Oxidation of an o-tolyl phosphine complex of platinum: C-H activation and transcyclometallation.

Paul A Shaw, Guy J Clarkson and Jonathan P Rourke*

Department of Chemistry, Warwick University, Coventry. UK CV4 7AL.
Email: j.rourke@warwick.ac.uk

Abstract

The oxidation of the tri(o-tolyl)phosphine complex of the doubly cyloplatinated 2,6-di(4-fluorophenyl)pyridine ligand with the electrophilic oxidant iodobenzenedichloride was studied. Three products were formed in the ratio 15:15:70, and all were identified. The simple cis-dichloro platinum(IV) complex 2 (15%) remained in solution and could be purified and fully characterised. The triply cyclometallated 3 (15%), formed via the activation of a methyl group on a tolyl ring, precipitated from the reaction mixture and could not be redissolved or characterised further. Transcyclometallated 4 (70%), where one of the original cyclometallated aryl rings has exchanged for a cyclometallated phosphine ring, crystallised from the reaction mixture and was characterised crystallographically. Redissolution of 4 gave a new agostic species with the phosphine moving to a less sterically demanding position.
Introduction

The study of platinum complexes has had a crucial role in our understanding of C-H bond activation chemistry,\(^1\) with many studies on the mechanism of reactions.\(^2\) The popularity of the study of platinum complexes is partly due to the amenability of study, but largely derives from the relevance of complexes to actual processes, and the ability to activate methane.\(^3\) We have been studying oxidation reactions\(^4\) and reductive couplings\(^5\) at cyclometallated platinum where we have looked at the reaction of square planar platinum(II) complexes with PhICl\(_2\). Oxidation with PhICl\(_2\) gives an the initial delivery of a Cl\(^+\) to the metal, generating a very electrophilic metal centre.\(^6\) The metal would normally then react with a Cl\(^-\) to complete the oxidation and, for many complexes, the result is simply the addition of two chloride ligands to the metal centre giving an octahedral Pt(IV) centre;\(^4a,4c,5a,5b\) which may or may not isomerise.\(^4a,7\) However, the electrophilic metal centre can also be intercepted before it combines with chloride and significantly different reactions result when the organic groups on the ligand systems can interact with the metal centre. On occasion we have observed agostic intermediates at low temperatures (e.g. -60°C) prior to transcyclometallation\(^8\) reactions that lead to cyclometallated alkyl phosphines.\(^9\) With other ligands fast intra-molecular C-H activation of aromatic groups (which proceed via an electrophilic attack of the metal on an aryl ring), also at low temperature, have been observed.\(^4c,10\) Crucial to the stability any intermediate formed is the size of the ring that is created: triphenyl phosphine can only give an unfavoured four-membered ring and no C-H activation is observed.\(^9b\) On the other hand, a benzyl group on a phosphine ligand can lead to the formation of a favourable five-membered ring and we have recently reported on our study of such complexes: in addition to the expected electrophilic attack on the benzyl groups, we also saw a reductive coupling reaction from the newly formed metallacycle, a reaction that was ultimately identified as being reversible.\(^11\)

In this paper, we report on our investigations into the effect of putting an tolyl group into the role of intercepting ligand and three competing reactions are observed.

Results

The synthesis of the new C^N^C platinum(II) tri(ortho-tolyl) phosphine complex 1 proceeds smoothly at room temperature giving product in high yield and purity, Scheme 1. The difluorinated C^N^C ligand was chosen as the NMR active \(^{19}\)F nuclei provide a very convenient remote reporting handle on the central \(^{195}\)Pt nucleus and do not significantly affect the chemistry.\(^12\)
Spectroscopic data initially suggested an impure compound as there were two 19F resonances (-110.23 ppm, $^4J_{F-Pt} = 33$ Hz and -111.79 ppm, $^4J_{F-Pt} = 27.5$ Hz), and at least twenty 1H signals, including one with strong 195Pt satellites at 5.73 ppm. However, a single peak in the 31P NMR spectrum (17.17 ppm, $^1J_{P-Pt} = 3942$ Hz) and a doublet in the 195Pt NMR (-4227 ppm, $^1J_{Pt-P} \approx 3950$ Hz) proved that only one species was present in solution. The presence of platinum satellites on both 19F peaks indicated that the C^N^C ligand was dicyclometallated and we concluded that it is the size of the phosphine, which must be too large to freely rotate (on the NMR timescale) which renders the two sides of the C^N^C group inequivalent in the NMR. This restricted rotation also affects the 1H signals of the phosphine and all twelve phosphine aromatic signals appear to be separate, as are the three methyl group signals. In the 1H NMR spectrum one of the protons ortho to Pt and F is noticeably upfield shifted at 5.73 ppm, the other seems relatively unaffected at 6.55 ppm. One of the o-tol aryl protons has a resonance at 8.99 ppm, compared with the rest in the range 7.7-7.1 ppm, and appears to have a weak interaction with the central platinum, as can be seen in the 195Pt-1H correlation spectrum.

A crystal structure, Figure 1, highlights the crowded nature of the platinum centre. One of the aromatic protons on the diphenyl pyridine (on the right-hand side in Fig 1) is pointing directly into the one of the phenyl rings of the phosphine, and is 2.70Å from the centroid of the this ring, this is presumably responsible for the 1H resonance at 5.73 ppm. The other two phosphine phenyl rings have their methyl groups pointing in different directions, rendering them inequivalent. Also seen in the crystal structure is an o-tol aryl proton pointing directly at the Pt, with the distance being 2.87Å, presumably this has the 1H resonance at 8.99 ppm.
Figure 1. Crystal structure of 1, thermal ellipsoids drawn at 50% probability level. Selected bond lengths (Å) and angles (°): Pt1-C1 2.094(3); Pt1-C17 2.085(3); Pt1-P1 2.2548(8); Pt1-N7 2.024(2); C1-Pt1-P1 97.54(8); N7-Pt1-C1 79.80(11); N7-Pt1-P1 177.32(7); N7-Pt1-C17 79.53(11); C17-Pt1-C1 158.86(12); C17-Pt1-P1 103.10(9).

Addition of PhICl₂ to a chloroform solution of 1 at -40°C gave immediate and complete consumption of the starting material with the production of three new Pt(IV) complexes. The proportions of the three complexes did not seem to be affected reproducibly by reaction conditions; temperature and solvent of reaction had only little affect on product distribution. Around 15% of the product mixture was a complex that could be separated from the other two and fully characterised: it turned out to be the simple dichloro-oxidised complex 2, Scheme 2.

Scheme 2

Pure samples of 2 were analysed; a peak at -13.96 ppm (¹J_{Pt-P} = 2470 Hz) in the ³¹P NMR spectrum and a doublet in the ¹⁹⁵Pt NMR spectrum at -2403 ppm indicated a Pt(IV) species. A single peak in the ¹⁹F NMR spectrum at -106.50 ppm (⁴J_{F-Pt} = 14 Hz) and the number of peaks present in the ¹H NMR spectrum indicated the C^N^C ligand remained dicyclemetallated with both sides equivalent and showed that the phosphine is now able to rotate freely, suggesting that the phosphine is now cis to the pyridine nitrogen. A crystal suitable for X-ray crystallography was grown and confirmed the cis geometry, Figure 2.
The remaining material consisted of two new complexes, both of which had Pt-CH$_2$ bonds, easily identified by the presence of 195Pt satellites on alkyl 1H signals. All three products were stable in solution at -60°C, with no inter-conversion or further reaction. Thus, acquisition of solution spectroscopic data was possible at low temperature and confident assignments of structure could be made. However, allowing the reaction mixture to warm to room temperature resulted in the two products with Pt-CH$_2$ bonds precipitating from solution. It was this behaviour that allowed the simple oxidised product 2 to be isolated in a pure form. The less abundant complex with the Pt-CH$_2$ bond made up a further 15% of the product mass, and was characterised as the triply cyclometallated complex 3. A peak in the 195Pt NMR spectrum at -3028 ppm (1J_{Pt-P} ~ 2800 Hz) and a peak in the 31P NMR spectrum at 20.26 ppm (1J_{Pt-P} = 2818 Hz) indicated a Pt(IV) species. The large downfield shift of the 31P resonance (when compared with 2) suggests that the phosphorus is part of a metallacycle.14 In the 1H NMR spectrum, two protons on the cyclometallated alkyl group could be seen at 2.75 ppm (2J_{H-H} = 13 Hz, 2J_{H-Pt} = 74 Hz) and at 3.77 ppm (2J_{H-H} = 13 Hz, 2J_{H-Pt} = 90 Hz), with the 2J_{H-H} coupling (and COSY correlation) showing that the two protons are attached to the same carbon. Two aryl peaks with significant platinum satellites (6.18 ppm, 3J_{H-Pt} = ~30 Hz and 5.18 ppm, 3J_{H-Pt} = ~25 Hz) were also seen. Both the two alkyl and the two aryl protons coupled to the same 195Pt nucleus. In the 19F NMR, peaks at -107.52 ppm (4J_{F-Pt} = 28 Hz) and
-110.29 ppm (4J$_{F-Pt}$ = 23 Hz) were seen: the presence of satellites on both peaks shows that the C$^\wedge$N$^\wedge$C ligand is still dicyclometallated. At first sight, the notional mirror plane (vertical, as drawn in Scheme 2) through 3 should lead to only one alkyl 1H resonance with Pt coupling, one aryl 1H resonance with Pt coupling and one 19F resonance with Pt coupling. However, the doubling of all these resonances presumably arises for a similar reason to that which complicates the NMR spectra of 1: the bulk of the phosphine ligand. Thus, the preferred conformation will be one where the new cyclometallated ring twists out of the notional mirror plane and renders the two sides of the molecule inequivalent. With a barrier to inter-conversion that is sufficiently high, the molecule will appear to be frozen on the NMR timescale, especially at the low temperature of -40°C we were studying the reaction, giving rise to the additional resonances. While the 195Pt shift and the magnitude of the 1J$_{Pt-P}$ coupling constant suggests a P-N trans arrangement, it is the doubling of the 1H, and 19F resonance that provides the strongest evidence for this geometry. Once precipitated, we were unable to redissolve 3 in any common solvent, rendering further study impossible.

The major component of the reaction, 4, made up the remaining 70 % of the product mass. A doublet in the 195Pt NMR spectrum at -3324 ppm is suggestive of a Pt(IV) species, with the large downfield shift (when compared to 2) of the 31P resonance to 33.21 ppm (1J$_{P-Pt}$ = 3199 Hz) once again suggesting that the phosphorus is now part of a platinacycle. Two peaks in the 19F NMR spectrum, one at -109.62 ppm with platinum satellites (4J$_{F-Pt}$ = 43 Hz) and one at -112.68 ppm (no satellites) indicate that the C$^\wedge$N$^\wedge$C ligand is only monocyclometallated. In 1H NMR spectrum there are two proton peaks for the cyclometallated alkyl group, at 4.07 ppm (2J$_{H-Pt}$ = 76 Hz) and 4.66 (2J$_{H-Pt}$ = 102 Hz), both on the same carbon. Thus the solution data is consistent with the structure 4 depicted in Scheme 2. With time, this species precipitated from solution, often crystallising. Crystals suitable for X-ray diffraction were isolated and the structure solved, confirming the transcyclometallated nature of the complex and the trans P-N geometry, Figure 3.
Considerable distortions away from a perfect octahedral geometry are present in the structure of 4: while the P1-Pt1-C12 and C1-Pt1-C11 angles are less than 0.5° from an ideal 90°, the C1-Pt1-N7 angle is 80.19(9)°, the pyridine ring is canted more than 26° from the Pt-N vector and the cyclometallated aryl ring is inclined some 23.6° from the pyridine it is attached to.

