Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Toward more realistic projections of soil carbon dynamics by Earth system models

Luo, Yiqi, Ahlström, Anders, Allison, Steven D., Batjes, Niels H., Brovkin, Victor, Carvalhais, Nuno, Chappell, Adrian, Ciais, Philippe, Davidson, Eric A., Finzi, Adien, Georgiou, Katerina, Guenet, Bertrand, Hararuk, Oleksandra, Harden, Jennifer W., He, Yujie, Hopkins, Francesca, Jiang, Lifen, Koven, Charlie, Jackson, Robert B., Jones, Chris D., Lara, Mark J., Liang, Junyi, McGuire, A. David, Parton, William, Peng, Changhui, Randerson, James T., Salazar, Alejandro, Sierra, Carlos A., Smith, Matthew J., Tian, Hanqin, Todd-Brown, Katherine E. O., Torn, Margaret, van Groenigen, Kees Jan, Wang, Ying Ping, West, Tristram O., Wei, Yaxing, Wieder, William R., Xia, Jianyang, Xu, Xia, Xu, Xiaofeng and Zhou, Tao 2016. Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles 30 (1) , pp. 40-56. 10.1002/2015GB005239

Full text not available from this repository.

Abstract

Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real‐world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first‐order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth‐dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool‐ and flux‐based data sets through data assimilation is among the highest priorities for near‐term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Earth and Ocean Sciences
Publisher: American Geophysical Union (AGU)
ISSN: 0886-6236
Date of Acceptance: 17 December 2015
Last Modified: 02 Nov 2018 11:30
URI: http://orca.cf.ac.uk/id/eprint/116344

Citation Data

Cited 134 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item