Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Building physically-based models for assessing rainfall-induced shallow landslide hazard at the catchment scale: the case study of the Sorrento Peninsula (Italy)

Balzano, Brunella, Tarantino, Alessandro, Nicotera, Marco Valerio, Forte, Giovanni, De Falco, Melania and Santo, Antonio 2018. Building physically-based models for assessing rainfall-induced shallow landslide hazard at the catchment scale: the case study of the Sorrento Peninsula (Italy). Canadian Geotechnical Journal 10.1139/cgj-2017-0611

[img]
Preview
PDF - Accepted Post-Print Version
Download (3MB) | Preview

Abstract

The assessment of rainfall-induced shallow landslide hazard at the catchment scale poses significant challenge. Traditional empirical approaches for landslide hazard assessment often assume that conditions having caused failure in the past won’t change in the future. This assumption may not hold in a climate change scenario. Physically-based models (PBMs) therefore represent the natural approach to include changing climate effects. PBMs would in principle require the combination of a 3-D mechanical and water-flow model. However, a full 3-D finite element model at the catchment scale, with relatively small elements required to capture the pore-water pressure gradients, would have a significant computational cost. For this reason, simplifications to the mechanical (i.e. infinite slope) and water-flow model (i.e. 1-D or hybrid 3-D) are introduced, often based on a-priori assumptions and not corroborated by experimental evidence. The paper presents a methodology to build a PBM in a bottom-up fashion based on geological surveys and geotechnical investigation. The PBM is initially set as simple as possible and then moved to a higher level of complexity if the model is not capable of simulating past landslide events. The approach is presented for the case study of Sorrento Peninsula and two main landslides events recorded during winter 1996-1997.

Item Type: Article
Date Type: Publication
Status: In Press
Schools: Engineering
Publisher: NRC Research Press (Canadian Science Publishing)
ISSN: 0008-3674
Date of First Compliant Deposit: 6 December 2018
Date of Acceptance: 14 November 2018
Last Modified: 30 Jun 2019 09:08
URI: http://orca.cf.ac.uk/id/eprint/117454

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics