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Abstract  

To broaden our understanding of human neurodevelopment, we profiled the transcriptomic and 

epigenomic landscapes across brain regions and/or cell types for the entire span of prenatal and 

postnatal development. Integrative analysis revealed temporal, regional, sex, and cell type-specific 

dynamics. We observed a global transcriptomic cup-shaped pattern, characterized by a late-fetal 

transition associated with sharply decreased regional differences and changes in cellular 

composition and maturation, followed by reversal in childhood-adolescence, and accompanied by 

epigenomic reorganizations. Analysis of gene co-expression modules revealed relationships with 

epigenomic regulation and neurodevelopmental processes. Genes with genetic associations to 

brain-based traits and disorders (including MEF2C, SATB2, SOX5, TCF4, and TSHZ3) converged 

in a small number of modules and distinct cell types, revealing insights into neurodevelopment 

and the genomic basis of neuropsychiatric risks.  
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Introduction 

The development of the human brain is an intricate process that unfolds over several decades, 

during which time numerous distinct cell types are generated and assembled into functionally 

distinct circuits and regions (1-4). These basic components of the brain are neither born mature 

nor are they static throughout their lifetimes; over the course of development, they undergo a 

variety of molecular and morphological changes. As a consequence, the characteristics of a given 

cell, circuit, or brain region described at a given time offer only a snapshot of that unit. 

The processes guiding the development of the nervous system are reliant on the diversity 

and precise spatiotemporal regulation of the transcriptome (1-4). There is increasingly persuasive 

evidence that dysregulation of the transcriptional, regulatory, and epigenetic processes underlying 

the spatial architecture and temporal progression of human neurodevelopment can have dire 

consequences for brain function or strongly impact the risk of neuropsychiatric disorders (5-7). 

Indeed, many of the regulatory and epigenomic features governing the transcriptome of the 

developing human brain may be specific to particular developmental contexts in humans or closely 

related primate species. As such, it is difficult to identify or fully study human functional genomic 

elements using most common model organisms or cell culture systems (8). Assaying human cells 

and postmortem tissues solves some of these problems, but challenges, including the availability 

and quality of developmental tissue, limit the scale of such analyses. Consequently, despite 

ongoing efforts, our understanding of different facets of the transcriptional, regulatory, and 

epigenetic architecture of the human brain, particularly during early developmental periods, 

remains highly incomplete (8-21). 

To begin rectifying this deficiency, the NIH-funded PsychENCODE 

(www.psychencode.org) and BrainSpan Consortia (www.brainspan.org) sought to generate and 
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analyze multi-dimensional genomics data from the developing and adult human brain in healthy 

and disease states.  

 

Study design and data generation  

Here, we describe the generation and integrated analysis of multiple genomic data modalities 

including transcriptomic profile, DNA methylation status, histone modifications, CTCF binding 

sites, and genotype generated from bulk tissue (1,230 samples from 48 brains) or at the single 

cell/nucleus level (18,288 cells/nuclei from 12 brains) from 60 de-identified post-mortem brains 

obtained from clinically and histopathologically unremarkable donors of both sexes and multiple 

ancestries. Subject ages ranged from 5 postconceptional weeks (PCW) to 64 postnatal years (PY) 

(Fig. 1 and tables S1 to S6). Genotyping of DNA extracted from brain with a HumanOmni2.5-8 

BeadChip confirmed subject ancestry and revealed no obvious genomic abnormalities (22). 

For transcriptome analysis, tissue-level mRNA-seq was performed on a total of 607 

histologically verified, high-quality tissue samples from 16 anatomical brain regions (11 areas of 

the neocortex [NCX], hippocampus [HIP], amygdala [AMY], striatum [STR], mediodorsal 

nucleus of thalamus [MD], and cerebellar cortex [CBC]) involved in higher-order cognition and 

behavior (Fig. 2A, (22)). These regions were systematically dissected from 41 brains ranging in 

age from 8 PCW to 40 postnatal years (PY) (18 females and 23 males; postmortem interval (PMI) 

= 12.9 ± 10.4 hours; tissue pH = 6.5 ± 0.3; RNA integrity number = 8.8 ± 1) (Fig. 1 and table S1). 

Due to the limited amounts of prenatal samples, small RNA sequencing (smRNA-seq) was 

performed on 16 regions of 22 postnatal brains with 278 samples passing quality control measures 

(Fig. 1 and table S2). These tissue-level RNA-seq analyses were complemented by single-cell 

RNA-seq (scRNA-seq) data generated from 1,195 cells collected from embryonic fronto-parietal 
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neocortical wall and mid-fetal fronto-parietal neocortical plate and adjacent subplate zone of an 

independent set of 9 brains ranging in age from 5 to 20 PCW (Fig. 1 and table S3) and single-

nuclei RNA-seq data (snRNA-seq) generated from 17, 093 nuclei from the dorsolateral prefrontal 

cortex (DFC, aka DLPFC) of three adult brains (Fig. 1 and table S4). For epigenome analyses, 

DNA cytosine methylation was profiled with the Infinium HumanMethylation450 BeadChip in 

269 postnatal samples covering the same 16 brain regions analyzed by RNA-seq (Fig. 1 and table 

S5). Additional epigenomic data was generated with ChIP-seq for H3K4me3, H3K27me3, and 

H3K27ac histone marks and the epigenetic regulatory protein CTCF, which together identify a 

large fraction of active enhancers, promoters, repressors, and insulators. These data were generated 

from DFC and CBC of a subset of samples from mid-fetal, infant, and adult brains (Fig. 1 and 

table S6). Stringent quality control measures (figs. S1 to S8) were applied to all datasets before in-

depth analyses. We also validated some results by applying independent approaches (figs. S9, S10, 

S18). Finally, to enable more powerful comparisons, we grouped specimens into 9 time windows 

(W1-W9) on the basis of major neurodevelopmental milestones and unsupervised transcriptome-

based temporal arrangement of constituent specimens (Fig. 1A and tables S1 to S6).  

 

Global spatio-temporal dynamics 

We found that most protein coding genes were temporally (67.8%) or spatially (54.5%) 

differentially expressed (22) between at least two time windows or regions, respectively, with the 

majority of spatially differentially expressed genes (95.8%) also temporally differentially 

expressed. To gain a broad understanding of this transcriptomic variation, we analyzed the level 

of similarity between individual samples in the mRNA-seq dataset using multidimensional scaling 

applied to both gene and isoform transcript-level analyses (Fig. 2B and figs. S11, S12). In both 
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analyses, we found a clear divide between samples from embryonic through late mid-fetal 

development (W1-4) and samples from late infancy through adulthood (W6-9), with samples from 

the late fetal period through early infancy (W5) generally spanning this divide. To determine the 

relationship between these three groups, we performed unsupervised hierarchical clustering 

analysis and found that all samples from W5, including the late fetal samples, were more similar 

to early postnatal samples than to late mid-fetal samples (fig. S13). Analysis of large-scale, intra-

regional changes in the transcriptome across time also suggest a major transition that begins prior 

to birth: the transcriptomes of major brain regions and neocortical areas correlated well across both 

embryonic and early to mid-fetal (W1-4) and later postnatal (W6-9) development, but displayed a 

sharp decrease in correlation across late fetal development and early infancy (W5) (Fig. 2C and 

fig. S14). This transition was also apparent at the inter-regional level. Pairwise comparisons of 

gene expression across all 16 brain regions found a reduction in the number of genes showing 

differential regional expression during W5 relative to all other windows (fig. S15). Taken together, 

our observation of high variation during embryonic and early to mid-fetal ages followed by a 

decrease across late fetal ages and the subsequent resumption of higher levels of inter- and intra-

regional variation during late childhood and adolescence, revealed a cup-shaped, or hourglass-like, 

pattern of transcriptomic development (Fig. 2D). 

