Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

What’s in a Smile? Initial results of multilevel principal components analysis of facial shape and image texture

Farnell, Damian JJ, Galloway, Jennifer, Zhurov, Alexei, Richmond, Stephen, Pirttiniemi, Pertti and Lahdesmaki, Raija 2018. What’s in a Smile? Initial results of multilevel principal components analysis of facial shape and image texture. In: Nixon, Mark, Mahmoodi, Sasan and Zwiggelaar, Reyer eds. Medical Image Understanding and Analysis: 22nd Conference, MIUA 2018, Southampton, UK, July 9-11, 2018, Proceedings, Communications in Computer and Information Science, Springer, pp. 177-188. (10.1007/978-3-319-95921-4_18)

[img]
Preview
PDF - Accepted Post-Print Version
Download (272kB) | Preview

Abstract

Multilevel principal components analysis (mPCA) has previously been shown to provide a simple and straightforward method of forming point distribution models that can be used in (active) shape models. Here we extend the mPCA approach to model image texture as well as shape. As a test case, we consider a set of (2D frontal) facial images from a group of 80 Finnish subjects (34 male; 46 female) with two different facial expressions (smiling and neutral) per subject. Shape (in terms of landmark points) and image texture are considered separately in this initial analysis. Three-level models are constructed that contain levels for biological sex, “within-subject” variation (i.e., facial expression), and “between-subject” variation (i.e., all other sources of variation). By considering eigenvalues, we find that the order of importance as sources of variation for facial shape is: facial expression (47.5%), between-subject variations (45.1%), and then biological sex (7.4%). By contrast, the order for image texture is: between-subject variations (55.5%), facial expression (37.1%), and then biological sex (7.4%). The major modes for the facial expression level of the mPCA models clearly reflect changes in increased mouth size and increased prominence of cheeks during smiling for both shape and texture. Even subtle effects such as changes to eyes and nose shape during smile are seen clearly. The major mode for the biological sex level of the mPCA models similarly relates clearly to changes between male and female. Model fits yield “scores” for each principal component that show strong clustering for both shape and texture by biological sex and facial expression at appropriate levels of the model. We conclude that mPCA correctly decomposes sources of variation due to biological sex and facial expression (etc.) and that it provides a reliable method of forming models of both shape and image texture.

Item Type: Book Section
Date Type: Publication
Status: Published
Schools: Dentistry
Subjects: R Medicine > RK Dentistry
Publisher: Springer
ISBN: 978-3319959207
Date of First Compliant Deposit: 5 September 2018
Date of Acceptance: 21 May 2018
Last Modified: 31 Dec 2018 21:56
URI: http://orca.cf.ac.uk/id/eprint/114619

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics