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Abstract 

Photovoltaic cells are attracting interest for harvesting indoor light for low power 

consumption wireless electronics such as those required for smart homes and offices, and 

the Internet of Things. Here, we explore the potential of solution processable, small 

molecule photovoltaic cells as indoor power sources. By optimizing solvent vapour 

annealing (SVA) time to the photovoltaic layer, a record power conversion efficiency of over 

28 % is achieved under fluorescent lamps of 1000 lux, generating a maximum power density 

of 78.2 µW/cm2 (>10 % efficiency under AM1.5G). This high indoor performance surpasses 

silicon based photovoltaic cells, and is similar to gallium arsenide photovoltaic cells. Besides, 

the ratios of the voltage at maximum power point to the open circuit voltage are similar 

from indoor lighting to one sun condition, which is rare and allows a less power consuming 

method to track the maximum power point in this broad range of lighting conditions. The 

effect of SVA time on the device performance can be correlated to a balance between the 

crystallization and phase separation of the photovoltaic layers. New insight of the effect of 

SVA time to the device physics under different light levels is also obtained using advanced 

optoelectronic characterizations. 
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1. Introduction 

Organic photovoltaic (OPV) cells using solution processable small molecule donors 

have been receiving more attention in recent years due to the following unique features 

over polymer donors.1 Unlike polymers which have a batch-to-batch variation in molecular 

weight distribution during synthesis which can lead to poor device reproducibility,2 small 

molecules have a well-defined structure and thus a monodisperse molecular weight which 

allows easier purification and better reproducibility.1 Moreover, the power conversion 

efficiency (PCE) of such cells can now exceed 11 %,3,4 approaching the highest PCE�[�• (over 

13 %) of polymer based OPV cells.5

Although the main market of PV is for outdoors, harvesting photons from the sun, 

the potential of PV, especially low-cost PV, for harvesting energy from indoor light is 

becoming more attractive because of the rapid growth in potential applications, including in 

particular providing local power for the Internet of Things (IoT); the industry forecasts 50 

billion devices will be connected to the IoT by 2020.6 IoT allows communication between 

small electronic devices via networks, in which wireless electronic devices (containing 

sensors, actuators, etc.) are one of the key components and can lead to next generation 

smart homes and offices. For these devices, with typically low power consumption (up to 

milliwatts), harvesting energy from the indoor ambient environment is a key challenge for 

wireless devices with sustainable operation for months or ideally years.6 Temperature 

differences, mechanical motion, radio-frequency irradiation, and visible light are the 

primary sources of energy available from the ambient environment. It has been suggested 

that harvesting ambient light using PV is a particularly attractive solution to deal with this 

challenge.6,7 PV devices installed indoors (e.g. home, office, supermarket, or manufacturing 
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line) have the potential to recycle the light from lighting such as fluorescent lamps and light-

emitting diodes (LEDs) which mainly emit visible light with relatively low intensities from 

200 lux to 1000 lux.8,9 Due to the much narrower spectrum and lower intensity of indoor 

light compared with one sun irradiation, the performance of PV devices can be quite 

different between these two lighting regimes.10

Different types of PV devices including silicon, III�tV semiconductors, dye-sensitized, 

organic and perovskite PV cells have been studied under indoor lighting conditions,10�t17 with 

some of them showing promising indoor performance.13,15,16 Among them, a wide bandgap 

III�tV semiconductor PV, GaInP, has demonstrated the highest performance to date, with an 

open-circuit voltage (VOC) approaching 1.2 V, generating 92.7 µW/cm2 under 1000 lux 

fluorescent lamps.13 There have been some studies of OPV devices for indoor applications. 

