) = h(d_{w'})$ with $T \models S \subseteq R$ or $\pi(s) = h(d_{w'})$ and $\pi(t) = h(d_w)$ with $T \models S \subseteq R'$. We claim that in either case $d_{w'} = \pi(s)$ cannot be outside J_{f_1} and $d_w = \pi(t)$ cannot be outside J_{f_1} in the latter case. So, both $\pi(s)$ and $\pi(t)$ are in J_{f_1}, and we obtain $(\pi'(s), \pi'(t)) \in R^{f_1}$. Otherwise, both $\pi(s)$ and $\pi(t)$ are in $h(\text{ind}_K)$. Suppose for the sake of contradiction that $(\pi'(s), \pi'(t)) \not\in R^{f_1}$. Then, since $I_f = h(I_f)$, $I_{f_1} = h(I_{f_1})(J_{f_1})$ and both J_f, J_{f_1} are trims of \mathcal{C}_K, there are some d_{w_1}, d_{w_2} and d_{w_1}, d_{w_2}, w, for a k-block $(d_{w_1}, d_{w_2}), w$, with one of them in J_f but not in J_{f_1} such that $(\pi(s)) = h_1(d_{w_1}, d_{w_2})$ and $\pi(t) = h_1(d_{w_1}, d_{w_2})$ and either $w' = w' w$ with $T \models S \subseteq R$ or $w = w' w$ with $T \models S \subseteq R'$. By Claim 19.1, d_{w_1}, d_{w_2} are in J_{f_1} and, so, in either case, $(d_{w_1}, d_{w_2}) \in R^{f_1}$. Then, $h(d_{w_1}, d_{w_2}) = h_1(d_{w_1}, d_{w_2})$. By Claim 19.2, $(\pi(s), \pi(t)) \in R^{f_1}$ contrary to the assumption.

2. Next, suppose $\pi(s) \in A^{f_1}$. We show $\pi'(s) \in A^{f_1}$. There are two cases.

Case 2.1: $s \in \Theta$, that is, $\pi(s) = h_1(d_{w_1}, d_{w_2})$ and $\pi'(s) = h_1(d_{w_1}, d_{w_2})$. By Claim 19.3, $d_{w_1}, d_{w_2} \in A^{f_1}$. By Claim 19.1, d_{w_1}, d_{w_2} belong to J_{f_1} and, so, by the definition of the canonical interpretation, $d_{w_1}, d_{w_2} \in A^{f_1}$, whence $\pi'(s) \in A^{f_1}$.

Case 2.2: $s \notin \Theta$, that is, $\pi(s) = h(\text{ind}_K)$. If $\pi(s) \not\in h(\text{ind}_K)$ then, since h_1 is an identification, there is a unique d in J_f such that $\pi(s) = h(d)$. By the first item in the definition of Θ, d is in fact in J_{f_1}. Since $I_{f_1} = h(I_{f_1})(J_{f_1})$, we obtain $h(d) = h(I_{f_1})(d) \in A^{f_1}$, whence $\pi'(s) \in A^{f_1}$. If $\pi(s) \in h(\text{ind}_K)$ then suppose, for the sake of contradiction, that $\pi(s) \not\in A^{f_1}$. As $I_f = h(I_f)$ and $I_{f_1} = h(I_{f_1})(J_{f_1})$ and both J_f, J_{f_1} are trims of \mathcal{C}_K, there is d_{w_1}, d_{w_2}, for a k-block (d_{w_1}, d_{w_2}, w), in J_f but not in J_{f_1} such that $\pi(s) = h_1(d_{w_1}, d_{w_2})$. By Claim 19.1, d_{w_1}, d_{w_2} belong to J_{f_1} and, so, $d_{w_1}, d_{w_2} \in A^{f_1}$. Hence, $\pi(s) \not\in A^{f_1}$ contrary to the assumption.

3. Finally, suppose $\pi(s) \neq \pi(t)$, for an inequality $s \neq t$ in q. We show $\pi'(s) \neq \pi'(t)$. Since q is T-local, either $\pi(s)$ or $\pi(t)$ must be in $h(\text{ind}_K)$, and therefore either s or t is not in Θ, which leaves the following three cases possible.