We attempted to redissolve the crystals of 4 in all standard solvents, but it was only in acetone that appreciable quantities did dissolve. Even then, the redissolution was slow and appeared to be accompanied by loss of a chloride and an isomerisation. Solutions were too weak to fully characterise, but key data indicated that the phosphorous and nitrogen adopt a cis arrangement, allowing the bulk of the uncyclometallated o-tolyl rings to move out to a position over the plane of the original cyclometallated ligand, 5, Scheme 3, with an agostic methyl completing the coordination sphere.

Thus, solution data still shows two peaks (and only one having platinum satellites) in the 19F NMR spectrum at -109.33 ppm (4J_{F-Pt} = 45 Hz) and -115.18 ppm, a peak in the 31P NMR
spectrum, at 23.69 ppm ($^{1}\text{J}_{\text{P}-\text{Pt}} = 2969$ Hz) and a doublet in the ^{195}Pt NMR spectrum (-2583 ppm). In the ^{1}H NMR spectrum, the protons on the cyclometallated alkyl group are at 5.12 ppm ($^{2}\text{J}_{\text{H}-\text{Pt}} = 95$ Hz) and 4.25 ppm ($^{2}\text{J}_{\text{H}-\text{Pt}} = 45$ Hz) and a clear agostic interaction from one of the methyl groups (1.22 ppm) was seen in the ^{195}Pt-^{1}H correlation spectrum.

Discussion.

In several examples published by us earlier, oxidation of a C$^{\text{N}}$N$^{\text{C}}$ platinum phosphine complex with PhICl$_2$ initially gave a trans dichloride, which subsequently isomerised to the less sterically crowded and more stable cis isomer. Thus we have seen this behaviour for the DMSO, PMe$_3$, PPr$_3$, PBu$_3$, and PPh$_3$ analogues of 1 and have, in some cases, been able to crystallographically characterise both isomers.9 Analogous behaviour was also seen with the addition of methyl iodide: the initial complex with the phosphine trans to pyridine isomerises to one in which the phosphine is cis to the pyridine; others have seen similar behaviour.15

That the oxidation of 1 did not give an initial trans complex, and went straight to the less crowded cis must be a function of the sheer bulk of the tri(o-tolyl)phosphine. We have already seen how positioning the phosphine trans to the nitrogen in the square planar Pt(II) 1 results in considerable steric constraints, and presumably the addition of two additional chlorides is simply impossible with the phosphine trans to the pyridine, hence the direct formation of the cis isomer 2. Even now, the cis arrangement in 2 is not completely unstrained: a N7-Pt1-Cl1 angle of 169.29(16)$^\circ$ is some way away from an ideal 180$^\circ$.

That 2 is not the only product of the reaction is a function of the two step process by which oxidation with PhICl$_2$ takes place. As an electrophilic reagent, the first step of reaction will be the delivery of a Cl$^+$ to one face of 1, generating an unseen five-coordinate cationic intermediate. This intermediate could combine with chloride (with isomerisation) to give 2, Scheme 4, or, more interestingly, interact with the periphery of the phosphine ligand, in this instance, a methyl group.

Once the methyl group of interacts with the platinum centre, two possibilities present themselves. Firstly the methyl group could be directly deprotonated with concomitant formation of a C-Pt bond to give tricyclometallated 3 or, secondly, a methyl proton could be
transferred in a transcyclometallation reaction to one of the original cyclometallated aryl groups, together with combination with the final chloride to give 4, Scheme 5.

Previously we have worked with alkyl phosphines, where only the second, transcyclometallation, pathway was observed (with the relief of strain associated with the fused cyclometallated rings of the C^N^C ligand being partially responsible for driving the reaction). This behaviour might be expected, given that the high pKa of an alkyl group suggests direct deprotonation is not a viable reaction pathway. The pKa of the tolyl-Me protons is around 40, about 20 units lower than an alkyl chain, due to resonance effects from the aryl ring, and this reduction in pKa must be sufficient to now render the deprotonation a viable reaction pathway, hence the formation of some 3. However, the reduction in pKa is clearly not enough to make this the exclusive or indeed, dominant, pathway as the majority of the reaction did indeed follow the transcyclometallation route.

We should at this point compare our proposed intermediate with the agostic complex 5 that forms upon redissolution of 4, Scheme 3. That the agostic methyl in 5 is stable enough in solution at room temperature to be identifiable, as it does not undergo a second transcyclopentene complex reaction, is not unexpected: their would be no relief of strain helping to drive the transcyclopentene reaction. So the non-deprotonation of the agostic methyl in 5 reinforces our point above about the pKa of the methyl: it is still too high for pathways involving deprotonation to represent readily accessible reaction routes, but is low enough to be viable under certain circumstances. Thus we can conclude the course of our oxidation reaction must be finely balanced and, presumably, it ought to be able to influence the outcome under appropriate conditions. We had limited scope for changing reaction conditions, with neither reaction temperature (-60°C to +20°C) or reagent concentration having any effect on product distribution.
Conclusions
The products of the oxidation of the tri(o-tolyl)phosphine complex of the C^N^C doubly cycloplatinated diphenylpyridine ligand with iodosobenzene dichloride are consistent with electrophilic attack by the oxidant, giving an unseen five-coordinate intermediate. Three pathways of reactivity are seen from this intermediate: simple combination with a chloride, electrophilic attack on a methyl group, and transcyclometallation. We were unable to control the relative proportions of the products, but the evidence would suggest that each pathway is independent of the others, and essentially irreversible.
Experimental

General

All chemicals were used as supplied, unless noted otherwise. All NMR spectra were obtained on a Bruker Avance 400, 500 or 600 MHz spectrometers and were recorded at room temperature, in chloroform, unless stated otherwise. 1H and 13C signals are referenced to external TMS, assignments being made with the use of decoupling, GOESY and COSY pulse sequences. 1H-19F, 1H-31P and 1H-195Pt correlation spectra were recorded using a variant of the HMBC pulse sequence. 19F and 31P chemical shifts are quoted from the directly observed signals (referenced to external CFCl$_3$ and 85% H$_3$PO$_4$, respectively) whereas the 195Pt chemical shifts quoted are taken from the 2D HETCOR spectra (referenced to external Na$_2$PtCl$_6$). Starting platinum complex DMSO was prepared as previously reported. The following labelling scheme was used for the complexes:

Synthesis of complex 1

To a solution of [(2,6-di(4-fluorophenyl)pyridine)Pt(DMSO)] (100 mg, 1.86×10^{-4} mol) in chloroform at room temperature was added a chloroform solution of tri(o-tolyl)phosphine (62 mg, 2.05×10^{-4} mol, 1.1 equiv). The mixture was stirred for five minutes before solvent and liberated DMSO were removed under high vacuum. Column chromatography (chloroform on silica) was used to purify the product. Yields: 136 mg (1.79×10^{-4} mol, 96%).

1H = 8.99 (1H, dd, 3J$_{H-H} = 16$ Hz, 3J$_{H-H} = 8$ Hz, H$_{Ar}$)*, 7.67 (1H, dd, 3J$_{H-H} = 11$ Hz, 3J$_{H-H} = 8$ Hz, H$_{Ar}$), 7.63 (1H, dd, 3J$_{H-H} = 8$ Hz, H$_{b}$), 7.23-7.47 (9H, m, H$_{Ar}$) 7.41 (1H, H$_{e}$), 7.38 (1H, H$_{m}$), 7.26 (2H, dd, 3J$_{H-H} = 8$ Hz, H$_{b}$), 7.14 (2H, m, H$_{Ar}$), 6.62 (1H, dt, 3J$_{H-H} = 8$ Hz, 4J = 2 Hz, H$_{a}$), 6.58 (1H, dt, 3J$_{H-F} = 8$ Hz, 4J = 2 Hz, H$_{a}$), 6.55 (1H, dd, 3J$_{H-F} = 11$ Hz, 4J$_{H-H} = 2$ Hz, 3J$_{H-Pt} = 29$ Hz, H$_{b}$), 5.73 (1H, dd, 3J$_{H-F} = 11$ Hz, 4J$_{H-H} = 2$ Hz, 3J$_{H-Pt} = 26$ Hz, H$_{b}$), 2.99 (3H, s, Me), 1.88 (3H, s, Me), 1.75 (3H, s, Me) ppm.

*Shows a correlation to platinum in the 1H-195Pt HMBC spectrum when the experiment is optimised for long range coupling.

13C = 22.19 (d, 4J$_{C-Pt} = 9$ Hz, C$_{Me}$), 23.39 (d, 4J$_{C-Pt} = 4$ Hz, C$_{Me}$), 25.03 (d, 4J$_{C-Pt} = 9$ Hz, C$_{Me}$), 110.27 (C$_{da}$), 114.27 (C$_{Ac}$), 121.29 (d, 4J$_{C-Pt} = Hz$, 4J$_{C-Pt} = Hz$, H$_{b}$), 124.72-125.75 (C$_{h,p,Ar}$), 125.75-127.00 (C$_{g,k,Ar}$) 133.15 (C$_{e,m}$), 140.12 (C$_{l}$), 143-147 (C$_{f,Lar}$) 144.56 (C$_{Ar}$), 162.89-165.36 (C$_{q,o,Ar}$) 167.78 (m, C$_{u,q}$) 170.74 (m, 1J$_{C-H} = 737$ Hz, C$_{u,q}$) ppm.

19F = -110.23 (4J$_{Pt-F} = 32.5$ Hz), -111.79 (4J$_{Pt-F} = 27.5$ Hz) ppm. 1P = 17.17 (1J$_{P-Pt} = 3942$ Hz) ppm. 1Pr = -4227 (d, 1J$_{Pr-Pt} = \sim 3800$ Hz) ppm.
HR-MS (ESI): found 764.1784, calculated 764.1784 = C_{38}H_{50}F_{2}N^{194}PtP [M]^+.

Crystals suitable for X-ray analysis were grown by the slow evaporation of solvent from a chloroform solution, Table 1.

Synthesis of complexes 2, 3 and 4

To a chloroform (10 ml) solution of 1 (20 mg, 2.6 x 10^{-5}) was added PhICl (10 mg, excess) at -40 °C giving full conversion to complexes 2, 3 and 4 (15, 15, 70% respectively by NMR integration). Allowing the reaction mixture to warm to room temperature led to the precipitation of 3 and 4. Complex 2 was recovered by filtering the mixture and removing the solvent; additional purification was by column chromatography, loading on a silica column with chloroform and eluting with ethyl acetate (3 mg, 3.7 x 10^{-6} mol, 14%)

Complex 2

δ_H = 7.69 (2H, dd, \(^3\)J_{HF} = 8 Hz, \(^4\)J_{HH} = 2.5 Hz, \(^3\)J_{H-Pt} = 19 Hz, H_b), 7.42 (1H, t, \(^3\)J_{HH} = 8 Hz, H_i), 7.31 (2H, dd, \(^3\)J_{HH} = 8.5 Hz, \(^4\)J_{HF} = 5 Hz, H_e), 7.18 (3H, m, H), 7.10 (3H, m, H_m), 7.01 (2H, d, \(^3\)J_{HH} = 8 Hz, H_b), 6.96 (3H, m, H), 6.85 (3H, m, H_a), 6.64 (2H, td, \(^3\)J_{HF} = 3J_{HF} = 8.5 Hz, \(^4\)J_{HH} = 2.5 Hz, H_a), 1.37 (9H, s, H_p) ppm.

δ_C = 22.76 (d, \(^3\)J_C-P = 4 Hz, C_p), 122.32 (d, \(^2\)J_C-F = 24 Hz, C_d), 116.19 (s, \(^3\)J_C-Pt = 30 Hz, C_b), 121.85 (d, \(^2\)J_C-F = 20 Hz, C_b), 124.78 (d, \(^2\)J_C-P = 12 Hz, C_k), 127.03 (d, \(^3\)J_C-F = 9 Hz, C_c), 129.05 (s, C_i), 131.54 (s, C_m), 132.86 (d, \(^3\)J_C-P = 10 Hz, C_a), 140.37 (s, C_i), 121.94 (d, \(^4\)J_C-F = 2 Hz, C_l), 143.28 (m, C_i), 162.08 (s, C_b), 163.93 (m, C_a), 164.13 (d, \(^1\)J_C-F = 260 Hz, C_c) ppm.

