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Both amplitude and latency of single-trial EEG/MEG recordgs provide valuable
information regarding functionality of the human brain. Ithis article, we provided a
data-driven graph and network-based framework for miningriformation from multi-trial
event-related brain recordings. In the rst part, we provié the general outline of the
proposed methodological approach. In the second part, we povide a more detailed
illustration, and present the obtained results on every sgeof the algorithmic procedure.
To justify the proposed framework instead of presenting thenalytic data mining and
graph-based steps, we address the problem of response varihility, a prerequisite to
reliable estimates for both the amplitude and latency on spe ¢ N/P components linked

to the nature of the stimuli. The major question addressed ithis study is the selection of
representative single-trials with the aim of uncovering @$s noisey averaged waveform
elicited from the stimuli. This graph and network-based algrithmic procedure increases
the signal-to-noise (SNR) of the brain response, a key prefpcessing step to reveal
signi cant and reliable amplitude and latency at a speci c ime after the onset of the
stimulus and with the right polarity (N or P). We demonstratethe whole approach using
electroencephalography (EEG) auditory mismatch negatiyi(MMN) recordings from 42
young healthy controls. The method is novel, fast and data4iven succeeding rst to

reveal the true waveform elicited by MMN on different condans (frequency, intensity,
duration, etc.). The proposed graph-oriented algorithmigipeline increased the SNR
of the characteristic waveforms and the reliability of amjpude and latency within the
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adopted cohort. We also demonstrated how different EEG refence schemes (REST vs.
average) can in uence amplitude-latency estimation. Simation results revealed robust
amplitude-latency estimations under different SNR and amijude-latency variations with
the proposed algorithm.

Keywords: single-trials, data-mining, proximity graphs, ne twork analysis, amplitude, latency, reliability, signal to
noise ratio (SNR)

INTRODUCTION succeeded to link this variability with the related sources
di erent brain areas and time windows. MFT is a non-linear

A prerequisite for the studying of evoked potentials (EPshes t solution of the ill-posed biomagnetic inverse problem and it
distinction of the true brain's response due to a stimulusniro s applied independently to each single snapshot (timeslice)
the brain ongoing activity. To uncover true brain activitylarge  of either resting-state activity or single trial (or aveejg
number of single trials (STs) should be collected and aw#fag magnetoencephalographic (MEG) brain signal. Complementary,
to reveal the brain's response waveform. The assumptions theifey very rst mentioned that the ongoing activity beforeeth
single-trials are time-locked and contaminated by Gauss@@ise  onset of the stimulus is functionally coupled with the suhset
of zero-mean are both oversimpli edL@skaris et al., 2004  regional response_@skaris and loannides, 2001; Laskaris et al.,
For example, the brain state of each subject changes from tin¥)03. Recently, they demonstrated how the “re ex level” of
moment to time moment due to shifts of attention and the spontaneous activity of various cognitive subsystems shape
fatigue level, while habituation during the task and/or poais  the brain activity during cognitive tasks stimulating thanse
incidental experience with the nature of the task are sigmnt subareasole et al., 2006
factors that alter behavior even in short duration recogkn Several methods have examined STs with the goal of extgactin
(Laskaris and loannides, 2001; Laskaris et al.,)2003 the related amplitudes and latencies. These methods can be

Both single-trial amplitude and latency of EEG/MEG signalsategorized into two groups: the ones that need an a priori
contain valuable information regarding brain functiortgiin ~ template and those with no waveform constraints. A few methods
various conditions and targeted groups. For example, ineas need the shape of the target signal which should be de ned a
latency variation may be associated with: ADHDe( Pascalis priori (for example Woody, 1967; Mayhew et al., 2008econd,
et al., 2008 aging Eein and Turetsky, 1989; Fjell et al., 2§09 only a few methods allowed the free variability of STs (for
IQ scores Geurts et al., 20038mild cognitive impairment (MCI;  examplePham et al., 1987; Laskaris et al., J)@hereas others
Laskaris et al., 20),3and in psychosisgodatsch et al., 20).1 incorporate in the analytic pathway the constraint of both types

Exploring single-trial di erences between groups and/orof variation (for examplejaskowski and Verleger, 199%hird,
conditions demands a proper unbiased manipulation of singlefew methods assume that the data comes from a single signal
trials in order to extract reliable amplitude and latency.igfs  (for example,Pham et al., 1987; Jaskowski and Verleger, Y1999
a non-trivial and demanding task for brain responses gives thwhereas others allow multi-trials to have their own amplitude
complexity of both brain activity and the acquired EEG/MEGand latency (for example,askaris et al., 2004; Mayhew et al.,
recordings due to low signal-to-noise ratio (SNR) of singlatt 2006; Da Pelo et al., 2018ethodologies that analyze every
EEG/MEG responses-¢in and Turetsky, 1989; Laskaris andtrial as a unique brain response are on the right place compared
loannides, 200)and are usually integrated signals derived fromto averaging across all trials. Variability of single-sid very
multiple brain processessevins, 198 informative for amplitude and latency estimation and shoukl b

Only a few exploratory studies attempted to conveytreated properly. Fourth, others methods provide algorithivestt
information from STs. To deal with the poor SNR, dierent are susceptible to noiségskowski and Verleger, 200@hereas
methods have been proposed in the past. The basic charaderisor others this susceptibility is reduced by incorporatingsisa
of previous techniques to solve the aforementioned issuedasfunctions. Disadvantages of the aforementioned are either
on classi cation and categorization of single-trialso(iridakis  a priori selection of a template waveform derived from grand-
et al., 1997, Geva, 1998; Lange et al, ROObhe nal averaged time seriesl( etal., 201)and/or the low performance
outcome of this procedure is the categorization of STs intdn low SNR conditions.
homogeneous classes. Each of these classes may re ectndli ere In optimal scenarios, principal component analysis (PCA)
brain behavior like spontaneous reaction time, anticipationcould be used for mining electroencephalographic and
or reect the variability of the regional response dynamicsmagnetoencephalographic responsesiston et al., 1996
(Laskaris et al., 2003Complementary, Laskaris et al., proposedAlternatively, independent component analysis (ICA) could be
a summarization of STs via Voronoi testellation procedureadopted for dimensionality reduction and learning purposes of
minimal spanning tree, and Breadth- rst graph (BFS) searchmulti-trial responsesilakeig et al., 1996
procedure in order to reorder prototypical responsésigkaris The purpose of the present paper is to demonstrate a fast,
et al., 200% The ordered prototypes re ected the variability of reliable, and completely data-driven methodology based on data
the single-trials while their source localization of nearagnetic  mining, graph, and network analysis in order to reveal “true”
recordings with Magnetic Field Tomography (MFT) algorithm variability of the single-trials and accurate detectionmiditude
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and latency linked to responses on speci ¢ stimuli. It is mor
than evident that single-trials are noisy even in the mostropt A EMST Cc RNGc GGc DT
scenarios and experimental protocols. The motivation for the
presented algorithmic steps arose after analyzing EEG STs from
the famous mismatch negativity (MMN) auditory task{atanen X} E - M - @
et al., 200t Single-trials were completely noisy, missing even - =
a clear peak across trials and the multi-feature paradigm. Oy
analysis combined a member of proximity graph called Gabrie
graph (GG) and network analysis to reveal prototypical single- FIGURE 1 | Proxim?ty graphs. The relat?onship pgtween reIaFive neigjorhood
trials covering the whole space of their variability and theimed | 92P" (RNG), Gabriel graph (GG), Euclidean minimal spangitree (EMST),
. . L . R . and Delaunay triangulation (DT)A) Relationships between proximity graphs.

them into a combined characteristic single-trial per cormfiti (B) Schematic illustration of proximity graphs with ve nodes.
The proposed analysis is an appropriate tool for geometrical da
and vectorial pattern analysis of single-trials.

The scope of our analysis on the adopted MMN paradign
for demonstration of the methodology focused on optimizihgt
SNR of the selected single-trials under the objective raviteto
reveal the best type of lter (IIR/FIR), its order and the degkee
of the GG single-trial network that choose the number of sild d
single-trials. ik

METHODS

Feature Extraction

Firstly, we construct a similarity distance matrix betwesrery
pair of ST using the distance correlation estimatBe¢kely and
Rizzo, 200 The distance matrix called hereafter DM tabulates
the distance between the temporal variability of two timedeser
The distance correlation is a measure of statistical deparale

between two random variables or random vectors. FIGURE 2 | Geometric illustration of Gabriel's rule regarding the carection of
two points.

Embedding in a Feature Space

After constructing the DM derived by the pair-wise estimatio

of the temporal variability of STs, we embedded the DM in a 2D In mathematics, the GG of a s8tof points in the Euclidean
feature space. Here, we adopted multidimensional scaling (MD®lane expresses one notion of proximity or nearness of those
a high popular dimensionality technique among neurosciastis points. The GG is a subgraph of the Delaunay triangulation
This approach will help us to detect and visualize the vaiitgbil (Matula and Sokal, 1930Complementary, the GG contains as

of STs within a common embedded feature space. a subgraph the Euclidean minimum spanning tree, the RNG,
and the nearest neighbor graplsébriel and Sokal, 196%ee

Constructing a Proximity Graph on the Figure 1). , , . _

Embedded Space If we also consider the Euclidean minimum spanning tree

A proximity graph is simply a graph in which two vertices (which is a tree that minimizes the total edge length conimegt

are connected by an edae if and onlv if the vertices satis&” points) and the Delauney triangulation (which maximizke
. v 9 ; y I , inimum angle over all triangulations of a set of points), we ge
particular geometric requirements. “Proximity” here means,

spatial distance. Many of these graphs can be formulated Wlwe following relationship:
respect to many metrics, but the Euclidean metric is used most
frequently. Here, we used the Euclidean distance as a proper
spatial distance metric.

LetL(p,q) be the intersection of the circle about p with a tedi

EMST RNG GG DT 1)

Mathematically in GG, two points and j are connected if the

of dist(p,q) and the circle about g with a radius of dist(q,phid square of the distance between thdﬁ;l,ls less than the sum of

is called a lune. The relative neighborhood graph RNG(V) ot a sén€ squared distance between each of these pomts andzany othe

of points V, is the graph that has an edge (p,q) if and only if the?@int k- Under GG main rule, we connetand] ifd}  di

intersection of L(p,q) and V is emptyF{gure 1A). d2 (2) for allk points Schematically, we demonstrated Gabrlels
Let C(p,q) be the circle centered on the point halfway betweerule in Figure 2

p and g, and with a radius of half the distance between p and Figure 3 illustrates a right Figure3A) and a wrong

g. The GG of a set of points V, GG(V), is the graph that has arfFigure 3B) connections under the main rule of GGigure 3C

edge (p,q) if and only if the intersection of C(p,q) and V is emptyillustrates a GG produced by 100 random points in a 2D plain.

(Figure 1B). The main outcome of this approach is the construction of a
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FIGURE 3 | (A) Right, (B) wrong connected points in GG, and(C) the GG of 100 random 2D points.

GG in the 2D feature space where nodes are the single-trialdere as W, we used the GG whileN denotes the
Two STs are connected if within the circle passes from their 2[prototypical STs.

coordinates no other ST is encapsulated. With this approach, GG

notion demands to cover the feature space and to sample singIMATLAB Toolbox

trial variability without over-representing. One can see @& A MATLAB toolbox will be released from the author's website,
a denoising procedure to manipulate properly single-trials. GGesearchgate and github upon acceptance of the paper (https://
captures the backbone of single-trials in the embedded space. github.com/stdimitr/GG_SINGLE_TRIALS_MINING/tree/

Lo . master). We will demonstrate the pipeline with a few recordings
Network Analysis in Gabriel Graph (GG) which will be available to any researcher.

The construction of a connected GG on the 2D embedded

space of single-trials opens the window to adopt well-knowrn yence of Reference on Waveform,
approachsed derived from network theory. Here, in order to

Amplit nd Latency Estimation in
detect representative prototypical STs, we used the degree an ude, and Latency Estimatio

each node in GG in order to detect the hubs. The degree ingle-Trial Analysis

a node is a trivial network metric which describes the numberl N€ inuence of the reference is a critical issue for

of direct neighbors of each node. In simple words, degreglectroencephalography (EEG) and event-related potentials

counts the number of nodes with which each node is directhyfERPS) studies. It seems that brain connectivity and network
connected. Here, we optimized the selection of degree k w@ing analysis is more robust compared to the estimation of single

an optimized objective criterion the increment of SNR of gtan POWer Oimitriadis et al., 201)) A recent study proposed
average single-trial. the innity REST reference as an appropriate common

reference system for EEG analysigaq, 2001; Yao et al.,
Grand Average of Single Trials 2005; Qin et al., 2010; Chella et al., 2016; Huang et al.,)2017
After selecting the prototypical STs that simultaneously ocept Another study compared dierent EEG reference systems
the variability of STs, we estimated their grand-averagee T in dierent simulation scenarios at both sensor and source
selection of prototypical single-trials based on the sadactf level. They demonstrated REST in nity reference is the most

degreek from the GG with the aim to improve the SNR. preferable system across the highly used reference systems
) ) ) in the literature (ei and Liao, 2017 Here, we adopted
Estimation of Amplitude—Latency also REST reference system in comparison with the average

Based on the grand average signal constructed by averdgng system.

prototypical STs, we estimated the amplitude and latency. Both

amplitude and latency were extracted completely data-driven bAlternative Single-Trial Mining Algorithms
detecting prominent peak from the whole time series as a globdlo demonstrate the superiority and the simplicity of our metho

maxima. compared to others, we repeated the whole analysis using PCA,
. . e . . singular value decomposition (SVD), and multi-linear regger
Estimating the Variability of Single-Trials analysis lu et al., 201). Both methodologies have been applied

To access the variability of STs, we estimated the globaeacy  sing average and REST reference.
(GE) on a network level based on the subgraph de ned by the
nodes of GG linked to the extracted prototypical single-trials ~ Sjmulations

Global e ciency (GE fora networkW of N N nodesisthe \ve simulated the original responses using multivariate
inverse of the harmonic mean of the shortest path length betwe autoregressive model (MVAR)AQderson et al., 1998and
each pair of nodes and re ects the overall e ciency of paralleloptimized the model selection with Akaike criteriorikake,
information transfer in the network l(atora and Marchiori, 1974 The simulations followed two scenarios: In the rst one,

200). both amplitude and latency parameters were the same for the
X 1 peak while in the second one both amplitude-latency varies
GED 1 6 j2n,jon(dj) @) independently apart from the peak. Practically, in the rst
N N N 1 scenario, the peaks were shifted and scaled by the same amount
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while in the second within each trial the peak was shifted and Our analysis focused on midline FCZ, FZ, and CZ EEG
scaled by di erent values. sensors. We assessed the reliability of the proposed tedamiqu
We simulated 42 datasets (equals the number of the subjectis)terms of amplitude, latency, and signal power analysis.
each consisting of 128 trials with 205 samples (400 ms). The peak All the subjects who participated in this study gave written
varied over trials in amplitude (lognormal distributed withean informed consent. The whole study has been approved by the
1 and st.d. 1.2, restricted between low and high values of thethical committee in School of Psychology in Cardi Univeysi
empirical dataset), and latency (normally distributed witlean  as part of a big multi-modal study.
0 and st.d. 150, 170, or 170ms). The simulation was based on Our analysis on the adopted MMN paradigm for
recordings derived from the FZ sensor at direction-leftfBL)  demonstration of the methodology focused on optimizing
condition and for deviant-minus-standard stimulus. the SNR of the selected single-trials under the objective
All simulations were performed using MVAR for the criterion to reveal the best type of Iter (IIR/FIR), its order
estimated waveform under three signal-to-noise (SNRand the degree&k applied to GG single-trial network for the
conditions (SNR D 0.5, 1, and 2), using correlated selection of the representative singe-trials was the SNRhésde
noise. Noise was simulated using an AR(5) process witkection).
coe cients estimated from baseline trials of the empirical

data.
RESULTS
EMPIRICAL APPLICATION IN AN The Proposed Methodology in Simple
AUDITORY MISMATCH NEGATIVITY Steps
(MMN) PROTOCOL We plot all the trials of a representative condition (high insity—

deviant) from a subjectRigure 4A). Afterward, we estimated

The proposed methodology is demonstrated in an auditorywith distance correlation §zékely and Rizzo, 200%he pair-
MMN multi-feature paradigm developed bi{laatanen et al. wise associations of single-trials tabulated in a similarigtrix
(2004) The MMN peaks at about 100-300ms after changéFigure 4B). Then, we embedded this similarity matrix in a 2D
onset but this latency varies slightly according to the speci space with MDS algorithm in order to visualize the variability
paradigm or the type of regularity that is violated. Accordingof single-trials Figure 4C). Using the 2D points of the trials as
to the adopted protocol, MMN is usually evoked by a changan input to the GG, we constructed the GG demonstrated in
of frequency (Low-High), direction (Low-High), intensifow-  Figure 4D. Green lines represent the connected trials under the
High), duration, and gap, for both standard and deviant stimu notion of GG. To sample the right representative single-triaks,
(Naatanen et al., 2004Two standard tones preceded everyestimated the degrdeof each node in GG. We used two criterion
deviant tone. Each condition was recorded in 128 trialsetiie  to uncover the hubs on this GG based on the degree of each
protocol was designed such as to avoid any habituation of theode: degred& D 1-4. InFigures 4E,G we demonstrated with
sequence. The total number of trials was 828 for standard red circles the selected trials/nodes in the GG. We selecid th
trials (averaged each pair of standard trials) and 2128 for hubs nodes/trials based on their degree in the GG network on
deviants. the assumption that these trials encapsulate the varialofitiie

We recorded a total of 42 subjects (aDe23.75 1.28, single-trials out sharing redundant information and alsorizgi
24 females) using a BIOSEMI system with 64 channels (10—2M the core of variability avoiding the selection of outién the
System;lasper, 1958Additional electrodes were placed on the periphery of single-trials 2D projection.
mastoid processes. The electrooculogram (EOG) was recordedFinally, we estimated the grand-averaged trial by averagin
from above and below the left eye [vertical (V)EOG]and frdrat the selected single-trials with aforementioned networkdsh
outer canthi [horizontal (H)EOG]. The electroencephalagra criterion with the objective criterion of improving the SNK o
(EEG; range DC-419 Hz; sampling rate 2,048 Hz) was acquiregble selected single-trials. The resulting single-trial athbcases
referenced to linked electrodes located midway between PQg presented irFigure 4F,H Based on the example Figure 4
and PO3/PO4, respectively, and was re-referenced o -linéiéo t where we used a Butterworth Iter of order 1 (order since we
average of the signal at the mastoids. Trials containimggl@OG  used zero-phase ltering with It It.m function of Matlab), he
artifact were rejected, as were trials containing A/D sation  best result obtained with degr&e 4 where we selected 15 trials
or baseline drift exceeding 8@V. Prior to any further analysis, from the 128. We detected a negative peak around 150 ms after
we corrected the multichannel recordings from artifactsigule, the onset of the stimulus<gure 6H). In the next section, we will
blinks, cardiac) using ICA with EEGLAB¢lorme and Makeig, demonstrate the e ect of Iter type, order and the selected @egr
2004; Dimitriadis et al., 2015, 2016n Data were Itered o -line  in our network using as an objective criterion the improverhen
(0.5-45Hz) and down-sampled to 512 Hz, resulting in an epoclef SNR across the selected single-trials with our methodolog
of 400 ms after the onset of the stimulus or 205 samples. DC It is important to mention here that we applied the
0 set was removed by subtracting from each channel each lomethodology independently for standard, deviant, and detvia
pass Itered component using FIR Iter [Roll o 0.001-0.05 Hz, minus-standard. As a promiment characteristic peak, we riedea
butter, (IIR), 6 dB attenuation in the stop band]. Afterwaeich the dominant positive for deviant, standard, and negative fo
trial was corrected with the baseline. deviant-minus-standard after 100 ms of the onset of the shirsu
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FIGURE 4 | Butterworth IIR order 1: Outline of the proposed graph-based rathodology (High intensity condition—deviant)A) Plot of single trials from a single
subject. (B) Similarity matrix that tabulates the pair-wise associatits of single-trials with distance correlation metric(C) Embedding the similarity matrix ir(B) in a 2D
space with multidimensional scaling (MDS) algorithm whereach blue dot refers to a single-trial(D) Construct the Gabriel graph (GG) based on the 2D positions of
the single trials. Green lines represent the connections wter the notion of GG.(E) Detection of hubs-representative single-trials based orhieir degreek in the GG.
Here, we selectedk D 3 to detect the single trials representing with red circles(F) Characteristic grand-averaged single-trial derived frorthe averaging of the
selected hubs/single trials (red circles) i(E). We selected 41 signals from 128 trials. Blue waveform denes the grand-average from the whole set of trials while the
black from the selected single-trials(G) Detection of hubs-representative single-trials based onhieir degreek in the GG. Here, we selectedk D 4 [compared to 3 in
(E)] to detect the single trials representing with red circles(H) Characteristic grand-averaged single-trial derived frorthe averaging of the selected hubs/single trials
(red circles) in(G). We selected 15 signals from 128 trials. Blue waveform denes the grand-average from the whole set of trials while the &tk from the selected
single-trials. Amplitude and latency are estimated in thergnd-averaged based on the global maxima.

The Effect of FIR/IIR Filter Settings of the methodology revealed as the best option based on SNR for
In Figures 4-6, we demonstrated the steps of the proposeditering the FIR using eeg It function and with order 2. The nai
fast, reliable, and data-driven methodology under a grapbel  objective criterion to reveal the best type of Iter (IIR/FIR)yder
framework. We revealed that both the type of the Iter (FIR/IIR) and degree for the selection of the representative singe-trials
and its order can alter the characteristic waveform for eaclvas the SNR (see next section).
condition and subject.

We used the eeg It matlab function a provided in EEGLAB for . . .
FIR Itering of single-trials Delorme and Makeig, 2004nd the Improvement of S|gnal'T0'N0|Se Ratio
butter MATLAB function for IIR Itering. We used a zero-phase With the Proposed Methodology
Iter in both cases applied on the concatenated trials sephrateWe evaluated the selection of the lter type, its order and the
for each stimulus (standard or deviant) and for each subjelce  degreek in GG for the selection of single-trials independently
e ectof Iter with Butterworth bandpass Iter can be seen on the for each condition, standard/deviant, subject and recogdeEG
representative time series Figure 4H (order 1) vs.Figure 5H  sensors (FZ, FCZ, CZ). The parameters were lter type (FIR/IIR),
(order 2). Order of one gave the best results for Butterworttorder (1,2,3), and degrde(1-4). Finally, we estimated the SNR
bandpass IIR Iter. In contrary, the best result for FIR Iter from the selected single-trials via the proposed methodology,
using eegq It function was obtained with order Figure 6H).  adopting a formula previously proposedgskaris et al., 2004
In Figure 4H, the characteristic negative was detected aroundVe scored each of the 2 3 4 D 24 dierent sets of
100 ms after the onset of the stimulus while Figure 6H, the  parameters across conditions (8 deviant and 8 standard $tithu
negative peak located 150 ms after the onset of the stimulu$6) and recording EEG sites (three locations) the numbeinués
The e ect of type and order of Iter was demonstrated in high where the SNR was maximum across the 24 sets. Formula (3)
intensity condition for deviant stimulus from a single sutjie describes the objective criterion for the selection of Isestings
Our analysis on the adopted MMN paradigm for demonstrationfor each subject across the 24 di erent combinations. Our ltssu
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FIGURE 5 | Butterworth IIR order 2: Outline of the proposed graph-based rethodology (High intensity condition—deviant)A) Plot of single trials from a single
subject. (B) Similarity matrix that tabulates the pair-wise associatits of single-trials with distance correlation metric(C) Embedding the similarity matrix ir(B) in a 2D
space with multidimensional scaling (MDS) algorithm whermvery blue dot represents a single-trial(D) Construct the Gabriel graph (GG) based on the 2D positions o
the single trials. Green lines represent the connections uter the notion of GG. (E) Detection of hubs-representative single-trials based orhieir degreek in the GG.
Here, we selectedk D 3 to detect the single trials representing with red circles(F) Characteristic grand-averaged single-trial derived frorthe averaging of the
selected hubs/single trials (red circles) i(E). We selected 40 signals from 128 trials. Blue waveform denes the grand-average from the whole set of trials while the
black from the selected single-trials(G) Detection of hubs-representative single-trials based orhieir degreek in the GG. Here, we selectedk D 4 [compared to 3 in
(E)] to detect the single trials representing with red circles(H) Characteristic grand-averaged single-trial derived frorthe averaging of the selected hubs/single trials
(red circles) in(G). We selected 25 signals from 128 trials. Blue waveform denes the grand-average from the whole set of trials while the atk from the selected
single-trials. Amplitude and latency are estimated in thergnd-averaged based on the global maxima.

demonstrated clearly a maximization of SNR for every subjedReliability of Amplitude, Latency, and

with FIR lter of order 2 and with most of the cases (39 out 042 Signal Power

with degreek 4. We assessed the reliability of amplitude, latency and sijgmakr
estimates for each MMN feature, EEG sensors and for standard,
deviant, and deviant-minus-standard with the coe cient of

P B variation (CV). The CV was estimated as follow:
arg maxSNR16stimuli, 3recording sitgs .
Scorep er D1ordeD1degred cVD group meatamplitude latency @)
16stimuli x 3 stimuli group stdamplitude latency
3

Amplitude and Latencies

Tables 24 demonstrated the group mean amplitude for
The group-averaged score was 96.34 with standard devia®dn 2 standard, deviant, and deviant — standard for each condlitd
with the best choice for the FIR Iter (42 out of 42 subjects)der the MMN experimental protocol and for the three EEG sensors.
2 (42 out of 42 subjects), arkdD 4 (39 out of 42 subjects and 3 We estimated the CV (Formula 4) across the cohort for every
with k D 3). Table 1summarizes the group-averaged SNR fromMMN feature for standard, deviant, and deviant — standard and
each stimulus and EEG sensor location for the standard diimufor FZ (Table 2, FCZ (Table 3, and CZ {Table 4 EEG sensors.
We presented results from FZ location where the majority oft is obvious that CV of the amplitude was higher for FZ EEG
group-di erences in terms of amplitude, latency, signal powersensor.
and variability were more pronounced compared to FCZand CZ. Tables 57 demonstrated the group mean latencies for

Results of SNR for the grand-averaged signalevhsnd one standard, deviant, and deviant — standard for each conulitio

can see irFigures 3-6, it is a bad strategy to estimate a peak forof the MMN experimental protocol and for the three EEG
this noisy averaged trial (blue line Figures 4-6F,H). sensors. We estimated the CV across the cohort for every MMN
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FIGURE 6 | FIR order 2: Outline of the proposed graph-based methodologyHigh intensity condition—deviant)(A) Plot of single trials from a single subject.

(B) Similarity matrix that tabulates the pair-wise associatits of single-trials with distance correlation metric(C) Embedding the similarity matrix ir(B) in a 2D space
with multidimensional scaling (MDS) algorithm where evebfue dot represents a single-trial(D) Construct the Gabriel graph (GG) based on the 2D positions dhe
single trials. Green lines represent the connections undehe notion of GG. (E) Detection of hubs-representative single-trials based onhieir degreek in the GG. Here,
we selectedk D 3 to detect the single trials representing with red circles(F) Characteristic grand-averaged single-trial derived frorthe averaging of the selected
hubs/single trials (red circles) ifE). We selected 44 signals from 128 trials. Blue waveform denes the grand-average from the whole set of trials while the &tk from
the selected single-trials(G) Detection of hubs-representative single-trials based ornhieir degreek in the GG. Here, we selectedk D 4 [compared to 3 in (E)] to detect
the single trials representing with red circles(H) Characteristic grand-averaged single-trial derived frorthe averaging of the selected hubs/single trials (red circi in
(G). We selected 15 signals from 128 trials. Blue waveform denes the grand-average from the whole set of trials while the &tk from the selected single-trials.
Amplitude and latency are estimated in the grand-averageddsed on the global maxima.

TABLE 1 | Group-averaged SNR for each condition across the three setg#ed EEG sensors for standard stimuli.

Dir-L Dir-R Freqg-Hi Freg-Low Int-Low Int-High Duration Gap
Fz 6.14 1.01 562 0.78 6.23 1.14 6.47 1.07 6.68 1.34 6.39 0.77 6.71 0091 6.84 1.43
FCZz 594 1.13 5.67 0.92 590 0.98 6.07 1.19 6.07 1.31 578 1.31 6.39 114 6.16 0.91
Ccz 547 0.87 544 112 5.67 1.10 5.61 0.87 5.76 1.45 545 1.12 576 1.13 593 1.14

TABLE 2 | FZ EEG sensor: Group-averaged amplitude for each conditioand for standard, deviants, and their difference (devianninus-standard).

Dir-R Dir-L Freg-Hi Freqg-Low Int-Hi Int-Low Duration Gap
Std 3.9 1303 41 1.2(3.78) 4.0 1.2(3.5) 43 1.4(3.1) 41 0.9(4.2) 3.7 1.5(2.4) 2.3 0.7(3.2) 24 0.7(3.3)
Dev 35 1.1(3.2) 53 1.2(4.4) 35 1.13.2) 3.9 1.2(3.4) 3.9 14(3.7) 41 1.2(3.6) 24 0.64) 25 0.5(5)

Dev-Std 4.7 1.2(3.89) 6.4 15(4.12) 47 14(33) 54 14(38) 42 12335 43 14(32) 32 056.4) 31 06(5.1)

Within the brackets we report the coef cient of variation (CV).

feature for standard, deviant, and deviant — standard and fo We repeated the whole analysis by selecting a subset of-single
FZ (Table 5, FCZ (Table 6, and CZ {Table 7 EEG sensors. trials from each condition and subject starting from the t20%

It is obvious that CV of the latency was higher for FZ EEGof the trials per condition till 100% with a step of 5% in order
sensor. to explore how the number of trials a ect amplitude/latency
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TABLE 3 | FCZ EEG sensor: Group-averaged amplitude for each conditipand for standard, deviants, and their difference (deviaminus-standard).

Dir-R Dir-L Freg-Hi Freq-Low Int-Hi Int-Low Duration Gap
Std 35 1.6(2.2) 3.8 1.3(3.9) 3.7 1.3(2.8) 3.6 1.3(2.7) 3.8 1.1(3.4) 3.6 1.3(2.7) 24 0.7(3.4) 2.2 0.6(3.75)
Dev 3.2 16(2) 3.9 1.3(3) 3.6 1.3(2.8) 3.7 1.3(2.8) 25 1.1(2.2) 3.3 1.3(2.6) 25 0.6(4.25) 26 0.7(3.6)

Dev-Std 4.7 1.6(29) 37 1.6(23) 41 1.4(2.9) 39 1428 41 13332 40 1428 33 0935 32 084

Within the brackets we report the coef cient of variation (CV).

TABLE 4 | CZ EEG sensor: Group-averaged amplitude for each conditioand for standard, deviants, and their difference (deviantinus-standard).

Dir-R Dir-L Freg-Hi Freg-Low Int-Hi Int-Low Duration Gap
Std 3.2 1.3(2.5) 24 1.0(2.4) 2.3 1.0(2.3) 2.3 0.9(2.5) 2.4 0.8(3) 1.9 0.7(2.9) 1.9 0.6(3.1) 25 0.7(3.4)
Dev 22 1.0(2.2) 23 1.1(2.89) 23 0.9(2.6) 22 08(2.7) 25 1.0(2.5) 20 0.8(2.5) 21 0.7(2.7) 26 0.6(4.3)

Dev-Std 35 12(2.9) 34 13412 31 11(28) 33 14(24) 32 1325 24 1122 23 09(26) 3.3 0.7(4.6)

Within the brackets we report the coef cient of variation (CV).

TABLE 5 | FZ EEG sensor: Group-averaged latency for each condition ahfor standard, deviants, and their difference (deviant-mus-standard).

Dir-R Dir-L Freq-Hi Freqg-Low Int-Hi Int-Low Duration Gap

std 0.18 0.03(6) 020 0.03(6.66) 0.18 0.02(9) 021 0.03(7) 020 0.03(6.66) 0.17 0.03(5.66) 0.19 0.03(6.3) 0.17 0.03 (5.6)
Dev 0.19 0.03(6.3) 018 003(6) 0.7 0.03(5.66) 018 002(9 019 0.02(9.5 0.16 0.03(53) 018 003(6) 017 0.03(5.6)
Dev-Std 0.17 0.02 (85) 0.16 0.02 (8) 0.6 002 (8) 0.7 0.03 (5.6) 0.17 0.03 (5.66) 0.16 0.02 (8) 0.16 0.03 (5.3) 0.16 0.02 (8)

Within the brackets we report the coef cient of variation (CV).

TABLE 6 | FCZ EEG sensor: Group-averaged latency for each conditionnal for standard, deviants, and their difference (deviant-imus-standard).

Dir-R Dir-L Freq-Hi Freq-Low Int-Hi Int-Low Duration Gap

Std 0.20 0.03(6.6) 0.7 003(56) 0.18 0.03(5.6) 0.17 0.03(5.6) 0.7 003(56) 0.16 0.03(5.3) 0.18 0.03(6) 0.19 0.03(6.3)
Dev 020 0.02(10) 0.19 0.03(63) 0.19 003(63) 016 002(8) 018 0.03(6) 019 003(6.3) 022 003(7.3) 022 0.03(7.3)
Dev-Std 0.19 0.02 (9.5) 0.20 0.02 (10) 0.21 0.02 (10.5) 0.19 0.03 (6.3) 0.16 0.03 (5.3) 0.17 0.02 (8.5) 0.17 0.03 (5.6) 0.21 0.03 (7)

Within the brackets we report the coef cient of variation (CV).

TABLE 7 | CZ EEG sensor: Group-averaged latency for each condition ahfor standard, deviants, and their difference (deviant-mus-standard).

Dir-R Dir-L Freg-Hi Freg-Low Int-Hi Int-Low Duration Gap

Std 0.17 0.02(85) 0.18 0.03(6) 0.17 0.02(85) 0.17 0.03(6.3) 0.17 0.03(6.3) 0.17 0.02(8.5) 0.18 0.03(6) 0.19 0.03(6.3)
Dev 0.18 0.03(6) 0.21 0.03(7) 0.19 0.03(6.3) 016 0.02(8) 017 0.02(85) 0.18 0.03(6) 021 0.03(7) 0.18 0.03(6)
Dev-Std 0.19 0.02 (9.5) 0.18 0.02 (9) 0.18 0.02 (9) 0.18 0.03 (6) 0.16 0.03 (5.3) 0.19 0.02 (9.5) 0.20 0.03 (6.6) 0.21 0.02 (10.5)

Within the brackets we report the coef cient of variation (CV).

estimations. We revealed that the CV of amplitude/latencystandard, deviant, and deviant — standard and for Fig(re 7),
reached high values close to the ones tabulatedables2- FCZ (Figure 8), and CZ Figure 9) EEG sensors. IRigures 79,

7 when the number of trials ranged between [85-95%] ofve demonstrated the signal power for each condition and std,
the total amount of STs. The aforementioned results underli dev, and std-dev for the whole set of trials and also for the
the importance of detect signicant true amplitude/latency selection of a subset of trials. CV of signal power was higher for
estimations in MMN paradigm. the subset of trials compared to the whole set of trials.

Signal Power o ) ) _

Figures 79 demonstrated the group mean signal power forvariability of Single-Trials via Global

standard, deviant, and deviant — standard for each conditib  Ef ciency Estimations

the MMN experimental protocol and for the three EEG sensorsTo assess the variability of STs, we estimated the globataai
We estimated the signal power for every MMN feature for(GE) on a network level based on the subgraph de ned by
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FIGURE 7 | FZ-Group-averaged signal power for each condition, for stadard, deviants, and their difference (deviant-minus-stedard) in both groups and across
seven frequency bands. We demonstrate the signal power foihe whole set of trials and for the selection of a subset of tria.

the nodes of GG linked to the extracted prototypical singledn uence of EEG Reference System to

trials (red nodes inFigures 4 5, 6E,G. We constructed the Amplitude and Latency Estimation

weighted graph by estimating the Euclidean distance betwegiye compared average to the REST reference system in
every pair of hub areas. Then, we normalized by the maximurferms of amplitude and latency estimation across EEG sensor
value and we inversed the normalized weights in order tqocations and in standard, deviant, and standard-devigini.
express functionality. This practically means that the higheComparing Tables 24 vs. Tables 9-11 for amplitude and

the distance between two 2D points, the less e cient theTables 5-7 vs. Tables 1214 for latency, we revealed alterations
communication. In a global level, the higher the GE theof the group mean amplitude and latency. In both cases,
more e cient is the communication of the nodes within the the CV was too high while in some cases especially in the
network which further means that the nodes are closer in 2Damplitude of deviant — standard, the CV was higher for the
points. So higher values of GE can be linked directly to leSREST reference. For more detailed results, seetion 1 in

variability. Supplementary Material.
Table 8tabulates the group-averaged GE for each conditionin Tables 1214 demonstrated the group mean latencies for
the three midline located EEG sensors for standard stimuli. standard, deviant, and deviant — standard for each conlitio
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FIGURE 8 | FCZ-Group-averaged signal power for each condition, for sindard, deviants, and their difference (deviant-minus-ahdard) in both groups and across
seven frequency bands. We demonstrate the signal power foihe whole set of trials and for the selection of a subset of trla.

of the MMN experimental protocol and for the three EEG (in this case, 0-0.3s) for each subject. These regressers ar
sensors. We estimated the CV across the cohort for every MMRhen applied against each ST within the same post-stimulus
feature for standard, deviant, and deviant — standard amd=#d interval and used to model each single-trial ERP peak. In MLRd,
(Table 5, FCZ (Table 6, and CZ (Table 7) EEG sensors. It is variability matrices that capture the variations of laterayd
clear that CV of the latency was higher for the FZ EEG sensor. morphology of each ERP peak are generated by simultaneously

. . . o shifting and compressing the average ERP waveform (step 1).
Comparison With Alternative Mining These variability matrices, whose order of trials (with thehcy
Algorithms shifted and the morphology varied simultaneously) is of no
We compared our methodology with PCA and multi-linear importance, are fed to a PCA (step 2). The resulting three main
regressor analysisH(1 et al., 201). The rst one proposed a principal components (PCs) are used to de ne three regressors
multiple linear regression (MLR) and multiple linear regressio for each peak within a given post-stimulus interval (in this case
with dispersion term (MLRd) to estimate the single-trial latgnc 0-0.5s; step 3). These regressors are then applied again§each
and amplitude of ERP peaks. Regressors (an average and\viighin the same post-stimulus interval and used to model each
temporal derivative) for each ERP peak are calculated from thgingle-trial ERP peak (step 4). The methodology is explained in
average ERP waveform within a given post-stimulus intervaletails inHu et al. (2011)
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FIGURE 9 | CZ-Group-averaged signal power for each condition, for stadard, deviants, and their difference (deviant-minus-stadard) in both groups and across
seven frequency bands. We demonstrate the signal power fohe whole set of trials and for the selection of a subset of tria.

Since the original methodology focused on the estimation oéverage reference system. On this exemplar, we demonstrate
amplitude-latency per single-trial, we grand-averaged thgls- the 4th and 5th PC per case. ComplementaBigure 13
trials after rst applying the regressors. demonstrates the e ect of REST reference on the grand-aveérage

The second one is PCA where we kept the rsttime series illustrated ifFigure 12 Both grand-averaged time
PCs that explained more than 95% of the variance o$eries were extracted from FZ EEG sensor. We adopted the
single-trials. same stimulus, sensor location, and subject with multedin

In Figure 1Q we illustrate the resulting grand-averaged timeregressor analysis for comparison purposes between multi-linear
series from subject 1 and stimulus DIR-L for standard, detyia regressor analysis and PCA. For further details,sstion 2in
and deviant-minus-standard using the multi-linear regress  Supplementary Material.
algorithm and the average reference system. Complementary, In Figure 14 we illustrate the resulting grand-averaged 4th
Figure 11 demonstrates the eect of REST reference orand 5th singular time series from subject 1 and stimulus DIR-
the grand-averaged time series illustrated Rigure 16 Both L for standard, deviant, and deviant-minus-standard using SVD
grand-averaged time series were extracted from FZ EE@gorithm and the average reference system. Complementary,
sensor. Figure 15 demonstrates the e ect of REST reference on the

In Figure 12 we illustrate the resulting grand-averaged timegrand-averaged rst two right singular time series illuged
series from subject 1 and stimulus DIR-L for standard-devia in Figure 14 Both grand-averaged time series were extracted
and deviant-minus-standard using PCA algorithm and thefrom FZ EEG sensor. We adopted the same stimulus, sensor
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TABLE 8 | Group-averaged GE for each condition across the three seléed EEG sensors for (deviant-minus-standard) stimuli.

Dir-R Dir-L Freg-Hi Freg-Low Int-Hi Int-Low Duration Gap

FZ 0.37 0.05 0.39 0.07 0.41 0.04 0.36 0.04 0.42 0.03 0.38 0.06 0.36 0.05 0.37 0.04
) (5.6) (10.25) 9) (14) (6.3) (7.2) (9.25)

FCZ 0.34 0.06 0.39 0.04 0.37 0.04 0.35 0.04 0.37 0.03 0.34 0.03 0.38 0.06 0.39 0.06
(5.6) (9.8) (9.25) (8.75) (12.3) (113) (6.33) (6.5)

Cz 0.39 0.03 0.37 0.04 0.36 0.04 0.38 0.04 0.38 0.07 0.36 0.04 0.38 0.04 0.38 0.06
(13) (9.25) 9) (9.5) (5.4) ) (9.5) (6.33)

Within the brackets we present the coef cient of variation (CV).

TABLE 9 | FZ EEG sensor: Group-averaged amplitude for each conditioand for standard, deviants, and their difference (devianninus-standard).

Dir-R Dir-L Freg-Hi Freg-Low Int-Hi Int-Low Duration Gap
Std 43 0.9(4.7) 43 1.2(3.5) 40 1.2(3.3) 46 1.3(3.5) 4.7 0.7(6.7) 45 1.6(2.8) 2.9 0.8(3.6) 3.4 0.9(3.7)
Dev 39 12(3.2) 6.7 1.3(5.1) 41 1.2(3.4) 45 1.3(3.5) 49 0.9(5.4) 48 1.1(4.3) 2.8 0.5(5.6) 29 0.5(5.8)
Dev-Std 5.1 0.9(5.6) 6.3 0.9(7) 51 1.2(4.2) 57 11(5.1) 46 0.7(6.5) 47 1.2(3.9) 3.7 0.6(6.1) 3.6 0.5(7.2)

Within the brackets we report the coef cient of variation (CV).

TABLE 10 | FCZ EEG sensor: Group-averaged amplitude for each conditioand for standard, deviants, and their difference (deviamhinus-standard).

