Substituent Effects on Singlet Exciton Fission in Polycrystalline Thin Films of Cyano-Substituted Diaryltetracenes

Eric A. Margulies,† Nicolas Kerisit,‡ Przemyslaw Gawel,‡ Catherine M. Mauck,† Lin Ma,† Claire E. Miller,† Ryan M. Young,‡ Nils Trapp,‡ Yi-Lin Wu,‡ François Diederich,*‡ and Michael R. Wasielewski†

†Department of Chemistry, Argonne-Northwestern Solar Energy Research (AN瑟) Center, and Institute for Sustainability and Energy at Northwestern (ISEN), Northwestern University, Evanston, Illinois 60208-3113, United States
‡Laboratorium für Organische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland

* Supporting Information

ABSTRACT: Cyano-substituted tetracenes (5,11-dicyano-6,12-diphenyltetracene, Tet) undergo exoergic singlet fission (SF), a spin-allowed photophysical process that generates a pair of triplet excitons from one singlet exciton. To elucidate substituent effects on SF, we have measured the SF dynamics and triplet yields of thin films, formed by Tet bearing hydrogen (H), methyl (Me), fluoro (F), and trimethylsilyl (TMS) substituents on the p-phenyl positions and on the 3 and 9 positions of the tetracene core, by time-resolved spectroscopy in the vis-NIR and IR regions. The H-, Me-, and F-Tet display strong intramolecular electronic coupling (r–r distances $<$4 Å), and SF gives high triplet exciton yields up to 200% (quantitative). In addition, a charge-transfer state mediates SF in F-Tet films, while H-Tet and Me-Tet show no evidence for such a state. Correlations between the SF yields and the crystal structure show that chromophore slippage along both their short and long axes allows efficient SF and that a large degree of r contact between the chromophores is not necessary for rapid and efficient SF in the solid state. As expected, the large interchromophore distance in TMS-Tet (>4 Å) reduces its SF triplet yield to about 60%.

INTRODUCTION

Singlet fission (SF), a process that converts one singlet exciton (S_1) to a pair of triplet excitons (T_1) on coupled chromophores, offers a potential route to increase the efficiency of solar cells. Analogous to multiple exciton generation (MEG) in inorganic nanocrystals, the carrier multiplication afforded by SF can be used in conjunction with a conventional absorber leading to a maximum theoretical device efficiency of 45%,1,2 much higher than the 33% Shockley-Queisser limit.3 The SF mechanism couples the $\frac{1}{2}(S_1S_0)$ state to the $\frac{1}{2}(T_1T_1)$ triplet-pair state that has overall singlet character, thus allowing for spin conservation, which may result in ultrafast and highly efficient SF when $E(S_1) \geq 2E(T_1)$.

SF necessitates the transfer of two electrons,4 which may be achieved by one of two mechanisms: either directly through a two-electron process,5–7 or by two one-electron charge transfer (CT) processes. The exact mechanism remains unclear, but both mechanisms may be at play to varying degrees and the states involved may be of mixed nature.8–11 For SF to proceed efficiently by the sequential one-electron CT mechanism, the CT state energy must lie between that of the $\frac{1}{2}(S_1S_0)$ and $\frac{1}{2}(T_1T_1)$ states; however, this is rarely the case, as CT energies are generally well above the S_1 energy. Alternatively, the electronic coupling matrix elements for a one-electron process are much larger than that of a two-electron process, often by up to 2 orders of magnitude,11 and it is unlikely that the coupling for the direct two-electron process is sufficient to produce the ultrafast SF rates observed.9 Recently, SF has been proposed to occur by a superexchange mechanism involving a virtual CT state,4 much like many electron transfer processes in donor-bridge-acceptor molecules.12–14 Coupling the $\frac{1}{2}(S_1S_0)$ and CT states allows for an overall electronic coupling matrix element that is a function of both the one- and two-electron matrix elements, resulting in a coupling value large enough for SF to occur on an ultrafast time scale.

Originally discovered in acenes through the observation of unexpected delayed fluorescence phenomena,15–17 SF has subsequently been observed in a much broader range of chromophores including polyenes,18–20 rylene,21–23 semi-conducting polymers and oligomers,24,25 and other aromatic chromophores.26–28 Due to their early discovery and largely suitable energetics, the acene family continues to serve as a benchmark for SF investigations.8,9,29–39 For example, pentacene satisfies the energetic requirements for SF leading to exoergic SF, whereas tetracene has slightly endoergic SF.
partially due to strong intermolecular coupling in solids that lowers the \(S_1 \) energy, leading to a much slower SF rate than pentacene. Substitution on the 5 and 12 positions of tetracene with phenyl groups was found to reduce such coupling, evident by the similar solution and solid phase absorption spectra, which allows for rapid singlet fission even in the largely amorphous aggregates. Additionally, we recently demonstrated that the tetracene packing and energetics can be altered further by synthetic modifications, resulting in efficient SF in 5,11-dicyano-6,12-diphenyltetracene. An increase in diradical character induced by the cyano and phenyl substituents leads to a stabilized triplet state and rapid SF.

In this report, we examine how methyl (Me-Tet), trimethylsilyl (TMS-Tet), and fluoro (F-Tet) substitution of the tetracene core at positions 3 and 9, as well as at the p-phenyl positions of 5,11-dicyano-6,12-diphenyltetracene, affects SF in thin film samples of these molecules. In this series, H-, Me-, and TMS-Tet have similar electronic properties and thus allow for structural comparisons. The relationship of molecular structure measured by single crystal and thin film grazing incidence X-ray diffraction (GIXRD) to the SF rate and efficiency measured by transient optical spectroscopy reveals the importance of intermolecular electronic coupling and CT character in the tetracene SF process.

EXPERIMENTAL SECTION

Sample Preparation.

The synthesis and crystal structures of the functionalized cyano-substituted diaryltertacenes H-Tet and Me-Tet were described previously, while those of TMS-Tet, and F-Tet are reported in the Supporting Information (SI), Section S1. All derivatives were further purified by gradient sublimation (250–320 °C, 10⁻⁶ Torr) prior to thin-film preparation. Thin film samples were prepared by thermal evaporation onto glass (ArrayT SuperClean 2) or polished sapphire substrates (25.4 mm diameter x 1 mm thickness, Ted Pella, Inc. Redding, CA) using an Angstrom Engineering Covap II system. Thin film samples were solvent-vapor annealed by exposure to CH₂Cl₂ vapor for up to 2 h to increase crystallinity.

Film Characterization.

Film thicknesses were determined using a Veeco Dektak 150 surface profilometer equipped with a 25 μm diameter stylus. GIXRD measurements were performed using a Rigaku SmartLab XRD system with a 0.2° incident angle. The resulting diffractograms were manually background subtracted using PDXL software.

Steady-State Optical Characterization.

Solution UV/vis absorption spectra were acquired using a Shimadzu 1800 spectrophotometer. Scatter-corrected absorption spectra of the thin film samples were acquired using a PerkinElmer LAMBDA 1050 UV/vis/NIR spectrophotometer equipped with an integrating sphere (150 mm). The scatter-free absorbance (A) was calculated using the transmittance (T) and reflectance (R) of the thin film samples:

\[
A = -\log(T + R)
\]

FTIR spectra were measured on a Shimadzu IRAffinity-1 spectrophotometer.

Femtosecond Optical Characterization.

Femtosecond- and nanosecond transient absorption (fsTA and nsTA, respectively) measurements were performed using previously described instrumentation. For the thin-film samples, the low-fluence (100 kHz, 20 nJ, ~10⁻⁷ cm⁻² s⁻¹) experiments were also conducted to cover the wider 450–1600 nm range. Femtosecond transient IR (fsIR) spectra were collected with 550 or 570 nm (2 μJ/pulse) excitation using an instrument described elsewhere.

Films for fsIR were vapor-deposited on CaF₂ slides (2 mm thickness, Red Optronics) and stored in the dark under an inert atmosphere prior to measurement. All fsIR spectra were collected under N₂ by enclosing the samples in a high-temperature solid cell with NaCl windows (Harrick Scientific). Global analysis of each transient data set was performed according to methods described in the SI.

RESULTS

Dimer Pair Geometry.

Since SF is assumed to primarily involve nearest-neighbor chromophore pair interactions, the relative geometry of this interaction in the crystal structure is analyzed to identify important dimer interactions. We find that all derivatives pack in a π-stacked motif unlike the herringbone structure observed in tetracene. This difference, attributed to the disruption of favorable CH–π interactions by functionalization of the tetracene edge positions, results in a higher degree of π–π overlap between neighboring chromophores. Similar π-stacking geometry was also found in highly efficient SF 5,12-diphenyltetracene, where neighboring tetracenes slip slightly along the molecular long axis (~3–4 benzene-ring overlap) with π–π spacing ~3.8 Å.

Functionalization of the phenyl groups and the 3 and 9 positions of the tetracene core results in alteration of the crystal structures that affects interactions within the dimers. These dimer pairs and their relative geometries are depicted in Figure 1 and summarized in Table 1.

Notably, the unfuctionalized H-Tet derivative has a crystal structure with partially intercalated π-stacks. This results in two different π-stacking interactions labeled α and β. Within one stack (the α interaction), the π-contact is relatively poor with a
4.06 Å spacing between adjacent chromophores. The second, β, interaction is highly slipped, with a 7.88 Å offset in the tetracene long axis, which results in less than one benzene ring of each tetracene experiencing π-overlap. This interaction, however, has a much closer π−π distance of 3.31 Å. The Me-Tet derivative has an interaction resembling the α interaction of H-Tet, but with a slightly smaller slip distance in the long and short axes and a slightly closer π−π distance of 3.94 Å. The bulky TMS substituent in TMS-Tet greatly disrupts the π-stacking and results in an interaction also similar to the H-Tet α interaction, but with a large π−π distance of 4.17 Å. The smaller atomic radius of the TMS substituent (<50 meV) in the S1 state, and in absent in the T1 state, which will be discussed later. The excited-state decay kinetics indicate that the substituents do not greatly alter the nature or lifetime of the excited state relative to H-Tet. Following excitation near 500 nm, there is an initial, rapid ~2 ps decay across the spectrum, followed by a slower, tens of ps relaxation, and then the terminal ~10 ns decay of the entire spectrum. At early times, the ground state bleach (GSB) near 545 nm appears to diminish, however, the stimulated emission (SE) in the 600 nm region remains intense in each case. The shape of the ESA feature in the NIR region also remains unchanged. Global analysis using a sequential decay model (see SI, Section S5) shows that the spectral changes are limited to the region near the GSB signal. We attribute the ~2 ps process to intramolecular vibrational relaxation (IVR) along the S1 surface owing to excitation above the optical bandgap. As in our previous study, the slower ~10s of ps process is assigned to a rotation of the phenyl substituents to adopt a more stable geometry in the singlet excited state, which alters the excited state oscillator strength. The substitution also has little effect on the excited state lifetime with all derivatives exhibiting a long S1 lifetime of τ ~ 10 ns.

Film Structural Analysis. The crystallinity of the film samples was evaluated using GIXRD (Figure 3). We find that vapor deposition of Me-Tet on room-temperature substrates results in a relatively crystalline film that changes only slightly upon solvent-vapor annealing. The peak shape, especially at small angles, is likely influenced by the slight preferred orientation of the [1 0 2] direction and small crystallite-caused line broadening. Owing to a much poorer association of chromophores in the crystal structure, TMS-Tet films begin highly amorphous with very little diffraction. Solvent-vapor annealing produces large changes in the diffraction pattern, yielding a strongly diffracting film with clear peaks due to the (100) and (101) planes, which is consistent with a tilted long axis end-on alignment of the tetracene relative to the plane of the substrate. Solvent-vapor annealing of F-Tet produces a highly oriented film. The unannealed film exhibits a strong diffraction peak from the (001) plane as well as the (0 1 T) and (1 1 0)/(101) planes in addition to some amorphous scatter around 25°. Annealing greatly reduces the intensity of the (1 0 T) diffraction peak and enhances the (0 1 T) and (1 1 0)/(101) peaks, which indicates a shift to a more oriented film with more long axis end-on packing on the substrate.

Thin-Film Optical Characterization. Scatter-corrected ground state absorption spectra of the three thin film samples are shown in Figure 4. Films of Me-Tet and F-Tet show clear signs of aggregation with a very different absorption spectrum relative to their solution spectra. Both compounds exhibit a strong enhancement of the blue region of their absorption spectra as well as a red shift of their absorption maxima in the solid state. The Me-Tet film exhibits a larger enhancement of the 0=1 and 0=2 bands than the enhancement observed in H-Tet, relative to the 0=0 peak. This difference is likely due in part to the nature of the interaction between neighboring chromophores in the two crystal structures. With the transition dipole oriented along the tetracene short axis, it is expected that shifts in this direction would most significantly affect the dipolar coupling and thus the absorption spectrum.
Figure 3. Grazing incidence diffractograms of unannealed (red) and CHCl\(_2\) solvent-vapor annealed (DCM SVA, blue) films of Me-\(\cdot\), TMS-\(\cdot\), and F-Tet. Powder patterns simulated from the respective crystal structures are shown in black.

Comparing the dimer pair of Me-Tet to the \(\alpha\) dimer pair of H-Tet, the short axis slip distance is smaller in Me-Tet and the \(\pi-\pi\) distance is closer giving rise to these differences. Annealing the F-Tet film significantly increases the intensity of the overall absorption spectrum, which is consistent with the increased long axis end-on alignment observed in the annealed film by GIXRD. End-on orientation increases the alignment of the short axis and, thus, the transition dipole, with the electric field of the light oriented perpendicular to the substrate. This results in increased light absorption by the oriented film.

Owing to much weaker intermolecular coupling, the absorption spectra of the TMS-Tet films more closely resemble
the solution spectrum. The unannealed film exhibits an absorption spectrum nearly identical to that of the compound in solution except for a 15 nm red shift and a general broadening characteristic of gas-to-crystal effects in the solid state. However, there are no clear signs of strong coupling between the molecular transition dipoles, which depends on $1/r^3$, in concert with the longer distance between the molecules enforced by the steric bulk of the TMS group. Interestingly, annealing reduces this red shift and sharpens the absorption bands. This change implies that packing of the TMS-Tet compound is closer, on average, in the amorphous arrangement than the 4.17 Å distance exhibited in the crystalline morphology. Annealing also greatly enhances the absorption intensity by roughly a factor of 1.5. This is in agreement with the GIXRD measurements, which indicate a tilted long axis end-on arrangement of the chromophore on the substrate in the annealed sample.

Thin Film Transient Absorption Measurements. Given the higher crystallinity of the CH$_2$Cl$_2$-vapor annealed thin films compared to the as-deposited ones, we focus the time-resolved SF studies on the annealed films. Figure 5 shows the low-fluence, singlet–singlet annihilation-free fsTA spectra after photoexcitation of the annealed Me-Tet film ($\lambda_{xc} = 510$ nm), which are similar to those of the parent chromophore, H-Tet.

High fluence transient spectra are shown in Figures 6 and S9. At short time delays after the pump pulse, we find a characteristic singlet spectrum with broad ESA having a maximum at 525 nm and a broad feature out to 800 nm. The ESA signal overlaps the negative SE feature resulting in a minimum at 610 nm, most of which disappears in a few picoseconds. The GSB also overlaps the ESA and has a clearly resolved minimum at \sim550 nm. These S_1 features decay over time to produce the characteristic triplet spectrum with maxima adjacent to the GSB in the visible and no NIR absorption. The small amount of residual stimulated emission observed at 610 nm at longer times (\sim5 ns) may be due to triplet–triplet fusion occurring at defect sites within the film, where the rapidly
formed triplets are trapped. The error bars on the triplet yields measured in these systems are too large to permit a quantitative estimate of the triplet trapping efficiency (see below).

We applied global kinetic analysis to the fsTA data obtained for each film using a sequential decay model. Details of the modeling are given in the SI, Section S5, and the kinetic parameters are shown in Table 2. It is worth noting that the rates will actually be distributed to some degree in the real system owing to the intrinsic heterogeneity of the film; by using a single value, we are assuming that the distribution of rates in the system is narrow. The good agreement with the relatively simple kinetic model and the reasonable uncertainties of the values extracted from the fits support our assumptions for this system.

The results of the global analysis of the Me-Tet and TMS-Tet films (Figures S15 and S16) show a similar ~1–2 ps relaxation for each film, where the spectra of the initial and relaxed excited states are highly similar. The inclusion of singlet–singlet annihilation in the high-fluence data yields rates that are in good agreement with the low-fluence data, suggesting that early dynamics are well accounted for. Singlet fission proceeds from the relaxed state in each film. In Me-Tet, SF is highly efficient and occurs with an 18 ps time constant, while SF in TMS-Tet is significantly slower, producing the triplet population in around 200 ps. The kinetic models applied to the data are simplified in the sense that alternative decay pathways back to the ground state are neglected, as they are presumed to be out-competed by the faster SF process. This approximation is reasonable given the ~10 ns S1 lifetime of the monomeric tetracene chromophores in solution and the agreement between the model populations from the fits and the independently calculated triplet yields discussed below.

Unlike in the other derivatives, the fsTA data for the F-Tet films indicate that the singlet population relaxes through an intermediate electronic state that mediates the singlet fission process (Figure 6). The spectra show the formation in 2 ps of new absorption bands at 895 and 1010 nm concomitant with an apparent redshift of the band at 540 nm and the loss of the S1 feature at 1200 nm. The rate of this initial decay is similar to the relaxation times observed in other derivatives. However, since the relaxation process is along the same S1 electronic state surface, there is minimal population loss preceding the formation of the intermediate state. Following the decay of such an intermediate, SF occurs in τ = 210 ps to give the triplet of F-Tet indicated by the growth of the absorption feature at 560 nm.

The spectral evolution and kinetics for F-Tet on glass were similarly observed for the F-Tet thin film on a sapphire disk.
Given the higher thermal conductivity of the latter substrate,\(^{48,49}\) as well as the similar kinetics indicated by both high- and low-fluence fsTA spectroscopy, thermal effects on SF in these films caused by laser irradiation are negligible.

The films were also studied with femtosecond transient infrared (fsIR) spectroscopy, where the cyano group provides a vibrational tag that allows us to probe the singlet-fission dynamics in the IR region around 2200 cm\(^{-1}\). The ground-state cyano stretch was observed at 2199, 2201, and 2204 cm\(^{-1}\) for the Me-Tet, TMS-Tet, and F-Tet thin films, respectively, following the trend according to the electron-donating power of the substituents (Figure 7). Representative fsIR spectra are also given in Figure 7, in addition to the results of a global spectral analysis. This analysis permitted the extraction of the species-associated spectra for the singlet excited and triplet states for each derivative; further details are given in the SI. Upon photoexcitation at the 0-0 band (550–570 nm, 2 μJ/pulse), in addition to the GSB peaks, an ESA band at lower frequency was observed at early times at 2181 (Me-Tet) and 2196 cm\(^{-1}\) (F-Tet), although the low optical density of the TMS-Tet film prevented a peak assignment at early times. These features subsequently shift to slightly higher frequencies at 2183 (Me-Tet), 2194 (TMS-Tet), and 2198 cm\(^{-1}\) (F-Tet). The extent of peak separation between the GSB and ESA follows, once again, the electron-donating power of the substituents, suggesting charge-transfer character in the excited states. The ESA signal shows biexponential decays with time constants similar to those observed by fsTA. As the remaining signal persists for much longer than 8 ns, we conclude that this shift corresponds to the formation of the triplet state by SF. These data suggest that the singlet and triplet states are structurally similar, leading to only a small shift between the S\(_1\) and T\(_1\) spectra. However, for F-Tet the T\(_1\) species-associated spectrum shows a sharpening of the ESA band compared to its precursor spectrum; from fitting the spectra to the sum of two Lorentzians (SI, Section S6), the full width at half-maximum (fwhm) is reduced by 10–20%. The much lower signal-to-noise ratio in the fsIR spectra for Me-Tet and TMS-Tet prohibits making an adequate comparison of the fwhm, but such a peak sharpening may indicate that the triplet state is more localized.