Case 3.1: $s \in \Theta$ and $t \notin \Theta$, that is, $\pi(s) = h_1(d_{w_1}, d_{w_2})$ and $\pi'(s) = h_1(d_{w_1}, d_{w_2})$ but $\pi(t) = \pi(t)$. By the definition of Θ, $\pi(s) \not\in h(\text{ind}_K)$, whence, by Claim 19.2, $\pi(s) \not\in h(\text{ind}_K)$. On the other hand, by the observation above, $\pi'(t) = \pi(t) \in h(\text{ind}_K)$. So, $\pi'(s) \not\neq \pi'(t)$.

Case 3.2: $s \notin \Theta$ and $t \in \Theta$ is the mirror image of Case 3.1.

Case 3.3: $s, t \notin \Theta$, that is, $\pi(s) = \pi'(s)$ and $\pi(t) = \pi'(t)$, which, by the assumption, implies $\pi'(s) = \pi'(t)$.

By induction hypothesis, $I_{f_1} \not\notin q$, and so $I_f \not\notin q$. Moreover, by repeating the same argument, one can show that I_f satisfies all negative inclusions in T (the negation of a negative inclusion can be regarded as a Boolean CQ with two atoms and at most three variables, that is, as a T-local CQn of special form).

To complete the proof, let J_f be the union of the J_f and h be the union of the h_f. It should be clear that in fact $J_f = C_K$. Consider $I = h(J_f)$. By definition, I satisfies the assertions of the ABox \mathcal{A} and all positive inclusions in T. Since, by construction, each I_f satisfies all negative inclusions in T, we can conclude that J_f is a model of K (note, however, that I_f may not necessarily be a model of K, for any f). Finally, by our inductive argument, $I \not\notin q$.

Combining Lemmas 18 and 19 and observing that the size of a k-certificate can be bounded by an exponential function (in $|\mathcal{A}|$), we obtain the following theorem.

Theorem 20. For any DL-LiteH TBox T and any T-local CQn q, the problem CERTAIN ANSWERS (q, T) is decidable.

The exponential bound on the size of k-certificates means that the problem CERTAIN ANSWERS (q, T) for a DL-LiteH TBox T and a T-local CQn q is in fact in coNExpTime in data complexity, which leaves an exponential gap with the coNP-hardness established in Theorem 16. In case of a single inequality, a k-certificate of exponential size can be constructed by a deterministic algorithm. This results in the ExpTime upper data complexity bound, which is again exponentially harder than the P-hardness in Theorem 15.

Finally, we remark that the arguments in the proofs of Lemmas 18 and 19 can be transferred to unions of T-local CQns, so Theorem 20 also holds for this extended class of queries.

5. Conclusions and Future Work

Our investigation in the OBDA paradigm has made further steps towards a clearer understanding of the impact of extending CQs with different forms of negation. We have shown that in general these extensions lead to a surprisingly significant increase even in the data complexity: e.g., from AC0 for answering CQs to undecidability when safe negations are allowed. In order to find a way of having efficient query answering in the presence of negation, we have also explored various syntactic restrictions. For example, we have identified a novel class of CQs, local CQns, with decidable query answering over DL-Lite$^H_{core}$.

Our investigation leaves open some important problems for future work, e.g., decidability of answering CQs$^{-}$ and CQs$^+$ over DL-Lite$^H_{core}$, as well as of answering CQs$^{-}$ and local CQs$^+$ over EL$^H_{core}$. It also remains open to establish the exact complexity for local CQs$^+$ over DL-Lite$^H_{core}$.

Another interesting problem is to investigate whether the notions of guardedness and locality can be relaxed to increase the expressivity. We note that CQs$^+$ are not finite controlable for ontology languages with inverses, such as DL-Lite$^H_{core}$, DL-Lite$^H_{core}$, and ELH, and that our undecidability proofs rely on the encoding of infinite structures. Therefore, our techniques do not apply directly to the finite case. Finally, we believe that other problems, such as query containment, are also worth studying for the ontology languages with decidable query answering.
Acknowledgements. The first author was supported by the M8-Project TS-OBDA, the second author by the SFB/TR8 Spatial Cognition and the fourth author by the UK EPSRC grant EP/J017728 (SOCIAM project).

References