Steim et al. showed that the shunt resistance, RSh, is more critical than series resistance, RS, 

to the performance under low light conditions and suggested that a minimum RSh of 85 

k�: cm2 is required for low light level applications.18 Later, Lechêne et al. further explored 

how RSh and the reverse saturated current, J0, affect the low light performance and 

concluded that the absolute value of RSh required varies for different systems depending on 

the ratio of J0 to short-circuit current density (JSC). There are also some demonstrations 

using OPV for indoor applications including charging a super-capacitor and powering 

wireless sensor nodes.19,20 Recently, OPV devices with respectable one sun performance 

have been shown to yield more than 22% PCE when tested under LEDs illumination.21

However, despite these advances, the indoor performance of PV devices is still far from the 

theoretical limit of 50 % PCE for fluorescent lamps and ca. 60 % PCE for LEDs lighting. 22
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Recently, a promising OPV system has emerged using solution processable blends of 

small molecule donor and fullerene acceptor, namely benzodithiophene terthiophene 

rhodamine:[6,6]-phenyl-C71-butyric acid methyl ester (BTR:PC71BM), showing attractive 

performance under one sun, with optimum active layer thickness at 250 nm with fill factors 

(FF) up to 77 % and PCE of 9.3 %. The active layer thickness can be further increased to 400 

nm without a significant drop in efficiency, attributed to significantly suppressed 

bimolecular recombination.23�t25 More importantly, it has a high external quantum efficiency 

(EQE) across the visible spectrum and a high VOC, both essential requirements for efficient 

indoor PV device performance.23,26 It is thus apparent that this is a potentially promising 

material system for indoor PV application, as evaluated in the study reported herein. 

The system BTR:PC71BM, like other small molecule:fullerene systems, requires 

additional processing treatment to obtain its best device performance.1 In this case, solvent 

vapour annealing (SVA) of the blend films is the additional step used to achieve high 

efficiency.23,27 Engmann et al. have demonstrated the importance of choosing the correct 

solvent for SVA: a solvent in which the active material is moderately soluble, such as 

tetrahydrofuran (THF), is more suitable for optimizing device performance than a good 

solubility solvent, such as chloroform.27 Although several studies have looked at the 

morphological changes of BTR:PC71BM films with and without SVA, the influence of SVA on 

the optoelectronic properties of the devices is still unclear. 

In this work, we study the effect of the SVA time (using THF) on the BTR:PC71BM 

layer and the resulting device performance under one sun and indoor lighting conditions. 

We find that the optimised BTR:PC71BM cell can achieve an outstanding PCE of over 28 % 

under indoor lighting (together with an attractive PCE under solar illumination). 
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Additionally, the Vmax to VOC ratio is stable from low light to high light levels, which is 

beneficial as it simplifies the tracking of maximum power point. Furthermore, SVA has a 

significantly weaker effect on the PCE of the devices under 1000 lux illumination than that 

under one sun. The effect of SVA time on the performance of the devices is correlated to 

the film morphology of the BTR:PC71BM studied by ultraviolet-visible (UV-Vis) absorption, 

grazing incidence x-ray diffraction (GIXRD), atomic force microscopy (AFM), and 

photoluminescence (PL). Furthermore, optoelectronic characterization including 

photocurrent, charge extraction (CE), and transient photovoltage (TPV) measurements over 

a range of light levels provide significant insight into the effect of SVA time on the device 

performance, particularly the difference between indoor lighting and one sun conditions. 
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2. Results and Discussion 

2.1 Device performance under a solar simulator and fluorescent lamps 

Figure 1 J-V characterization for a series of different SVA times, measured under (a) one sun and (b) 
fluorescent lamps. (c) EQE spectra of the devices with 0 minutes, 2 minutes, and 30 minutes SVA 
time. Spectrum of the fluorescent lamps is also plotted (arbitrary scale). (d) Normalized PCE 
measured under one sun and 1000 lux fluorescent lamps for devices with different SVA times. 
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Table 1 Device parameters for different SVA times, measured under AM1.5G with 90 mW/cm2

intensity. Values in the brackets are data obtained under 1000 lux fluorescent lamps. 