Dir-R Dir-L Freq-Hi Freg-Low Int-Hi Int-Low Duration Gap
Std 3.7 1.4(2.6) 3.7 1.033.7) 3.8 0.9(4.2) 3.8 0.9(4.2) 3.7 0.9(4.1) 3.7 1.2(3.1) 2.7 0.6(4.5) 25 0.5(5)
Dev 34 1.3(2.6) 3.8 1.1(34) 3.7 1.0(3.7) 39 1.1(35) 2.8 0.8(3.5) 35 1.1(3.1) 2.8 0.5(5.8) 2.8 0.6(4.6)
Dev-Std 4.6 1.2(3.8) 3.9 0.8(4.8) 4.2 0.9(4.6) 4.2 1.2(35) 4.3 0.9(4.7) 45 1.1(4.1) 35 0.7(5) 35 0.7(5)

Within the brackets we report the coef cient of variation (CV).

TABLE 11 | CZ EEG sensor: Group-averaged amplitude for each conditioand for standard, deviants, and their difference (devianinus-standard).

Dir-R Dir-L Freg-Hi Freg-Low Int-Hi Int-Low Duration Gap
Std 3.7 1.1(3.3) 2.6 0.9(2.8) 2.8 0.8(3.5) 2.7 0.8(3.3) 2.8 0.9(3.1) 2.3 0.8(2.8) 2.3 0.5(4.6) 2.6 0.4(6)
Dev 25 0.9(2.7) 27 1.02.7) 2.7 0.7(3.8) 28 0.9(3.1) 29 1.1(2.6) 25 0.9(2.7) 26 05(5.2) 2.7 0.5(5.4)
Dev-Std 3.8 1.1(3.4) 3.7 0.9(4.1) 35 0.8(4.3) 3.7 1.1(3.3) 39 0.8(4.8) 29 09(3.2) 28 0.7(4) 3.3 0.5(6.6)

Within the brackets we reported the coef cient of variation (CV).

TABLE 12 | FZ EEG sensor: Group-averaged latency for each condition ahfor standard, deviants, and their difference (deviant-mus-standard).

Dir-R Dir-L Freg-Hi Freg-Low Int-Hi Int-Low Duration Gap
Std 0.17 0.03(5.6) 0.18 0.03(6) 0.18 0.02(9) 0.18 0.03(6) 0.18 0.03(6) 0.17 0.03(5.6) 0.18 0.03(6) 0.17 0.03(5.6)
Dev 0.18  0.03(6) 0.17 0.03(5.6) 0.16 0.03(6) 0.17 0.03(5.6) 0.17 0.02(8.5) 0.16 0.03(5.3) 0.17 0.03(5.6) 0.16 0.03(5.3)

Dev-Std 0.16 0.02(8) 0.5 0.02(7.5) 0.15 0.02(7.5) 0.5 0.02(7.5) 0.6 0.03(5.3) 0.15 0.03(5) 0.16 0.02(8) 0.16 0.02(8)

Within the brackets we reported the coef cient of variation (CV).

TABLE 13 | FCZ EEG sensor: Group-averaged latency for each conditionnal for standard, deviants, and their difference (deviant-mus-standard).

Dir-R Dir-L Freq-Hi Freg-Low Int-Hi Int-Low Duration Gap
Std 0.18  0.03(6) 0.17 0.03(5.6) 0.18 0.03(6) 0.17 0.03(5.6) 0.17 0.03(5.6) 0.17 0.03(5.6) 0.17 0.03(5.6) 0.18 0.03(6)
Dev 0.17 0.02(8.5) 0.18 0.03(6) 0.17 0.03(5.6) 0.15 0.02(7.5) 0.18 0.03(6) 0.17 0.03(5.6) 0.19 0.03(6.3) 0.19 0.03(5.6)
Dev-Std 0.17 0.02(8.5) 0.18 0.02(9) 0.18 0.03(6) 0.18 0.03(6) 0.17 0.03(5.6) 0.17 0.02(8.5) 0.17 0.03(5.6) 0.19 0.02(8.5)

Within the brackets we reported the coef cient of variation (CV).
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TABLE 14 | CZ EEG sensor: Group-averaged latency for each condition @hfor standard, deviants, and their difference (deviant-mus-standard).

Dir-R Dir-L Freg-Hi Freqg-Low Int-Hi Int-Low Duration Gap
Std 0.17 0.02(8.5) 0.18 0.03(6) 0.18 0.03(6) 0.17 0.03(5.6) 0.18 0.03(6) 0.17 0.03(5.6) 0.18 0.03(6) 0.17 0.03(5.6)
Dev 0.18 0.02(8.5) 0.19 0.03(6.3) 0.18 0.02(6) 0.15 0.02(7.5) 0.17 0.03(5.6) 0.18 0.03(6) 0.19 0.03(6.3) 0.18 0.03(6)

Dev-Std 0.16  0.02(8) 0.17 0.02(8.5) 0.17 0.03(5.6) 0.16 0.03(5.6) 0.16 0.03(5.6) 0.18 0.02(9) 0.18 0.03(6) 0.19 0.02(9.5)

Within the brackets we report the coef cient of variation (CV).

FIGURE 10 | Grand-averaged response for DIR-L from subject 1 using multinear regressor analysis and average reference system4¥fSensor).(A) Standard
stimulus, (B) Deviant stimulus,(C) Deviant-minus-standard stimulus.

FIGURE 11 | Grand-averaged response for DIR-L from subject 1 using muitinear regressor analysis and REST reference system (F2&:$sor). (A) Standard stimulus,
(B) Deviant stimulus,(C) Deviant-minus-standard stimulus.

FIGURE 12 | Grand-averaged response for DIR-L from subject 1 using PCA atlysis and average reference system (FZ-Sensoi(A) Standard stimulus, (B) Deviant
stimulus, (C) Deviant-minus-standard stimulus. We plotted the charactgstic time series derived from PCA analysis, the plain avege from the whole set of time series

and the time series derived from the proposed method.

location and subject with multi-linear regressor analysis f The three algorithms independently of the EEG reference
comparison purposes between multi-linear regressor analysiystem failed to detect an accurate amplitude and latency.
and PCA. The main reason is that both algorithms are sensitive to the
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FIGURE 13 | Grand-averaged response for DIR-L from subject 1 using PCA atysis and REST reference system (FZ-SensofA) Standard stimulus, (B) Deviant
stimulus, (C) Deviant-minus-standard stimulus. We plotted the charactestic time series derived from PCA analysis, the plain avege from the whole set of time series
and the time series derived from the proposed method.

FIGURE 14 | Grand-averaged of the 4th and 5th singular-values for DIR-ltdm subject 1 using SVD analysis and average reference syste(FZ-Sensor).(A) Standard
stimulus, (B) Deviant stimulus,(C) Deviant-minus-standard stimulus.