Triplet Yield Calculations. Nanosecond transient absorption (nsTA) spectroscopy was used to measure the triplet signal and to calculate triplet quantum yields. Other methods of triplet yield determination necessitate spectrally independent T\(_1\) ESA signals to kinetically or quantitatively track the triplet population.\(^{19,50}\) Because of complicated overlap of the S\(_1\) and T\(_1\) ESA with the GSB signals and spectral variations across the series of molecules, the singlet depletion method was chosen for triplet yield analysis. This method, which has been outlined by Carmichael and Hug,\(^{51}\) has been previously applied to calculate triplet yields in SF systems.\(^{21,22,26,37}\)

For this analysis, we use a nsTA trace at a 50 ns delay, where only the triplet population is present, and quantitate the amount of GSB signal in the transient trace. By comparing this value to the predicted bleach, based on the excitation density and film absorption spectrum, we can determine the triplet quantum yield. The detailed procedure of this analysis is included in the SI. The results indicate that efficient SF occurs in both the Me-Tet (φ\(_T\) = 195 ± 30%) and F-Tet (φ\(_T\) = 210 ± 42%) derivatives. Both of these values are consistent with the high yield of triplet observed in the fsTA data, and support the assumption that other decay processes are negligible from either the singlet or intermediate states and suggest that the model populations are reasonable surrogates for the triplet yields in this case. For TMS-Tet, we observe marginal triplet yields (φ\(_T\) = 60 ± 25%), again consistent with the transient absorption data. This implies that the unfavorable interchromophore distances determined by the steric bulk of the TMS group has a dramatic effect on the SF efficiency in the crystalline films.

DISCUSSION

Singlet Fission Efficiency and π Contact. The geometry of the SF-active dimer pair in H-Tet was previously unresolved due to the presence of two closely interacting dimer pair interactions in the crystal structure (Figure 1). Close similarities between the H-Tet α interaction and the dimer pair in the Me-Tet crystal structure allow for comparison of the SF kinetics and thus the structural origin of the SF dynamics in this series of molecules.

Given the highly efficient SF observed in both H- and Me-Tet films, the α interaction (short axis slip) can provide sufficiently good coupling for SF. However, since the slippage and π–π distance for the α interaction is larger in H-Tet than those in Me-Tet (Table 1), yet faster overall SF (∼13 ps)\(^{40}\) is observed for H-Tet, SF is likely more effectively driven by the closely π-stacked (3.31 Å), but less well overlapping β dimer pair (long axis slip). This finding also suggests that a large degree of π contact or small lateral displacement is not necessary for rapid and efficient SF in the solid state.

The observation of slower SF in TMS-Tet points to the importance of the π–π distance in enabling the coupling necessary for SF. The large steric bulk of the TMS group results in a very long π-π distance of 4.17 Å. Because of this long distance between neighboring chromophores, SF is highly inefficient in the annealed TMS-Tet film (φ\(_T\) ≈ 60%; nearly 0% in unannealed film, data not shown). Kinetic analysis of the SF dynamics in TMS-Tet also point to much poorer SF in this derivative than in the other Tet derivatives. In the case of the annealed film, an apparent τ\(_{SF}\) = 200 ps is observed. Given that the geometry of the dimer pair in TMS-Tet is nearly identical to the Me-Tet dimer pair except for the π–π distance (Me-Tet: 3.94 Å, TMS-Tet: 4.17 Å), we assign the differences in SF between the two compounds to the difference in their π contact. The role of the interchromophore distance in tuning the strength of the SF coupling interaction has been previously explored in pentacene.\(^{52}\) Our results indicate that the increase in π–π distance from 3.94 to 4.17 Å is significant enough to reduce dramatically the SF efficiency in these Tet derivatives.

Singlet Fission Intermediate. The fsTA data indicate that the SF process in F-Tet involves the participation of an intermediate prior to triplet formation. Depopulation of the \(1(S_1S_0)\) state, as evidenced by the decay of the NIR absorption band at ∼1200 nm, is associated with the growth of bands at 890 and 1010 nm (Figure 6). These bands correlate well with the absorption bands for the tetracene anion radical and radical cation, which occur in low temperature glasses at about 820 and 880 nm, respectively.\(^{53,54}\) The longer wavelengths observed for F-Tet may be a result of the additional substituents conjugated to the tetracenes used in this study. Indeed, NIR absorptions at ∼870 and 980 nm were observed for the cation and anion of F-Tet, generated electrochemically in solution (see Figures S26–28 in the SI, Section S8). Furthermore, the decay of these features is concomitant with the growth of T\(_1\) absorption at 560 nm, which suggests the role of an intermediate in the SF
The conformational flexibility of F-Tet. The close resemblance of these features, particularly the NIR bands, to the tetracene radical ions suggests the intermediate state we are observing has significant charge transfer (CT) character. Due to their ability to couple the initial 1(S(50)) state to the 1(T(11)) triplet pair state, CT states have been implicated as either real or virtual intermediates in the SF process.48,55 A slightly modified kinetic scheme taking the participation of the putative 1(T(11)) state is also given in the SI, Section S5.

The observation of a CT intermediate in the SF mechanism for F-Tet indicates that CT state formation may be mechanistically important for SF in tetracene-based materials. The fluorine substituents on F-Tet may position its CT state energy close enough to that of 1(S(50)) to make it an accessible real intermediate preceding 1(T(11)) formation, while not stabilizing the CT state so much that it becomes a trap state. We find that the CT state forms in $\tau \sim 2$ ps, and decays to the 1(T(11)) state in $\tau \sim 200$ ps. The relatively slow CT \rightarrow 1(T(11)) rate in F-Tet may be a result of a small free energy change for the CT to 1(T(11)) process.56 The high SF yield can be attributed to the competition of this rate with a comparatively slow charge recombination to ground state that results from the large free energy change for this process, which should be within the Marcus inverted region. Thus, CT state recombination to ground state can be safely neglected in the kinetic model, and the resultant triplet population agrees well with the yield obtained from the nsTA measurements.

CONCLUSIONS

By comparing the SF rate in H-Tet and Me-Tet, we find that the long-axis slipped β dimer pair likely contributes to the more rapid SF in H-Tet, while short-axis slipped α dimer geometry also provides good coupling for SF. Our results also indicate that there exists a threshold for efficient SF in the π-stacking interaction between neighboring chromophores in the solid state. Substantially increasing this distance to 4.17 Å in TMS-Tet results in slow (~200 ps) and inefficient (fT ≈ 60%) SF. Photoexcitation of the F-Tet derivative populates an intermediate CT state that precedes 1(T(11)) formation. We find that population of this CT state does not preclude efficient SF (fT ≈ 200%). Rather, the kinetic evidence suggests that this state enables the formation of the multielectron state in a CT-mediated SF mechanism. These substituent effects highlight the importance of coupling and reveal the role of CT state intermediates in the SF mechanism for tetracene derivatives.

ASSOCIATED CONTENT

* Supporting information

Experimental details and characterization for new compounds as well as copies of 1H, 13C, and 19F NMR spectra, full data set for the high fluorescence femtosecond-transient absorption, kinetic modeling, femtosecond-infrared spectroscopy analysis, film femtosecond-transient absorption, spectroelectrochemistry, triplet yield calculations, and DFT calculations (PDF). X-ray crystallographic data for F-TET (CIF). X-ray crystallographic data for TMS-Tet (CIF). X-ray crystallographic data for intermediate cumulene S4a (CIF).

AUTHOR INFORMATION

Corresponding Authors
*E-mail: m-wasielewski@northwestern.edu.
*E-mail: diederich@org.chem.ethz.ch.
*E-mail: yi-lin.wu@northwestern.edu.

ORCID

Catherine M. Mauck: 0000-0002-6432-9724
Ryan M. Young: 0000-0002-5108-0261
Yi-Lin Wu: 0000-0003-0253-1625
Francois Diederich: 0000-0003-1947-6327
Michael R. Wasielewski: 0000-0003-2920-5440

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE), under Grant No. DE-FG02-99ER14999 (M.R.W.) and the Swiss National Science Foundation (SNF 200020_159802). This work made use of the J. B. Cohen X-ray Diffraction Facility supported by the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern University and the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205), as well as the Keck-II facility of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN.

REFERENCES