SVA time 
(min)

JSC(mA/cm2)
[µA/cm2]

VOC(V) FF(%) Pmax

(mW/cm2) 
[µW/cm2]

PCE (%)

0 11.6 [118.1] 0.994 [0.856] 51.6 [67.4] 5.97 [6.8] 6.6 [24.2]
0.5 11.8 [117.8] 0.995 [0.859] 53.5 [66.3] 6.26 [66.3] 7.0 [23.8]
1 13.0 [127.0] 0.966 [0.815] 68.9 [73.6] 8.65 [74.8] 9.6 [27.0]
2 13.3 [133.1] 0.945 [0.791] 75.1 [75.2] 9.42 [78.2] 10.5 [28.1]
5 12.5 [121.8] 0.928 [0.755] 79.1 [77.7] 9.19 [71.0] 10.2 [25.3]
10 11.5 [108.8] 0.923 [0.747] 75.4 [75.6] 7.98 [60.9] 8.9 [21.8]
30 9.7 [98.1] 0.922 [0.754] 61.9 [73.7] 5.54 [53.5] 6.2 [19.3]

The effect of active layer SVA time (from 0 minutes to 30 minutes) on the 

performance of BTR:PC71BM cells was investigated under both AM1.5G and indoor lighting 

conditions. Figure 1a shows the corresponding current density-voltage (J-V) characteristics 

of BTR:PC71BM devices under AM1.5G and the device parameters are listed in Table 1. The 

variation of each device parameter with the SVA time is shown in Figure S1. VOC of the 

devices with no SVA and 0.5 minutes SVA are the highest (approaching 1 V), and it decreases 

gradually with SVA time, saturating at about 0.92 V from 10 minutes SVA onward. The drop 

in VOC could be correlated to the improved crystallinity (see section 2.2) of BTR in the blend 

films upon SVA, as improved crystallization could raise the highest occupied molecular 

orbital (HOMO) level of the donor,28 and thus reduce the VOC.29 The JSC and FF increase with 

SVA time until an optimum time, and then decrease. Moderate SVA times of 2 minutes and 

5 minutes result in the highest JSC and FF of 13.3 mA/cm2 and 79.1 %, respectively. Overall, 

the PCE mainly follows the trend of the JSC and FF with SVA time, with the efficiency peaking 

at 10.5 % (2 minutes SVA) under AM1.5G. 

Next, we move to discuss devices tested under an array of fluorescent lamps which 

mimics a typical indoor environment. Figure 1b shows the J-V curves of 0 minutes, 
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2 minutes, and 30 minutes SVA obtained under 200 lux and 1000 lux. The device with 

2 minutes SVA shows the highest PCE of 26.2 % (200 lux) and 28.1 % (1000 lux), generating a 

maximum power output density (Pmax) of 14.6 µW/cm2 and 78.2 µW/cm2, respectively. The 

record high performance can be explained based on our previous work.26 Firstly, the 

bandgap of BTR is about 1.8 eV corresponding to the absorption onset of ca. 700 nm (see 

Figure 2a for the absorbance spectra) which is the ideal energy gap to harvest indoor light 

such as fluorescent lamps and visible light-emitting diodes.22,30 This is further confirmed by 

Figure 1c which shows that the external quantum efficiency (EQE) spectra of the devices 

with 0 minutes, 2 minutes and 30 minutes SVA overlap well with that of the fluorescent 

lamps (also shown in Figure 1c) and has a peak EQE of 78.6 % at 515 nm for the device 

treated with SVA for 2 minutes. Note that the spectrum for the device after 30 minutes SVA 

shows the lowest EQE and the spectrum for 0 minutes (no SVA) shows an intermediate EQE, 

consistent with the values of the JSC. Secondly, a high VOC under one sun and high small 

diode ideality factor �K (obtained by measuring the VOC as a function of light intensity),  are 

both beneficial to low light performance.26 Even if devices behave like an ideal diode (�K = 1), 

there is still an unavoidable voltage drop of 0.15 V to 0.25 V when the light intensity is 

reduced from one sun to indoor lighting condition, independent of the absolute magnitude 

of the voltage.13,14,19,26 The BTR:PC71BM studied herein exhibits a relatively high VOC under 

one sun (up to 1 V), which minimizes the fraction of the voltage lost at low light intensity. In 

addition, all the BTR:PC71BM devices measured herein (independent of SVA time)  have �K

values close to the ideal (see Figure S2), further enhancing the low light level voltage 

output.31
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To compare the effect of SVA time on the device performance under AM1.5G and 