FIGURE 15 | Grand-averaged of the 4th and 5th singular values for DIR-Ldm subject 1 using PCA analysis and REST reference system (F&ensor). (A) Standard
stimulus, (B) Deviant stimulus,(C) Deviant-minus-standard stimulus.

grand-averaged response which in many cases like in MMISimulations

experimental paradigm are too noisy to get a stable wavefoain thBased on the results derived from the simulations, we redeal

can be used as representative time series of brain response. that both amplitude and latency are within acceptable limits.
The proposed data mining scheme worked better compare8imulations have shown that estimates of amplitude and Igtenc

to the three comparable techniques and also it is a parameger frare within acceptable limitsFH{gures 16 17). Only if SNR is

method that can easily be used in any experimental multi-trialow and latency variation is low, estimates become unradiabl

paradigm. Figures 16 17 illustrate the simulation based on recordings
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FIGURE 16 | The simulation based on recordings derived from the FZ sensadn the DIR-L condition and for deviant-minus-standard stimlus. Real vs. estimated
amplitude estimates for different amounts of SNR and latencvariation.

derived from the FZ sensor at DIR-L condition and for deviant from the whole set of MMN features. The whole approach relies

standard stimulus using the two simulated scenarios. on graph theory by constructing a distance network from the
Finally, only in the case that both SNR and latency variatior2D projected STs in a common feature space. The construction
are low, estimates become unreliable (Sigires 1617). of the distance matrix based on members/nodes of proximity

graph, called GG. Then, we detected from GG, the hubs

nodes/single-trials using the degrk®f each node as an input.
DISCUSSION These hubs can clearly describe t_he va'rlablllty of s_mgﬁstr

and also reconstruct a waveform with a high SNR which clearly

The proposed methodology can reliably sample thélemonstrates a characteristic peak. We presented also how the
representative single-trials in order to simultaneouslpress nal reconstructed waveform changed due to dierent types
their variability and also to reconstruct a grand-averagehw Of Iters and the related order. To get the best combination of
high SNR. A high SNR was detected across subjects, conditiof€' type, order and selection of degree k directly linked teet

and recording EEG locations which secure a reliable esiimat Selected hubs, we employed SNR as a true objective function.
of the amplitude and latency of the characteristic peak elitit Our results can be summarized below:
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FIGURE 17 | The simulation based on recordings derived from the FZ sensadn the DIR-L condition and for deviant-minus-standard stimlus. Real vs. estimated
latency estimates for different amounts of SNR and latencyaviation.

FIR Iter with eeg It function of order 2 and degre® 4 Amplitude and latency estimations with the proposed
demonstrates the highest SNR across conditions and ssbject method are reliable unless SNR and latency variation is
The reliability of amplitude and latency was higher for FZ EEG  too low.

sensor compared to FCZ and CZ based on CV There are several extensions that can be applied to the present
CV of signal power was higher for the subset of trials comparefahodology in speci ¢ steps of the analytic algorithm. First
to the whole set of trials. of all, we demonstrated the e ect of di erent ltering schemes

Amplitude and latency are sensitive to EEG reference systen)nere alternative adaptive lters can be usedapdic and
REST reference system improved the CV of amplitude in theson, 2009, One can select di erent metrics to estimate the

deviant-minus-standard stimuli _ pair-wise correlation between single-trials. Complementane
Similar amplitude/latency estlmfa\tlons were revealed Wi t can use di erent members of proximity graphs like minimal
85-95% of the total amount of single-trials spanning tree alone or in combination with voronoi testelteti

PCA, SVD, and multi-linear regressor manipulation of (Laskaris and loannides, 2001; Laskaris et al., pand RNG.
single-trials failed to retrieve a robust waveform, latgrand  Here, we tested both of them but we revealed best results
amplitude estimation. with GG. Additionally, it would be very interesting to apply
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source-localization algorithms on the representative lsifigals  variability, and signal power for the whole cohort of youngitd.
to connect single-trials with sources and the timing of teth  Additionally, the majority of the fronto-central EEG chaels
activity (Laskaris and loannides, 2001; Laskaris et al., 003hould be studied to uncover any signi cant asymmetrieshef t
For example, one can localize the early segment of activily arbrain activity between the two groups. Complementary, the main
the later one, in order to demonstrate the early activation ofocus of this study was to enhance the reliability of the preubs
auditory cortex and the later activation in frontal lob&i(ne  methodology to reveal high SNR grand-averaged trials ifouar
etal., 200p MMN conditions and reliable estimates of amplitude, latency,
Regarding the adopted experimental paradigm to demonstratend variability in a healthy group. The REST reference system
this methodology, the MMN mechanism consists of an auditoryimproved the CV of amplitude in the deviant-minus-standard
based frontal lobe network. After the pre-processing of thestimuliwhile PCA, SVD, and multi-linear regressor manipdet
content of MMN by the targeted sensory system here thef single-trials failed to retrieve a robust waveform, laggnc
auditory cortex, frontal areas are activated playing a signt  and amplitude estimation. The proposed data-driven scheme
role in the elicitation of a re ex [laatanen and Michie, 19Y9 worked better compared to the three well-known comparable
The MMN generators come from temporal and frontal lobesmethodologies. Moreover, it is parameter free method that can
and the related activity is captured mainly by fronto-cehtra easily be adjusted to any multi-trial experimental paradigm
EEG sensors (FZ, FCZ, CZ) and also from temporal electrodesing EEG-MEG recordings at both sensor and source levels.
(T3, T4) Rinne et al., 2000 Two studies aimed to reveal, Finally, amplitude and latency estimations with the proposed
both with EEG and MEG recordings, the origin of the elicitedmethod are reliable unless SNR and latency variation is too
activity linked to MMN. Dipole modeling techniques applied low.
to MMN (Scherg et al., 193%nd its magnetic counterpart The whole methodology will be valuable for neuroscientists
(MMNm) (Hari et al., 198%twere found to have generators in particularly interest in de ning a reliable biomarker based
the auditory cortex and in the temporal lobes. ComplementaryERP studies in various cognitive statézic(on et al., 2000;
the analysis of scalp-potential distribution revealed a tigh Espeseth et al., 2009; Horvath et al., Cdrid also in disease
hemispheric MMN source, which mainly was located over théorain states such as the Alzheimer's Diseas®léki et al.,
frontal lobe Giard et al., 1990; Deouell et al., 1998 more 2017).
recent paper using a simultaneous EEG-MEG recording set up,
source-localized both EEG and MEG activity in an auditory,
MMN (Rinne et al., 2000 They validated the hypothesis that CONCLUSIONS

frontal MMN generators are activated later than generatofye presented a fast, reliable, and data-driven methodology
in the auditory cortex. For a review of MMN generators¢,; gimyitaneously data-mining single-trials and ampligsd

in both healthy and disease groups and various settings, 3ftency estimation. The method relies on graph and network

interested reader can refer to a detailed reviévar(ido et al., analysis as appropriate tools of geometrical data analysis and

2009. . - vectorial pattern analytic tools of single-trials. We demoatstd
The MMN is an ERP elicited by the occurrence of arare evenfo e ect of ltering settings on the grand-averaged trial

(deviance) in a regular acoustic environment, and is assUme,ny the related amplitude-latency estimates. Additionally,

to re ect a pre-attentive mechanism .for changg detectionie whole methodology was presented in an auditory EEG
Cortical generators of MMN are located in the superior temporal N task with the aim to detect reliable amplitude, latency,

planes bilaterally which are responsible for the sensory ntgmo 5,4 signal power derived from the appropriate preselection
part of change detection and frontal lobe sources responsib|g single-trials. Based on the data-driven approach of
for triggering an attention shift upon change detection (forie current methodology, the whole analysis could be of

a review seeeouell, 200y These bilateral temporal-frontal pign yajue for various evoked/event-related potentials in
generators of MMN can be better detected with EEG compareg,iqys neuroimaging studies including EEG, MEG, and
to MEG while the combination of both modalities was suggesteg\ r|.

(Hamalainen et al., 1993Apart from bilateral auditory-cortex

activation which underlines a pre-perceptual change detectio

with a short time-delay Rinne et al., 2000 a predominant AUTHOR CONTRIBUTIONS

right hemispheric frontal process could be detected linked to ) ) )
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