To further explore how regional transcriptomic profiles change with age, we applied the 

adjustment for confounding principal component analysis algorithm (AC-PCA) (23) which adjusts 

for inter-individual variations. Within any given developmental window, AC-PCA exhibited a 

clear separation of brain regions, but the average dissimilarity between transcription profiles of 

brain regions declined from W1 to W5 and then increased with age after W5 (Figs. 2E, 2F and fig. 

S16). Implying a relationship between transcriptional signatures and developmental origin, we 
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found that dorsal pallium-derived structures of the cerebrum (i.e., NCX, HIP, and AMY) as well 

as STR became increasingly similar across prenatal development, while CBC and MD remained 

most distinct across all time windows. To confirm these observations and to evaluate the 

contribution of each brain region to the regional variation described by AC-PCA, we quantified 

the mean distance in the first two principal components across brain regions, excluding from the 

AC-PCA one region at a time. Due to the relative transcriptomic uniqueness of the CBC, its 

exclusion unmasked a qualitatively distinct and pronounced cup-shaped pattern with a transition 

beginning prior to birth and spanning the late fetal period and early infancy (Fig. 2F). CBC was 

again the most distinct region of the brain following multidimensional scaling analysis for 

expressed mature miRNAs, a small RNA species enriched within our small RNA-seq dataset, and 

the dominant contributor to miRNA expression variance (fig. S17). 

The global late fetal transition and overall cup-shaped developmental dynamics we 

observed were also apparent when this analysis was repeated for the 11 neocortical areas included 

in this study (Fig. 3A and fig. S16). We observed greater dissimilarity across areas at early fetal 

ages (Fig. 3A), with prefrontal areas (medial prefrontal cortex [MFC], orbital prefrontal cortex 

[OFC], DFC, and ventrolateral prefrontal cortex [VFC]) being the most distinct. In addition, 

reflecting the spatial and functional topography of the neocortex, both rostro-caudal and dorsal-

ventral axes were evident in the transcriptome during fetal development. Areal differences were 

also seen at later ages, with functional considerations likely taking precedence over topographical 

arrangements. For example, VFC clustered closely with primary motor (M1C) and somatosensory 

(S1C) cortex, likely reflecting functional relationships with orofacial regions of the motor and 

somatosensory perisylvian cortex (fig. S16). Across the entirety of human brain development, the 

transcriptomic similarity between cortical regions also showed a pronounced decrease centered on 
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the late fetal and early infancy samples of W5 (i.e., perinatal window), again reminiscent of a cup-

shaped pattern (Figs. 3A, 3B and fig. S16). 

Similar to gene expression, global measures of alternative splicing, such as the ratio 

between reads including or excluding exons (i.e., the percent spliced in index, PSI), were higher 

during prenatal than postnatal ages (fig. S18 and table S7). So too was the gene expression of 68 

RNA-binding proteins selected due to their involvement in RNA splicing and their analysis in 

adulthood by the Genotype-Tissue Expression (GTEx) project (24). Hierarchical clustering of 

expression data for these proteins also revealed a late fetal transition (fig. S19). Coincident with 

these observations, we found that genes exhibiting the highest inter-regional variation in 

expression in any given window (see (22)) exhibited a higher PSI during that window than 

iteratively chosen control groups of genes (fig. S18). Taken together, these analyses suggest broad 

phenomena in the developing human brain, including a late fetal transition in intra- and inter-

regional transcriptomic variation, may be amplified by alternative splicing. 

 

Cellular heterogeneity and developmental dynamics 

The high inter-areal variation observed during embryonic and early-to-mid fetal development (Fig. 

3B) coincides with a crucial period in neural development and the suspected etiology of psychiatric 

diseases (4). To help understand the temporal dynamics underlying this variation in gene 

expression, we analyzed our scRNA-seq data from embryonic front-parietal neocortical wall and 

mid-fetal fronto-parietal neocortical plate and adjacent subplate zone, alongside our snRNA-seq 

data from adult human neocortex and other independent datasets from overlapping developmental 

time points (12, 25, 26). To do so, we first applied a clustering and classification algorithm (27, 

28) to the prenatal scRNA-seq data following an initial division of the dataset based on age of the 
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donor brain (i.e. embryonic or fetal), obtaining 24 transcriptomically distinct cell clusters, which 

we hereafter refer to as cell types. Differential expression analysis and measurements of expression 

specificity recovered well-known gene markers of distinct types of neuronal and non-neuronal 

progenitor and postmitotic cell types (figs. S20, S21 and table S8), as well as closely related groups 

of cell types (i.e., markers enriched in all prenatal excitatory neuron clusters) (fig. S21).  

We complemented these data with snRNA-seq from adult human DFC (fig. S20), where 

we identified 29 transcriptomically distinct cell types representing various populations of 

glutamatergic excitatory (ExN) projection neurons, GABAergic interneurons (InN), 

oligodendrocyte progenitor cells, oligodendrocytes, astrocytes, microglia, endothelial cells, and 

mural cells (i.e., pericytes and vascular smooth muscle cells). Alignment of our prenatal data with 

adult snRNA-seq data revealed hierarchical relationships and similarities between major cell 

classes, reflecting their developmental origins and functional properties (fig. S22). Notably, 

putative embryonic and fetal excitatory neurons clustered near, but did not wholly overlap with 

their adult counterparts. We also observed transient transcriptomic entities, such as fetal cells in 

the oligodendrocyte lineage that clustered separately from their adult counterparts. Similarly, 

nascent excitatory neurons generally did not cluster with progenitor cells nor with fetal or adult 

excitatory neurons, indicating their maturationally distinct status. Confirming the validity of our 

prenatal scRNA-seq and adult snRNA-seq data, alignment of our prenatal data with cells from a 

previously published dataset (9) consisting of mid-fetal and adult human neocortical cells yielded 

similar relationships between prenatal and adult cell types (fig. S22). Comparison of neuronal 

transcriptomes from our prenatal single cells with both our adult single nucleus data and 

independently generated adult single nucleus data (27) also confirmed key differences between 

embryonic, mid-fetal, and adult populations. We observed limited transcriptional diversity in 
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embryonic and mid-fetal excitatory and inhibitory neuron populations in the neocortex as 

compared to the adult counterparts. The clusters identified in our prenatal dataset did not express 

specific combinations of marker genes described for the adult excitatory (fig. S23) and inhibitory 

(fig. S24) neurons. For example, the embryonic and mid-fetal neocortical excitatory neurons 

expressed combinations of genes known to be selectively enriched in different layers in adult 

human or mouse neocortex (29-31), as previously shown in the prenatal human and mouse cortex 

(12, 31). Notably, genes enriched in adult excitatory projection neuron subtypes located in layer 

(L) 5 and L6, such as BCL11B (CTIP2) and FEZF2 (FEZL, ZFP312, or ZNF312), were co-

expressed with L2-4 intracerebral excitatory projection neuron markers, such as CUX2, in certain 

embryonic and mid-fetal excitatory cell types (figs. S23, S25). We also observed temporal changes 

in the co-expression patterns of cell type-specific marker genes in other cell types. For example, 

single cell data from mid-fetal NCX revealed frequent co-expression of RELN, a marker for L1 

Cajal-Retzius neurons (32), and PCP4 (75.9% of 133 PCP4-expressing cells; RPKM >=1), a 

marker previously shown to be expressed by deep layer excitatory neurons (33). In contrast, 

analysis of snRNA-seq suggested only sporadic co-expression of these genes (10.8% of 6084 

PCP4-expressing cells, UMI >=1) in the adult human DFC. Subsequent immunohistochemistry 

on independent specimens confirmed the robust co-expression of these genes in L1 of the prenatal 

cortex, but not in L1 of the adult cortex or in other cortical layers (fig. S25). These data imply that 

the molecular identities of many neuronal cell types are not fully resolved before the end of mid-

fetal development and are likely malleable during early postmitotic differentiation.  

Next, we utilized our single cell/nucleus datasets to deconvolve bulk tissue mRNA-seq 

samples and estimate temporal changes in the relative proportions of major cell types in the 

neocortex. The combined analysis revealed the cellular architecture of distinct neocortical areas 



13 
 

and their variations across development. We observed temporal changes in cellular composition 

and maturational states, including the most dramatic changes during a late fetal transition (Figs. 

3C, 3D, 3E). For example, transcriptomic signatures for fetal excitatory neurons and fetal 

interneurons were generally inversely correlated with progenitor cell signatures during embryonic 

and early fetal development, but fetal neuron signatures nonetheless decreased across mid-to-late 

fetal development despite a concomitant reduction in the progenitor cell signature, an observation 

that was likely affected by our dissection strategy (Fig. 3C, (22)). Similarly, signatures for adult 

excitatory neurons increased rapidly across the late fetal period and early infancy, coincident with 

the decrease in signatures of fetal excitatory neurons and interneurons (Fig. 3C). As expected, the 

molecular signatures for early born, deep layer excitatory neurons preceded those for late born, 

upper layer excitatory neurons (fig. S26). Transcriptomic signatures for prenatal oligodendrocytes 

and prenatal astrocytes also began to emerge during mid-fetal periods and increased rapidly across 

the late fetal transition and early infancy (Fig. 3C). Demonstrating the robustness of these 

observations, independent deconvolution using two alternate fetal single cell datasets (12, 26) 

yielded similar results (figs. S26, S29).  

Given the increase in adult cell type signatures during W5, we next reasoned that the 

observed decrease in inter-regional transcriptomic divergence during late fetal periods and infancy 

may reflect a synchronized transition from fetal to more mature features of neural cells. 

Consequently, we analyzed the variance in cell type specific signatures across neocortical areas, 

which varies in accordance with their relative proportion, and found that the maximum cell type 

inter-areal variation through time recapitulated the developmental cup-shaped pattern (Fig. 3D), 

with large variation in the proportion of neural progenitor cells and fetal excitatory neurons (figs. 

S27, S28). Beginning during early postnatal periods, we observed increased proportions and 
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variance in the signatures of astrocytes and, by adulthood, mature excitatory neurons (Fig. 3E). 

These observed temporal differences in the magnitudes and variances of the relative proportions 

of certain cell types and the global heterogeneity of the cell-type composition at each window 

likely at least partially explain the observed pattern of inter-areal differences across development. 

Gene Ontology (GO) enrichment analysis using the top variant genes in each window, with all 

genes expressed in each window as background, provided further support for these changes in cell 

composition across areas and time. Commensurate with the changes we observed in discrete cell 

populations, biological processes including neurogenesis in early developmental windows (W3-

4), myelination in the perinatal window (W5), and sensory/ion activity calcium-related biological 

processes in later postnatal windows (W7-9), among others, exhibited regional variation in the 

global brain transcriptome (fig. S30 and table S9). Similar patterns of inter-regional variation 

involving discrete cell types were also observed in the macaque neocortical transcriptome (34), 

indicating that these are conserved and consistent features of prenatal primate neocortex.  

Other lines of evidence also suggested pronounced and qualitatively distinct regional 

differences in myelination, synaptic function, and neuronal activity. For example, although we 

observed differences in the expression of genes associated with these processes (10) across the 

neocortex (fig. S30 and table S9), TempShift, a Gaussian-based model that allows the 

quantification of temporal shifts in the trajectories of groups of genes represented by their first 

principal components (34), indicated that of these processes only genes associated with 

myelination displayed such a shift (Fig. 4A). Conversely, perhaps reflecting functional or areal 

diversity in cell subtypes, we observed no similar temporal shift in the expression of genes 

associated with synaptogenesis or neuronal activity, confirming these results through reference to 

published post-translational analyses of myelinated fiber density (35) and synaptic density (36) 
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conducted across multiple neocortical areas (Fig. 4B). Crucially, although genes associated with 

these processes were expressed across the late fetal transition (Fig. 4C), of the processes analyzed, 

only myelination contributed to the increased inter-areal differences we observed during this 

period (Fig. 4D). Suggesting these differences are a conserved feature of primate development, we 

also observed similar areal differences in the transcriptional signatures of oligodendrocytes in the 

macaque neocortex.  

Overall, these observations indicate that higher levels of divergence during early prenatal 

and later postnatal development reflect regional variations in cell type composition, likely arising 

from topographical variation in progenitor populations and neuron development during prenatal 

ages and cell type and functional diversification during later postnatal ages.  

 

Spatio-temporal and multimodal integration 

We next sought to assess temporal variation in epigenetic signatures and their relationships to gene 

expression, development, and biological processes. Global DNA methylation profiling revealed 

that the majority of CpG loci were either hyper (37.5%; Beta value [β]>=0.8) or hypo (31.8%; 

ß<=0.2) methylated in at least one sample (fig. S31), but only approximately 10% of the tested 

methylation sites were progressively hyper- or hypo-methylated through prenatal windows, 

postnatal windows, or both. Similarly, a majority of methylation sites also exhibited regional 

variation, with 64% of tested sites differentially methylated between at least two brain regions at 

postnatal ages. Additionally, 16% of tested sites were differentially methylated between at least 

two neocortical areas. Conversely, a majority of putative promoters (66%) and a substantial 

proportion of putative enhancers (43%) were not differentially enriched between DFC and CBC 

at either fetal or adult ages. However, a greater proportion of putative enhancers (H3K27ac-
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enriched regions not overlapping H3K4me3-enriched regions or proximal to a transcription start 

site; TSS) were regionally (15%), temporally (17%), or spatiotemporally (24%) enriched than 

putative promoters (8%, 14%, and 12%, respectively). These differences, which suggest a greater 

role for enhancers relative to promoters in contributing to differential spatiotemporal gene 

expression, were selectively validated using quantitative droplet digital PCR (fig. S10). We next 

explored correlations between methylation, histone modifications, and gene expression (figs. S31 

to S33). In the adult, we found that TSSs that were more highly methylated were associated with 

genes that were expressed at low levels at the corresponding age, and vice versa. These 

relationships were not strongly indicated for methylation at other locations in the gene body (fig. 

S31). The presence of CBC-enriched H3K4me3 and H3K27ac marks in the adult human brain also 

correlated strongly with increased gene expression in CBC relative to DFC (fig. S32), and vice 

versa. Similarly, putative fetal-active and adult-active enhancers were associated with higher fetal 

or adult gene expression, respectively.  

 In addition to epigenetic effects on gene expression, we observed discrete relationships 

between specific enhancers, methylation sites, and cell type specific signatures. For example, 

enhancers identified during the fetal period were enriched for methylation sites that were 

progressively more methylated across postnatal ages (post-up) while adult-active enhancers were 

enriched for methylation sites that were progressively less methylated across postnatal ages (post-

down) (Fig. 5A and fig. S34, (22)). Both post-up and post-down sites were themselves depleted at 

TSSs and enriched for sites undermethylated in neurons (neuron undermethylated sites, or NUM 

sites) and undermethylated in non-neurons (non-NUM sites) (fig. S34). They were also enriched 

for fetal and adult enhancers, respectively (Fig. 5B). Post-up sites were also enriched in both 

neuron and glia-enriched-genes, while post-down sites were enriched only in glial genes (Fig. 5B). 
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Further suggesting a relationship between enhancer activity, methylation, and cell type, genes 

associated with fetal-active enhancers, as well as those associated with differentially methylated 

regions (DMRs) composed of post-up sites (22), were enriched for Gene Ontology terms related 

to early events in neural development, such as neurogenesis, cell differentiation, and synaptic 

transmission, but generally not for processes occurring later in development (Fig. 5B and fig. S34). 

In contrast, genes near adult-active enhancers and post-down DMRs exhibited enrichment for 

postnatal or adult processes including myelination and axon ensheathment (Fig. 5B and fig. S34). 

Taken together, these data demonstrate relationships between gene expression and epigenetic 

modifications including methylation status and putative regulatory elements, as well as signatures 

of specific cell types and developmental programs. 

We next sought further evidence that cellular dynamics contributed to the late fetal 

transition through the analysis of cell type- and spatiotemporal-specific patterns of gene expression 

and epigenetic regulation. We curated 73 gene co-expression modules resulting from Weighted 

Gene Correlation Network Analysis (WGCNA) according to spatial relationships between brain 

regions and the temporal relationships of gene expression in the neocortex across the late fetal 

transition (Fig. S35 and tables S10, S11). We found 44 modules that showed expression differences 

among regions in the brain (spatial), 40 modules that showed expression differences between 

prenatal and postnatal neocortical areas (temporal), 16 modules that were neither spatially nor 

temporally dynamic, and 27 modules that exhibited both spatial and temporal differences (Fig. 

5C). A significantly greater than expected number of these spatiotemporally dynamic modules 

(including Modules 2, 10, 32, and 37) exhibited their greatest change in neocortical expression 

from W2 through W5 (P<0.0118) (Fig. 5C, fig. S36 and table S12). Genes whose expression was 

enriched in excitatory neurons, genes associated with putative fetal-active enhancers, and/or genes 
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associated with NUM sites, a selection of characteristics we refer to collectively as Neuronal (N)-

Type associations, were also enriched in spatiotemporal dynamic modules (P<0.00287) (Fig. 5C, 

fig. S36 and table S12). Conversely, genes associated with adult-active enhancers, methylation 

sites hypomethylated in non-NUM sites, and glial genes (Glial or “G”-Type modules/associations 

in Fig. 5C, fig. S36 and table S12) were enriched among the 13 modules where temporal 

(P<0.000168), but not spatial, specificity was observed. These observations indicate increased 

spatial diversity of neuronal cell types relative to glial cell populations.  

Analyses by sex revealed that modules enriched for the 783 genes exhibiting sex-

differential expression (sex-DEX, fig. S36) in at least two consecutive windows in at least one 

brain region were enriched among modules with no spatial or temporal differential expression in 

the neocortex (P<0.00291) (Fig. 5C) and depleted among spatiotemporal modules (P<0.00212). 

There were four modules exhibiting temporal expression differences in the neocortex that were 

also enriched for sex-biased genes, as well as glial and other cell type-enriched markers, but this 

did not represent a significant enrichment in sex-DEX enriched modules among temporal modules 

(P<0.132). In addition, no module comprised of autosomal genes exhibited persistent male- or 

female-dimorphism across both prenatal development and later postnatal ages such as adolescence 

or adulthood (Figs. S37, S38); in cases where an autosomal module was sex-DEX throughout 

development, the sex exhibiting higher expression reversed between early and late postnatal 

development (fig. S38). This observation was upheld when multiple thresholds were used for the 

identification of sexual dimorphism (fig. S39). Similarly, we identified no autosomal genes that 

exhibited sexual dimorphism throughout development in all brain regions or neocortical areas 

(figs. S37, S38).  
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Cellular and temporal convergence of neuropsychiatric disease risks 

Loci implicated in several neuropsychiatric disorders have been identified through genome-wide 

association studies (GWAS) and are enriched in putative noncoding regulatory elements (29-31). 

We sought to determine whether the proportion of phenotypic variance explained by common 

SNPs in large neuropsychiatric GWAS (i.e., SNP heritability) was enriched in the cis-regulatory 

elements we identified at W1, W4, W5 and W9 in DFC and CBC. Towards this end, we collected 

GWAS data concerning neuropsychiatric disorders or personality traits including schizophrenia 

(SCZ) from CLOZUK (37), Alzheimer’s Disease (AD) from IGAP (38), Parkinson’s disease (PD; 

(39)), autism spectrum disorder (ASD; (40)), attention deficit hyperactivity disorder (ADHD) from 

iPSYCH (41), major depression disorder (MDD; (42)), bipolar disorder (BD; (43)), IQ (44), and 

neuroticism (45), as well as non-neural traits such as height from GIANT (46), inflammatory 

bowel disease (IBD; (47)), total cholesterol levels (48), and an endophenotype associated with 

diabetes (HbA1C; (49)). Using partitioned LD score regression (pLDSC) analysis, we found that 

SNP heritability in SCZ, IQ, and neuroticism were exclusively enriched in DFC-specific, but not 

CBC-specific, regulatory elements as identified by peak regions of H3K27ac activity. In contrast, 

SNP-heritability in AD or PD rendered no significant associations, and the analysis on ASD, 

ADHD, BD, and MDD was only nominally enriched or not enriched in putative region-specific 

fetal enhancers (Fig. 6 and fig. S40, (22)). Non-neural traits (such as height and diabetes) were 

also not enriched in either DFC- or CBC-specific regulatory elements, but were instead enriched 

in regulatory elements active in the two brain regions (fig. S40), indicating a general enrichment 

of many of our tested GWASes in H3K27ac regions when considering a set of more ubiquitous 

regulatory regions.  
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After aggregating GWAS SNPs and identifying candidate associated regions on the basis 

of their P-values and linkage disequilibrium patterns in individuals of northwest European ancestry 

(50), we next leveraged partially overlapping Hi-C datasets, derived from mid-fetal and adult 

neocortex and processed by two independent research groups (51-53), as well as H3K27ac activity 

in the brain, to develop two lists of genes putatively associated with those GWAS-associated 

regions. To do so, we initially populated both lists of disease-associated genes by identifying TSSs 

overlapping H3K27ac peaks that themselves overlapped a GWAS significant region, as well as 

genes directly affected by GWAS significant variants within the LD-region, as predicted by 

EnsmbleV78. We next expanded these lists of disease-associated genes by identifying TSSs that 

interact with H3K27ac peaks overlapping GWAS significant regions, excluding interactions that 

did not overlap with at least one H3K27ac peak at each end or where peak-to-peak interactions 

were not concordant in time and brain region. In the first, less stringent list (List 1), a single 

interaction from either of the two Hi-C datasets was sufficient to associate a gene to a GWAS locus 

(table S13). For the second, more stringent list (List 2), we excluded those genes whose only 

association to a GWAS locus was via Hi-C interactions identified in only one of the two Hi-C 

datasets (table S14). 

We next sought to determine the cell types enriched for the expression of the high-

stringency genes implicated in neuropsychiatric disorders or traits, using our prenatal scRNA-seq 

and adult snRNA-seq datasets, and matching prenatal and adult datasets generated from the 

macaque (34). We found numerous cell types enriched for disease-associated loci in both human 

and macaque (fig. S41). For example, neocortical excitatory neurons were enriched for the 

expression of genes we associated with IQ in both the fetal and adult human as well as the fetal 

and adult macaque. However, we found no other excitatory neuron populations in the macaque 



21 
 

amygdala, striatum, hippocampus, thalamus, or cerebellum enriched for genes associated with IQ. 

Similarly, neural progenitors in the prenatal macaque amygdala, but not progenitors in the prenatal 

macaque hippocampus, thalamus, neocortex, or striatum, were enriched for the expression of genes 

associated with major depressive disorder, a finding especially intriguing given the variable or 

potentially increased size of some amygdalar nuclei in MDD patients (54, 55). Similarly 

confirmatory was the enrichment of schizophrenia risk genes in cortical excitatory neurons (56), 

with enrichment also observed in embryonic/fetal progenitor cells and adult cortical interneurons.  

Analysis of gene co-expression modules found that genes in the more stringent disease risk 

list converged on 7 of 73 co-expression modules (Fig. 7A), with genes associated with IQ and 

neuroticism enriched in 7 additional modules (Fig. 7A, fig. S36 and table S11). Of these modules, 

three of the four modules enriched for early onset disorders (SCZ and MDD) exhibited 

spatiotemporal specificity, high expression during prenatal ages, and an enrichment for neurons or 

neural progenitor cells. Conversely, three of the five modules enriched for late onset disorders (PD 

and AD) exhibited temporal, but not spatiotemporal, specificity, as well as higher adult expression 

and an enrichment for oligodendrocytes and/or astrocytes, among other cell types. Of particular 

interest were modules ME3 and ME7, which were both enriched for glia, non-NUM sites, adult-

active enhancers, sex-DEX genes, and AD-associated risk genes. A fifth module, ME58, was 

enriched for PD, but not for any cell type, enhancer, or methylation site indicative of cell type or 

temporal specificity.  

Another module of interest was ME37, a module of 145 genes enriched for NUM sites and 

fetal enhancers, and whose expression was enriched specifically in neurons as opposed to neural 

progenitors or glia. ME37 was also exceptional for its disease association, as it was enriched for 

genes associated with SCZ, IQ, and neuroticism but not for non-neurological characteristics such 
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as height or a diabetes-related trait (Fig. 7A). Complementary module-based association analysis 

with Multi-marker Analysis of GenoMic Annotation (MAGMA), testing for an enrichment in 

association to disease specifically around genes in any given module, confirmed enrichment for 

SCZ, IQ, and neuroticism in ME37 (P values<0.01; FDR for all traits and modules <0.3) (table 

S11). At the gene level, multiple genes in ME37 identified using our less stringent criteria for 

interaction were associated with up to four or more different traits and disorders, including 

MEF2C, GRAP2, ZNF184, TCF4, and SATB2, all genes critical for neurodevelopment and/or 

implicated in neurodevelopmental disorders (57-65) (Figs. 7B, 7C). We also found that ME37 was 

specifically enriched in clusters of excitatory neurons in the fetal and adult neocortex (Fig. 7D), 

and further analysis of adult excitatory neuron populations identified in this study and an 

independent database of adult single cell data (27) suggested this enrichment was selective for 

deep layer neocortical neurons (fig. S42). 

As the ASD GWAS resulted in only 12 significant genes, eight of which were non-protein 

coding, and because de novo germline mutations are known to significantly contribute to ASD risk 

(66), we next developed two non-overlapping lists of neurodevelopmental disorders (NDD; ASD, 

intellectual disability (ID), and developmental delay (DD)). The first list was comprised of 65 

high-confidence ASD risk genes (hcASD) associated with de novo mutations (66). The second list 

included all ASD genes documented in the SFARI database (www.gene.sfari.org) under categories 

“Syndromic” or with scores from 1 to 4 as well as an independent list of genes associated with DD 

(67), with genes overlapping the hcASD list removed. We found that these groups of genes were 

also significantly enriched in ME37 (FDR<0.0001), and commensurate with the cell type 

enrichment found in ME37, the expression of genes in both of these lists was also enriched in 

several clusters of fetal and adult excitatory neurons identified in our single cell dataset (Fig. 7D). 
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Medium spiny neurons in the striatum, a population that has also been previously linked to ASD 

(68), were also enriched for the expression of ASD risk genes in the prenatal macaque (Fig. 7D). 

We finally studied the overlap between WGCNA modules and modules significantly 

enriched in differentially expressed genes in postmortem brains from patients of SCZ, BD, and 

ASD (69). Interestingly, we found little overlap between modules enriched in genes exhibiting 

postmortem differences in expression between SCZ, BD, or ASD, as compared to neurotypical 

controls, and modules enriched in GWAS-risk genes for these same disorders. Emphasizing the 

necessity of studying neurotypical brain development, these observations may suggest a 

decoupling between the primary genetic causes of some neurological or psychiatric disorders and 

second order effects manifesting as changes in gene expression months or years following disease 

onset. 

 

Discussion 

In this study, we have presented a comprehensive dataset and a multi-platform functional genomic 

analysis of the developing and adult human brain. The presence of these multiple data modalities 

in a unified resource, and largely from the same tissue samples, allows the integration of 

information spanning prenatal and postnatal human brain development. Resource description and 

access are available at development.psychencode.org and brainspan.org. 

Although transcriptomic differences between distinct brain regions remain across time, 

they are developmentally specified and exhibit an overall cup-shaped pattern centered on a late 

fetal transition following a period of high intra- and inter-regional variation during embryonic and 

early/mid-fetal development. Multiple analyses of distinct transcriptomic features all confirm this 

transition begins well prior to birth. Our complementary transcriptomic study of the developing 
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rhesus macaque brain (34) also revealed a similar global developmental pattern, with a first 

transition beginning prior to birth, indicating that this is a conserved feature of catarrhine primate 

neurodevelopment and not due to an artifact of difficult to acquire samples from late fetal and early 

postnatal development. Such a phenomenon is consistent with previously observed differences in 

transcriptomic and methylomic profiles of mid-fetal and postnatal human neocortex (17-20), and 

coincident with processes involved in region-specific cell type generation, differentiation, and 

maturation (4). Crucially, this transition is strikingly distinct from previously reported 

phylogenetic hourglass-like patterns that occur during the embryonic organogenetic period in 

several invertebrate and vertebrate species (70, 71). Moreover, the developmental (ontogenetic) 

cup-shaped pattern we observe coincides with an “evolutionary” (phylogenetic) cup-shaped 

pattern, where developmental periods exhibiting high levels of inter-regional differences (for 

example, early to mid-fetal periods) also exhibit less conservation in gene expression patterns 

between human and macaque (34).  

Among the processes beginning or active during the late fetal period are astrogliogenesis, 

synaptogenesis, dendritogenesis, and neuronal activity. In contrast to a previous report of robust 

areal differences in the progression of synaptogenesis during the same time period in humans (36), 

this and an accompanying study (34) found that genes associated with these processes exhibit 

largely synchronous expression trajectories across the developing neocortex in both humans and 

macaque. However, myelination, which sharply increases during late fetal development, peaks 

after birth, and extends through childhood and adolescence (72), is temporally asynchronous. This 

asynchronicity in oligodendrocyte development and myelination is not apparent at the level of 

OPCs, which suggests that the maturation of OPCs into myelinating oligodendrocytes is a process 
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with a variable onset and pace across areas. Similar observations were made in macaque (34), 

indicating that this may be another conserved catarrhine feature.  

Transcriptomic variation may reflect several unique cellular and maturational 

reorganizational events. For example, as first described by Brodmann (73), an ontogenetic six-

layered Grundtypus foreshadows the adult neocortex and transiently transforms the entirety of the 

neocortical plate beginning in the late fetal period, or in our window 5. Furthermore, consistent 

with the extensive changes we observed in the cerebellar transcriptome during late fetal 

development and early postnatal ages, cerebellar granule cells, a cell type that represents 

approximately 2/3 of all neurons in the brain, are also generated predominately during this period 

(74). The late fetal transition may therefore follow an inflection point after which developmental 

and spatiotemporal transcriptomic variations are transiently consolidated in advance of the 

emergence of cellular and functional differences between adult brain regions.  

The mid-fetal period of high intra- and inter-regional divergence that immediately precedes 

the late fetal transition also coincides with a key developmental period previously associated with 

the etiology of ASD and SCZ (63, 65, 75). Consequently, understanding the developmental and 

evolutionary history of this period may be essential for understanding neuropsychiatric disease. 

Integrating our multiple data modalities with gene co-expression modules allowed us to organize 

and characterize the whole brain developmental transcriptome and identify modules with dynamic 

spatiotemporal trajectories, many of them showing a sharp late-fetal transition, and enrichment in 

specific cell types, epigenetic activity, and disease-associated genes. Of particular interest is 

ME37, a module displaying the greatest rate of change in the neocortex within the late-fetal 

transition and in which putative risk genes for ASD, NDD, SCZ, IQ, and neuroticism converged. 

Several of the genes in ME37 were implicated by our study in multiple disorders and traits, and 
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have been linked previously linked to neurodevelopment and human disease. For example, 

MEF2C controls activity-dependent expression of neuronal genes, including those linked to 

synapse function and ASD (61, 63), and Mef2c mutant mice display numerous behaviors 

reminiscent of ASD, ID, and SCZ (58). Similarly, TCF4 regulates key neurodevelopmental 

processes, such as neurogenesis and synaptic plasticity, DNA methylation, and memory function 

processes (62, 64). Moreover, mutations in both MEF2C and TCF4 result in intellectual disability 

in humans (57, 59, 60). Numerous other genes in this module are similarly involved in 

neurodevelopment, have been implicated in human brain disease, and are highly plausible disease 

risk genes and potentially therapeutic candidates. For example, NR4A2, another transcription 

factor in ME37 that we linked to neuroticism and IQ, has been linked to ASD and SCZ, among 

other disorders. Our study also links the transcription factor TSHZ3 to neuroticism and IQ, and 

previous efforts have linked murine Tshz3 to ASD and the fetal development of cortical excitatory 

projection neurons (76), a cell type and developmental period also implicated in ASD (63, 65). 

Other genes in ME37, such as SATB2, FEZF2, SOX5, and TBR1, play critical roles in the 

development of cortical excitatory projection neurons and are mutated in NDDs (29-31, 65, 77, 

78). Similarly, the population of genes included in ME37, as well as genes linked to ASD and 

NDD, also exhibit regional and cell type specific convergence in neocortical excitatory neurons. 

Moreover, the identification of ME37 and the overlap of genes in this module with those implicated 

in ASD and NDD illustrates how disease association signals from common variants unveiled by 

GWAS for any given neuropsychiatric disorder can identify genes that have also been associated 

with the etiology of a different disease through the study of de novo mutations in patient 

populations (76). While not every gene in ME37 is likely to contribute to neuropsychiatric disease 

etiology, the coincident enrichment within this module of genes associated with multiple disorders 
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or neurological traits, along with the multitude of genes in this module that are associated directly, 

suggests that neuropsychiatric disease might be considered through a broader lens encompassing 

additional aspects of brain dysfunction.  

Interestingly, there is little overlap between the risk-gene associated modules we identified 

and modules enriched in genes that are differentially expressed in postmortem brains of SCZ, 

ASD, and BD, as compared to controls (69). This comparison may help discriminate gene 

networks that are primary causes from those that are secondary or reactive in these 

neuropsychiatric disorders while emphasizing the importance of studying disease in the context of 

neurotypical development.  

 Taken together, these observations demonstrate the utility of this resource to perform 

integrated analysis for the understanding of brain development and function, and for the rapid 

interpretation of findings from neuropsychiatric genomics. 

 

Materials and Methods 

A full description of the materials and methods is provided in the supplementary text. Briefly, we 

precisely dissected multiple brain regions (hippocampus, striatum, amygdala, cerebellum, 

thalamus, and 11 neocortical areas) in more than 60 postmortem human brains ranging in age from 

5 PCW to 64 PY. We then applied bulk tissue RNA-seq, single cell and nucleus RNA-seq, small 

RNA-seq, DNA methylation assay, or ChIP-seq to generate multimodal datasets, often from the 

same brain. After applying stringent quality control checks and independent analysis of each data 

set, we performed integrated analyses to gain insights into human brain development, function, 

and disease.  
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Figure legends 

 

Fig. 1. Overview of the data generated in this study. (A) The developmental timespan of the 

human brain, from embryonic ages (≤ 8 PCW) through fetal development, infancy, childhood, 

adolescence, and adulthood, with PCW indicated in text and postnatal years indicated in bold text. 

Below, distribution of samples in this study across broad developmental phases (embryonic to 

adulthood), age (5 PCW to 64 PY (19)), and developmental windows (W1 – W9). Each circle 

represents a brain and color indicates the sex; red circles (female) and blue circles (male) (B) 

Postmortem human brains sampled for different data modalities in this study as indicated.  

 

Fig. 2. Global transcriptomic architecture of the developing human brain. (A) mRNA-seq 

dataset includes 11 neocortical areas (NCX) and five additional regions of the brain. (B) First two 

multidimensional scaling components from gene expression showed samples from late fetal ages 

and early infancy (W5; gray) clustered between samples from exclusively prenatal windows (W1-

4; blue) and exclusively postnatal windows (W6-9; red). (C) Intra-regional Pearson’s correlation 

analysis found that samples within exclusively prenatal (W1-4) or postnatal (W6-9) windows 

correlated within but not across those ages. (D) Inter-regional transcriptomic differences revealed 

a developmental cup-shaped pattern in brain development. The inter-regional difference was 

measured as the upper-quartile of the average absolute difference in gene expression of each area 

compared to all other areas. (E) Principal component analysis adjusted for inter-individual 

variation (AC-PCA) for samples from all brain regions at late mid-fetal ages (W4), late fetal ages 

and early infancy (W5), and early adulthood (W9) showed that inter-regional differences were 

generally greater during windows 4 and 9 but reduced across W5. (F) Pairwise distance across 
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samples using the first two principal components for all regions (left), or excluding one region at 

a time (right), demonstrated that the reduction of variation we observed is common across multiple 

brain regions, once the most differentiated transcriptomic profile (the cerebellum) is excluded.  

 

Fig. 3. Dynamics of cellular heterogeneity in the human neocortex. (A) AC-PCA conducted on 

11 neocortical areas showed decreased inter-areal variation across W5, similar to our observations 

of inter-regional variation in major brain regions. (B) Pairwise distance across samples using the 

first two principal components identified a late fetal transition in all of the neocortical areas we 

assessed, similar to what we observed across other brain regions. (C) Deconvolution of tissue level 

data using cell type enriched markers identified through single cell sequencing of primary cells 

from 5 – 20 PCW postmortem human donor brain as well as from single nuclei sequencing of adult 

human brain (27). (D) Maximum inter-areal variance across cell types for each window. (E) 

Neocortical areal variation in the transcriptomic signatures of each major cell type assayed in each 

developmental window. Due to dissection protocols and rapid brain growth across early fetal 

development, progenitor cell proportions are nonreliable estimates after W2 (red dashed line). 