1000 lux, PCE under AM1.5G and 1000 lux with different SVA times were normalized to the 

peak PCE (at 2 minutes SVA), as shown in Figure 1d. Interestingly, for short SVA time 

(0 minutes or 0.5 minutes), the PCE under one sun has only around 65 % of the peak 

efficiency whereas the PCE under 1000 lux fluorescent lamps maintains 86 % of the peak 

efficiency. To investigate this difference, device parameters under 1000 lux were compared 

to those under one sun for different SVA times, as shown in Figure S1. From this figure, it is 

apparent that the FF is the main parameter which exhibits the most significant 

enhancement from AM1.5G to 1000 lux (also less VOC reduction as shown in Figure S1b). 

This enhancement is most pronounced for the 2 minutes SVA device. In order to elucidate 

the origins of the enhanced performance, and specifically enhanced, obtained under low 

level irradiation, and why this enhancement is dependent upon SVA time, we further 

investigated the films and devices in terms of their film morphology and optoelectronic 

properties in the following sections. 
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2.2 Effect of SVA on film morphology 

Figure 2 (a) UV-Vis absorption spectra; (b) GIXRD measurement; (c) PL spectra; and (d) AFM 
topographical images of the BTR:PC71BM blend films with increasing SVA time. 

To understand the effect of SVA time on the film morphology and how the morphology 

correlates to the device performance, UV-Vis absorption, GIXRD, PL and AFM measurements 

on the BTR:PC71BM blend films were performed. Figure 2a shows clearly that the low energy 

optical absorbance peaks increase in strength with increasing SVA time, along with a red shift 

observed for both the main peak (from 554 nm to 566 nm, whose strength increased by 31%) 

and the shoulder (around 617 nm) after 30 minutes SVA. This is consistent with an increase 

in crystallinity of the BTR phase.23,27 This assignment is directly supported by the 

corresponding GIXRD data (Figure 2b; see Figure S3a for a zoomed-in figure), which has a 

diffraction peak at 2�T = 4.78�q (corresponding to an interlayer spacing of 1.85 nm) whose 

magnitude increases with increasing SVA time (an approximate 8-fold increase from 
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0 minutes to 30 minutes. The enhancement in absorbance and greater crystallization can 

explain the increase in device efficiency for devices with SVA time up to 2 minutes. 

To explain the decrease in device efficiency for SVA times longer than 2 minutes, we 

consider the PL quenching and surface topography of the blend films with different SVA times. 

The PL intensity (Figure 2c and Figure S3c for a zoomed-in plot) of the blend film (measuring 

PL from BTR) increases significantly with longer SVA times: more than 120 times larger when 

comparing samples with 30 minutes to 0 minutes SVA (for 0 minutes SVA, PL is too weak to 

be accurately measured). The PL quenching efficiencies are calculated by 

for 0 minutes, 2 minutes, and 30 minutes (see Table S1), where PLblend is the maximum PL 

intensity of the BTR:PC71BM blend film and PLneat is the maximum PL intensity of the BTR neat 

film. The PL quenching is very efficient for short SVA times (> 99% for both 0 and 2 minutes 

SVA) but decreases to 45% for 30 minutes SVA. This indicates that long SVA times result a 

substantial loss of exciton separation efficiency, explaining observed the drop in JSC and EQE. 

Note that the PL peak position is slightly blue shifted (to 732 nm for 30 minutes SVA) with 

longer SVA times. The much stronger PL quenching with increasing SVA time is further 

supported by the corresponding AFM images of the blend films, which show an increase in 

domain size and RMS roughness (0 minutes: 0.69 nm, 2 minutes: 0.85 nm and 30 minutes: 

2.82 nm) for longer SVA times. As the domain size increases (indicating more phase 

separation) due to an increase in crystallization, PL is quenched less efficiently. The PL and 

AFM results agree well with the decrease in device efficiency when the films are over treated 

with SVA. Therefore, we propose that the optimum SVA time (2 minutes) represents a balance 

between the above two opposing effects, i.e. increase in crystallization with SVA and decrease 

in PL quenching for long SVA. 
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2.3 Effect of SVA on photoelectrical properties  

Figure 3 (a) Corrected photocurrent , the saturated Jph at far reverse bias equals 
the total generation of current without loss. (b) Mobility lifetime product as a function of charge 
carrier density n, the mobility and lifetime used from the fitted data from short-circuit and open-
circuit conditions respectively. (c) Charge carrier lifetime as a function of charge carrier 
concentration and (d) charge carrier density graph versus voltage. 

To understand the effect of SVA time on device performance more quantitatively, 

further optoelectronic characterization was performed to probe the dynamics of charge 

generation and collection. To gain insight into the impact of SVA time on photocurrent 

generation, corrected photocurrent measurements were performed in far reverse bias and 

shown in Figure 3a. By applying a large reverse bias, photo-generated charge carriers are 

more efficiently extracted by the strong electric field. In principle, if the bias is high enough, 

all photogenerated charge carriers can overcome recombination resulting in collection 

without any loss. It can be seen that the device without any SVA process is able to generate 
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the highest photocurrent: in excess of 16.4 mA/cm2, compared to 14.3 mA/cm2 for 

2 minutes SVA and 10.5 mA/cm2 for 30 minutes, the corresponding maximum electron-hole 

pair generation rates are available in Table S2.32 However, Jph of the 0 minutes SVA device 

possesses a higher bias dependence, which is distinct from the 2 minutes and 30 minutes 

cases. The large drop in Jph from 2 minutes to 30 minutes correlates well with the reduced 

PL quenching efficiency in Table S1. However, for the device without SVA, the high Jph at far 

reverse bias is not maintained at short circuit. For all three devices, under short circuit 

conditions, current loss due to non-geminate recombination appear negligible, as evidenced 

by the linear behaviour of short circuit photocurrent with light intensity (see Table S2 and 

Figure S4) and direct measurements of charge densities and recombination lifetimes as 

detailed below.33 As such, the loss of photocurrent for the 0 minutes SVA device, most likely 

results from field dependent geminate recombination losses; such field dependent 

recombination losses have been reported previously to be more severe in more amorphous 

blends.34

The improved FF under low light implies a more efficient charge carrier collection 

process. The efficiency of the charge carrier collection process is indicated by the ratio of 

charge carrier drift length Ldr to active layer thickness: , here µ is the charge 

carrier mobility, �W is charge carrier lifetime and Vint is the internal voltage within the 

device.35 The higher this ratio, the better the collection should be for a given device. The 

collection efficiency of the devices under an electric field can thus be correlated with the µ�W

product. Figure 3b shows the experimental determination of the µ�W product over a range of 

charge carrier concentration (by changing light intensity) from measurements of average 

drift mobility measured from charge extraction data at short circuit (see Figure S5) and 
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charge carrier lifetime measured from transient photovoltage decays at open circuit (see 

Figure 3c). Note that the 2 minutes SVA device presents the highest mobility among the 

three devices, ranging from 1 × 10-4 cm2/Vs to 4 × 10-4 cm2/Vs. Near the one sun operating 

condition (the charge carrier concentration at maximum power point (MPP) is around 1 × 

1016 cm-3 for all three types of device), the µ�W products rank 2 minutes > 30 minutes > 0 

minutes, which correlates well with the FF under AM1.5G. 