NPC: neural progenitor cells, ExN: excitatory neurons, InN: interneurons, Astro: astroglial lineage, 

Oligo: oligodendrocytes, Endo: endothelial.  

 

Fig. 4. Timing and temporal variation of genes expression associated with key 

neurodevelopmental processes. (A) Temporal variation, determined by the TempShift algorithm 

(34), in the expression of genes associated with myelination showed a broad gradient across the 

neocortex and other brain regions while synaptogenesis showed only a shift between brain regions 

(but not neocortical areas) and neuronal activity indicated the distinct nature of the cerebellum. 
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Application of the TempShift algorithm to previously published post-translational analyses of 

myelinated fiber density (35) (B) and synaptic density (36) (C) in multiple neocortical areas 

yielded relationships between areas similar to those observed in the transcriptome. (D) Expression 

of genes associated with assorted biological processes highlights pronounced change during the 

late fetal period and W5. (E) Variation in myelination-associated genes peaks during W5, as 

evidenced by the standard deviation of the fitted regional mean, driving inter-regional variation 

during this and neighboring (W4, 6) windows.  

Fig. 5. Integration of gene expression and epigenetic regulation with cell types and biological 

processes. (A) Fetal-active enhancers (top left) were generally enriched for sites where 

methylation progressively increased across postnatal ages and associated with genes whose 

expression was higher during fetal development than adulthood and whose expression was 

enriched in neurons as compared to glia. Conversely, adult-active enhancers were enriched for 

sites exhibiting progressively higher methylation across postnatal ages and depleted for 

associations with higher fetal gene expression or enriched in neurons. These enhancers were also 

enriched for gene ontology terms generally involving neurons and glia, respectively. (B) Sites 

where methylation progressively increased across postnatal ages and where methylation 

progressively decreased across postnatal ages were generally enriched for fetal enhancers and 

genes whose expression was enriched in neurons, or adult enhancers and genes whose expression 

was enriched in glia, respectively, as well as related gene ontology terms. (C) Modules identified 

through Weighted Gene Correlation Network Analysis (WGCNA) were segregated by regulation 

across brain regions, prenatal and postnatal gene expression in the neocortex, both, or neither. 

Spatiotemporal modules (right) were enriched for modules that are themselves enriched for genes 

associated with enhancers active in the fetal DFC, associated with sites undermethylated in NeuN-



31 
 

positive (neuronal) cells, and/or enriched in neurons (N-type associations). Temporal, non-spatial 

modules (second from left) were enriched for modules that are themselves enriched for genes 

associated with enhancers active in the adult DFC, associated with sites undermethylated in non-

NeuN-positive (non-neuronal) cells, and/or genes enriched in glia (G-type associations). Modules 

exhibiting no spatial or temporal specificity (left) were enriched for genes exhibiting sex-biased 

gene expression across neocortical development. Full circles (grey) indicate the proportion of 

modules in each category of modules exhibiting their greatest rate of change in windows 1 through 

9 

 

Fig. 6. Enrichment analysis for GWAS loci among putative regulatory elements. Putative 

promoters and enhancers (H3K27ac peaks) specific for DFC or CBC in the fetal, infant, or adult 

were enriched for SNP heritability identified through partitioned LD score regression analysis 

from Genome Wide Association Studies (GWAS) for autism spectrum disorder (ASD;(40)), 

attention-deficit hyperactive disorder (ADHD; (41)), schizophrenia (SCZ; (37)), major depressive 

disorder (MDD; (42)), bipolar disorder (BD; (43)), Alzheimer’s disease (AD; (38)), Parkinson’s 

disease (PD; (39)), IQ; (44), or neuroticism (Neurot; (45)) but not for non-neural disorders or traits 

such as height (HGT; (46)) or diabetes (HBA1C; (49)). Solid color indicates significance for 

Bonferroni adjusted P-value and faint color indicates nominal significance at P<0.05. 

 

Fig. 7. Convergence of risk for brain-based traits and disorders on discrete co-expression 

modules and cell types. (A) Genes associated with disease risk (right; light yellow indicates 

neuropsychiatric disorder or brain-based trait; dark yellow indicates adult-onset disorder) were 

identified by integrating GWAS, Hi-C, and H3K27ac data and converged on 7 WGCNA modules. 
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Many of these modules exhibited dynamic expression across time; bold rectangle in left of panel 

A indicates the window with greatest rate of change. Many were also enriched for gene expression 

associated with distinct cell types (orange), putative active enhancers (green), and/or sites 

undermethylated in NeuN-positive (NUM) or NeuN-negative cells (blue; non-NUM). (B) 

Schematic highlighting genes in ME37 that were implicated by our study in multiple 

neurodevelopmental disorders (ADHD, SCZ, MDD, or BD) and neurological traits (IQ or 

NEUROT), as well as neurodevelopmental disorder risk genes (NDD) including two independent 

lists of high-confidence risk genes associated with ASD through de novo mutations or copy 

number variants (dark blue; (66)) as well as ASD risk genes identified from the SFARI dataset 

(light blue; www.gene.sfari.org) or for developmental delay (67); genes implicated in only a single 

disorder or trait are not shown in this panel. (C) Network representation of module 37 showing 

connectivity between genes based on Pearson correlation. Genes linked to neurodevelopmental 

disorders or neurological characteristics in our study are indicated using either dark blue-shaded 

hexagons, indicating they are associated with the NDD list and/or List 2, or light blue-shaded 

hexagons, indicating genes only present List 2. The size of a given hexagon (or circle, indicating 

no association in this study) is proportional to the degree of each gene under a minimum correlation 

value of 0.7. (D) Enrichment for genes in ME37 or two lists of ASD risk genes among the fetal 

and adult cell types we identified from human neocortex and multiple regions of the macaque (34) 

brain. ExN: excitatory projection neurons, InN: inhibitory interneurons, Astro: astroglial lineage, 

Oligo: oligodendrocytes, Endo: endothelial. MSN: medium spiny neurons, NasN: nascent neurons, 

GraN: granule neurons, PurkN: Purkinje neurons, IPC: intermediate progenitor cells, OPC: 

oligodendrocyte progenitor cells. 
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Figure legends 

 

Fig. 1. Overview of the data generated in this study. (A) The developmental timespan of the 

human brain, from embryonic ages (≤ 8 PCW) through fetal development, infancy, childhood, 

adolescence, and adulthood, with PCW indicated in text and postnatal years indicated in bold text. 

Below, distribution of samples in this study across broad developmental phases (embryonic to 

adulthood), age (5 PCW to 64 PY (19)), and developmental windows (W1 – W9). Each circle 

represents a brain and color indicates the sex; red circles (female) and blue circles (male) (B) 

Postmortem human brains sampled for different data modalities in this study as indicated.  

 

Fig. 2. Global transcriptomic architecture of the developing human brain. (A) mRNA-seq 

dataset includes 11 neocortical areas (NCX) and five additional regions of the brain. (B) First two 

multidimensional scaling components from gene expression showed samples from late fetal ages 

and early infancy (W5; gray) clustered between samples from exclusively prenatal windows (W1-

4; blue) and exclusively postnatal windows (W6-9; red). (C) Intra-regional Pearson’s correlation 

analysis found that samples within exclusively prenatal (W1-4) or postnatal (W6-9) windows 

correlated within but not across those ages. (D) Inter-regional transcriptomic differences revealed 

a developmental cup-shaped pattern in brain development. The inter-regional difference was 

measured as the upper-quartile of the average absolute difference in gene expression of each area 

compared to all other areas. (E) Principal component analysis adjusted for inter-individual 

variation (AC-PCA) for samples from all brain regions at late mid-fetal ages (W4), late fetal ages 

and early infancy (W5), and early adulthood (W9) showed that inter-regional differences were 

generally greater during windows 4 and 9 but reduced across W5. (F) Pairwise distance across 



52 
 

samples using the first two principal components for all regions (left), or excluding one region at 

a time (right), demonstrated that the reduction of variation we observed is common across multiple 

brain regions, once the most differentiated transcriptomic profile (the cerebellum) is excluded.  

 

Fig. 3. Dynamics of cellular heterogeneity in the human neocortex. (A) AC-PCA conducted on 

11 neocortical areas showed decreased inter-areal variation across W5, similar to our observations 

of inter-regional variation in major brain regions. (B) Pairwise distance across samples using the 

first two principal components identified a late fetal transition in all of the neocortical areas we 

assessed, similar to what we observed across other brain regions. (C) Deconvolution of tissue level 

data using cell type enriched markers identified through single cell sequencing of primary cells 

from 5 – 20 PCW postmortem human donor brain as well as from single nuclei sequencing of adult 

human brain (27). (D) Maximum inter-areal variance across cell types for each window. (E) 

Neocortical areal variation in the transcriptomic signatures of each major cell type assayed in each 

developmental window. Due to dissection protocols and rapid brain growth across early fetal 

development, progenitor cell proportions are nonreliable estimates after W2 (red dashed line). 

NPC: neural progenitor cells, ExN: excitatory neurons, InN: interneurons, Astro: astroglial lineage, 

Oligo: oligodendrocytes, Endo: endothelial.  

 

Fig. 4. Timing and temporal variation of genes expression associated with key 

neurodevelopmental processes. (A) Temporal variation, determined by the TempShift algorithm 

(34), in the expression of genes associated with myelination showed a broad gradient across the 

neocortex and other brain regions while synaptogenesis showed only a shift between brain regions 

(but not neocortical areas) and neuronal activity indicated the distinct nature of the cerebellum. 
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Application of the TempShift algorithm to previously published post-translational analyses of 

myelinated fiber density (35) (B) and synaptic density (36) (C) in multiple neocortical areas 

yielded relationships between areas similar to those observed in the transcriptome. (D) Expression 

of genes associated with assorted biological processes highlights pronounced change during the 

late fetal period and W5. (E) Variation in myelination-associated genes peaks during W5, as 

evidenced by the standard deviation of the fitted regional mean, driving inter-regional variation 

during this and neighboring (W4, 6) windows.  

Fig. 5. Integration of gene expression and epigenetic regulation with cell types and biological 

processes. (A) Fetal-active enhancers (top left) were generally enriched for sites where 

methylation progressively increased across postnatal ages and associated with genes whose 

expression was higher during fetal development than adulthood and whose expression was 

enriched in neurons as compared to glia. Conversely, adult-active enhancers were enriched for 

sites exhibiting progressively higher methylation across postnatal ages and depleted for 

associations with higher fetal gene expression or enriched in neurons. These enhancers were also 

enriched for gene ontology terms generally involving neurons and glia, respectively. (B) Sites 

where methylation progressively increased across postnatal ages and where methylation 

progressively decreased across postnatal ages were generally enriched for fetal enhancers and 

genes whose expression was enriched in neurons, or adult enhancers and genes whose expression 

was enriched in glia, respectively, as well as related gene ontology terms. (C) Modules identified 

through Weighted Gene Correlation Network Analysis (WGCNA) were segregated by regulation 

across brain regions, prenatal and postnatal gene expression in the neocortex, both, or neither. 

Spatiotemporal modules (right) were enriched for modules that are themselves enriched for genes 

associated with enhancers active in the fetal DFC, associated with sites undermethylated in NeuN-
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positive (neuronal) cells, and/or enriched in neurons (N-type associations). Temporal, non-spatial 

modules (second from left) were enriched for modules that are themselves enriched for genes 

associated with enhancers active in the adult DFC, associated with sites undermethylated in non-

NeuN-positive (non-neuronal) cells, and/or genes enriched in glia (G-type associations). Modules 

exhibiting no spatial or temporal specificity (left) were enriched for genes exhibiting sex-biased 

gene expression across neocortical development. Full circles (grey) indicate the proportion of 

modules in each category of modules exhibiting their greatest rate of change in windows 1 through 

9 

 

Fig. 6. Enrichment analysis for GWAS loci among putative regulatory elements. Putative 

promoters and enhancers (H3K27ac peaks) specific for DFC or CBC in the fetal, infant, or adult 

were enriched for SNP heritability identified through partitioned LD score regression analysis 

from Genome Wide Association Studies (GWAS) for autism spectrum disorder (ASD;(40)), 

attention-deficit hyperactive disorder (ADHD; (41)), schizophrenia (SCZ; (37)), major depressive 

disorder (MDD; (42)), bipolar disorder (BD; (43)), Alzheimer’s disease (AD; (38)), Parkinson’s 

disease (PD; (39)), IQ; (44), or neuroticism (Neurot; (45)) but not for non-neural disorders or traits 

such as height (HGT; (46)) or diabetes (HBA1C; (49)). Solid color indicates significance for 

Bonferroni adjusted P-value and faint color indicates nominal significance at P<0.05. 

 

Fig. 7. Convergence of risk for brain-based traits and disorders on discrete co-expression 

modules and cell types. (A) Genes associated with disease risk (right; light yellow indicates 

neuropsychiatric disorder or brain-based trait; dark yellow indicates adult-onset disorder) were 

identified by integrating GWAS, Hi-C, and H3K27ac data and converged on 7 WGCNA modules. 
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Many of these modules exhibited dynamic expression across time; bold rectangle in left of panel 

A indicates the window with greatest rate of change. Many were also enriched for gene expression 

associated with distinct cell types (orange), putative active enhancers (green), and/or sites 

undermethylated in NeuN-positive (NUM) or NeuN-negative cells (blue; non-NUM). (B) 

Schematic highlighting genes in ME37 that were implicated by our study in multiple 

neurodevelopmental disorders (ADHD, SCZ, MDD, or BD) and neurological traits (IQ or 

NEUROT), as well as neurodevelopmental disorder risk genes (NDD) including two independent 

lists of high-confidence risk genes associated with ASD through de novo mutations or copy 

number variants (dark blue; (66)) as well as ASD risk genes identified from the SFARI dataset 

(light blue; www.gene.sfari.org) or for developmental delay (67); genes implicated in only a single 

disorder or trait are not shown in this panel. (C) Network representation of module 37 showing 

connectivity between genes based on Pearson correlation. Genes linked to neurodevelopmental 

disorders or neurological characteristics in our study are indicated using either dark blue-shaded 

hexagons, indicating they are associated with the NDD list and/or List 2, or light blue-shaded 

hexagons, indicating genes only present List 2. The size of a given hexagon (or circle, indicating 

no association in this study) is proportional to the degree of each gene under a minimum correlation 

value of 0.7. (D) Enrichment for genes in ME37 or two lists of ASD risk genes among the fetal 

and adult cell types we identified from human neocortex and multiple regions of the macaque (34) 

brain. ExN: excitatory projection neurons, InN: inhibitory interneurons, Astro: astroglial lineage, 

Oligo: oligodendrocytes, Endo: endothelial. MSN: medium spiny neurons, NasN: nascent neurons, 

GraN: granule neurons, PurkN: Purkinje neurons, IPC: intermediate progenitor cells, OPC: 

oligodendrocyte progenitor cells. 
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