On the other hand, the charge carrier collection for devices with different SVA times 

under low light intensity is different from one sun. Due to much stronger negative 

dependence on the charge carrier density for the device without SVA, the µ�W product is 

superior to that of the SVA treated devices when the charge carrier density is lower than 2 × 

1015 cm-3 (this is around 1% sun irradiation and equivalent to indoor lighting conditions). The 

slopes in Figure 3b for the three devices could be qualitatively interpreted as the difference 

in the improvement of the FF measured under AM1.5G to indoor light, the steeper the slope 

the more the improvement observed in FF (see Figure S1). The difference in the 

dependence of the µ�W product upon light intensity is mainly governed by the increase in 

charge carrier lifetime with increasing charge carrier density, while the drift mobility is 

relatively invariant (see Figure S5). 

Electronic energy level disorder, often observed by the presence of band edge tail 

(shallow trap) states can lead to differences in the dependence of carrier lifetime upon 

charge density.36 The distribution of these tail states can be derived from charge carrier 

density versus VOC measurements.36 A typical expression of n as a function of V is 

, where the constant  quantifies the dependence of charge carrier density upon 

film quasi-Fermi level splitting. �J�| 19 for ideal semiconductors, with smaller values 



16 

indicating increasingly broad distributions of tail states. Here we find that in Figure 3d the 

device with 2 minutes treatment shows the largest �J (�J = 12.8 V-1) indicating the least 

energetic disorder, whilst the device without treatment shows the most disordered (�J = 9.4 

V-1) among the three. Also, note that the  value obtained for the 2 minutes SVA treated 

BTR:PC71BM devices is among the highest reported for bulk heterojunction OPV systems.37�t

41
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2.4 Comparison with other PV technologies and discussion of potential 

applications 

Figure 4 (a) Maximum power density output (Pmax) of BTR:PC71BM device with 2 minutes SVA at 
different illuminance and compared to other PV techniques available in the literature. Saltire-cross 
symbols are from ref.13 Cross symbols are from ref.8 Square symbols are from ref.15 Circle symbols 
are from ref.30 Up-triangle symbols are from ref.11 Down-triangle symbols are from ref.14 Left-triangle 
symbols are from ref.42 Right-triangle symbols are from ref.20 Pentagon symbols are from ref.26 (b) 
Ratio of Vmax to VOC of the BTR:PC71BM device with 2 minutes SVA from indoor lighting to AM1.5G 
condition. 

A plot of the Pmax at different illuminance can be useful to determine the cell size 

needed to obtain a certain power requirement in an indoor environment in which the light 

level is usually fixed and stable. Figure 4a shows the Pmax obtained by the BTR:PC71BM 

device with 2 minutes SVA at different illuminance (corresponding J-V curves are available in 

Figure S6). The plot of Pmax against the illuminance shows nearly linear proportionality. We 

further compare the OPV performance with published values for inorganic PV technologies 

tested under indoor conditions.8,11,13�t15,20,26,30,42 Obviously, the OPV device reported here 

not only outperforms polycrystalline-silicon (p-Si) and amorphous-silicon (a-Si) PV cells but 

also behaves comparably to gallium arsenide (GaAs) PV cells. Moreover, our results also 
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approach the highest indoor performance reported using gallium indium phosphide (GaInP) 

as the active material.13

Since the absolute power generated under an indoor environment is somewhat 

lower, a MPP tracking method used for outdoors may not be suitable for indoor 

applications.43 The fractional-voltage method is perhaps more appropriate for indoor 

applications, which employs a pre-set voltage fraction in a circuit to track the MPP and thus 

consume much less power compared to the MPP tracking method used for outdoors.44 The 

voltage fraction is defined by the ratio of the voltage at the MPP (Vmax) to the VOC, and could 

vary significantly for different light levels since this ratio is closely related to the FF, which 

changes substantially with the light intensity.45 We have extracted this ratio for BTR:PC71BM 

device with 2 minutes SVA as shown in Figure 4b. The ratio is surprisingly stable from 100 

lux to AM1.5G illumination which can be attributed to the high and stable FF throughout 

this broad range of light levels. Although in most typical cases PV cells may either be used 

outdoors or indoors, some applications, such as PV cells integrated wearable electronics, 

may require efficient function under both conditions. This result suggests that circuit design 

for both indoor and outdoor use can be significantly simplified for the OPV system studied 

herein.  
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3. Conclusion 

In conclusion, we have studied the performance of BTR:PC71BM devices with SVA 

times ranging from 0 minutes to 30 minutes under different lighting conditions. With a 

moderate treatment time of 2 minutes to 5 minutes, we obtain a PCE over 10 % with up to 

79 % FF under AM1.5G illumination and 78.2 µW/cm2 power density generated under 

fluorescent lamps at 1000 lux, translating into a PCE of 28.1 %, the highest OPV performance 

for indoor applications reported to date. The devices exhibit a stable ratio of Vmax to VOC

from indoor lighting to one sun irradiation, indicating that the fractional-voltage method is 

ideal for tracking the MPP over a broad range of illumination for these devices. Therefore, 

the BTR:PC71BM device has promising and unique properties for both indoor and outdoor 

applications. The effect of SVA treatment on the device performance for both AM1.5G and 

1000 lux correlates well with the film morphology (a balance between enhanced 

crystallization and increased phase separation), and charge generation and collection 

dynamics, particularly the dependence of mobility-lifetime product on charge carrier 

density. 
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4. Experimental Section 

Materials: BTR and PC71BM were purchased from 1-Material and Solenne BV, respectively. 

Chloroform (CF) and anhydrous tetrahydrofuran (THF) are purchased from Sigma-Aldrich. 

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), Clevios P VP AI 4083, 

was purchased from Heraeus. All materials were used as received without further 

purification. 

OPV cell fabrication and characterization: Indium tin oxide (ITO) glass substrates (15 �: / 
´) 

were cleaned sequentially with detergent (Hellmanex), deionized water, acetone, and 

isopropyl alcohol in an ultrasonic bath. BTR and PC71BM (1:1 weight ratio) were dissolved in 

CF with a total concentration of 40 mg/ml on a 60 �qC hotplate stirred overnight in a nitrogen 

filled glovebox. PEDOT:PSS was first spin-coated (4000 r.p.m. for 60 s) on plasma cleaned 

ITO glass substrates in air followed by 150 �qC annealing on a hotplate for 10 minutes. After 

transferring the samples to the nitrogen filled glovebox, the blend solution was then spin-

coated on the PEDOT:PSS coated substrates at an optimized speed of 1500 r.p.m. for 15 s 

resulted in ca 220 nm active layer thickness measured by a profilometer. SVA treatment was 

performed in a sectioned petri dish. THF of 1 ml was put in a section of the petri dish to 

ensure similar surface area exposed to the solvent vapour environment. The THF filled petri 

dish was covered with a lid for at least 2 minutes before doing the SVA treatment to the 

active layer. The samples were placed in the other sections of the petri dish with the active 

layer facing up for different exposure times as specified in the main text. Finally, 30 nm of 

calcium and 100 nm of aluminium were thermally evaporated onto the active layer in an 

evaporator at a based pressure of 2 × 10-5 mbar, forming devices with active area of 0.15 

cm2. All devices were encapsulated with glass slides with the aid of UV-epoxy before 
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measurements. J-V characterizations were performed by a Keithley 2400 sourcemeter under 

both solar simulator (Newport 92193A-1000) with intensity of ca 90 mW/cm2 and 

fluorescent lamps (Osram L18W/827). The lux levels of the fluorescence lamps were 

measured by a luxmeter, (LX-1330B). The intensity calibration was mentioned in a previous 

work.26 EQE spectra were obtained by QEX10 Quantum Efficiency Measurement System. 

UV-Vis absorption measurements: The UV-Vis absorbance spectra were measured in the 

range 200 �t 1000 nm using a Perkin Elmer Lambda 750 spectrophotometer. BTR:PC71BM 

blend films with and without SVA treatment were prepared directly on quartz and a quartz 

substrate was used as a reference sample for calibration. 

GIXRD measurements: GIXRD measurements were carried out using a Bruker D8 Discover 

�]�v�•�š�Œ�µ�u���v�š���Á�]�š�Z���������µ�<�r���������u��(wavelength is 0.15418 nm) at 40 kV and 40 mA, scan 

parameters of 0.1 s/step at 0.01�q of 2�T step size. 

PL measurements: A FluoroMax-4 spectrofluorometer (Horiba Scientific) was used to 

measure the photoluminescence spectra of BTR:PC71BM blend films on quartz in the range 

560 �t 1000 nm using an excitation wavelength of 532 nm. The integration time was 0.2 s. 

The entrance and exit slits were 5 nm. Diffraction gratings with 1200 gr/mm were used for 

the excitation and emission monochromators. The spectrum of the lamp was measured by a 

photodiode located between the sample and the excitation monochromator, and corrected 

by a calibration file (R1c: corrected lamp spectrum). The emission spectrum S1 were 

corrected by a calibration file (S1c: corrected emission spectrum) and further divided by the 

corrected reference signal R1c. The data in the manuscript show the S1c/R1c signal. 
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AFM measurements: AFM was performed with an AIST-NT CombiScope in non-contact 

mode using a Budget Sensors Multi75Al-G probe with tip radius < 10 nm. Surface height 

profiles were levelled by fitting each line with a second order polynomial, before evaluating 

the root mean square (RMS) roughness values. 

Photocurrent/CE/TPV measurements: The corrected photocurrent Jph(V) was measured from 

the difference in J-V response between the dark response Jdark(V) and the light response 

Jlight(V) by pulsed illumination to avoid overheating the samples. The pulsed illumination was 

generated by a ring of 12 white LEDs with a fast-switching metal oxide field effect transistor. 

The one sun equivalent illumination was calibrated by matching the value of JSC obtained 

under the AM1.5G illumination. The light was switched on for approximately 2 ms to allow 

the current reaching the steady state and a much longer time was used after switching off 

the light to avoid the device to cool down. The potential bias was applied by a Keithley 2400 

sourcemeter, and the voltage across the device was measured by a Tektronix TDS3032B 

Oscilloscope with a 1-�D�Q���]�v�‰�µ�š���]�u�‰�������v�����X�����Z���Œ�P�������Æ�š�Œ�����š�]�}�v���Á���•���µ�•�������š�}�������š���Œ�u�]�v�����š�Z����

average charge carrier densities in devices under different illumination levels and under 

different biases (open circuit and short circuit conditions in this study). The desired light 

intensity was provided by the ring of 12 white LEDs. The device was held at open circuit 

under an initial bias with a background light level and then switched to short circuit with the 

light off simultaneously. The voltage transient was acquired with a DAQ card connected to a 

Tektronix TDS3032B Oscilloscope. The voltage transients were converted into current 

transients through Ohms law. The total charges for the calculation of n was extracted by 

integrating the current transients. For the TPV measurements, the device was held at open 

circuit condition under different background light intensity controlled by the ring of white 
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LEDs. A small additional optical excitation provided by a pulsed Continuum Minilite Nd:YAG 

laser at 532nm with a pulse width of < 10 nm was applied to the device under 

measurement. This small excitation generated a small voltage decay transient which was 

captured by an oscilloscope. The decay was fitted with a mono-exponential model to obtain 

the small perturbation carrier lifetime and finally to be used to estimate the total charge 

carrier lifetime within the device. 
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