δ_F = -106.5 (\(^4\)J_{F-Pt} = 14 Hz) ppm. δ_P = -13.96 (\(^1\)J_{F-Pt} = 2470 Hz) ppm. δ_{Pt} = -2403 (d, \(^1\)J_{Pt-P} ~ 2500 Hz) ppm.

HR-MS (ESI): found 798.1397, calculated 798.1394 = C_{38}H_{50}F_{2}PN^{194}Pt = [M-Cl]^+.

Crystals suitable for X-ray analysis were grown by the slow evaporation of solvent from a chloroform solution, Table 1.

Complex 3

δ_H = 9.08 (dd, \(^3\)J_{HP} = 16 Hz, \(^3\)J_{HH} = 9 Hz, H_ar), 6.18 (d, \(^3\)J_{HF} =11 Hz, \(^3\)J_{H-Pt} = ~30 Hz, H_b), 5.18 (d, \(^3\)J_{HF} =10 Hz, \(^3\)J_{HP} = ~25 Hz, H_b), 2.75 (d, \(^2\)J_{HH} = 13 Hz, \(^2\)J_{HP} = 74 Hz, CH_2), 3.77 (d, \(^2\)J_{HH} = 13 Hz, \(^2\)J_{HP} = 90 Hz, CH_2) ppm.

δ_F = -107.52 (\(^4\)J_{F-Pt} = 28 Hz), -110.29 (\(^4\)J_{F-Pt} = 23 Hz) ppm. δ_P = 20.26 (\(^1\)J_{F-Pt} = 2818 Hz) ppm. δ_{Pt} = -3028 (d, \(^1\)J_{Pt-P} = ~2900 Hz) ppm.

Complex 4

δ_H = 8.55 (dd, \(^3\)J_{HP} = 17 Hz, \(^3\)J_{HH} = 8 Hz, H_ar), 5.92 (d, \(^3\)J_{HF} =11 Hz, \(^3\)J_{HP} = 39 Hz, H_b), 4.07 (d, \(^3\)J_{HH} = 12 Hz, \(^2\)J_{HP} = 76 Hz, CH_2), 4.66 (d, \(^2\)J_{HH} = 12 Hz, \(^2\)J_{HP} = 102 Hz, CH_2) ppm.

δ_F = -109.62 (\(^4\)J_{F-Pt} = 43 Hz) -112.68 ppm. δ_P = 33.21 (\(^1\)J_{F-Pt} = 3199 Hz) ppm. δ_{Pt} = -3324 (d, \(^1\)J_{Pt-P} = ~2900 Hz) ppm.
Crystals suitable for X-ray grew from the reaction mixture, Table 1.

Synthesis of Complex 5

Crystals of 4 were stirred in d₆-acetone until (approx. 3 weeks) sufficient was dissolved to record solution data.

Complex 5

δ_H (Acetone-d₆) = 6.54 (dd, ²J_H-F = 7 Hz, ³J_H-Pt = 52 Hz, H_b), 5.12 (d, ²J_H-H = 13.5 Hz, ²J_H-Pt = 95 Hz, CH₂), 4.25 (d, ²J_H-H = 13.5 Hz, ²J_H-Pt = 45 Hz, CH₂) 1.86 (3H, s, Me), 1.22 (3H, s, Me)* ppm. *Correlation to platinum seen, though satellites not visible.

δ_F (Acetone-d₆) = -109.33 (⁴J_F-Pt = 45 Hz), -115.18 ppm. δ_P (Acetone-d₆) = 23.69 (¹J_P-Pt = 2969 Hz) ppm. δ_Pt (Acetone-d₆) = -2583 (d, ¹J_Pt-P = ~3000 Hz) ppm.

A large (relative to background) peak in the electrospray mass spectrum suggests a cationic species. HR-MS (ESI): found 798.1396, calculated 798.1394 = C₃₈H₃₀F₂PN¹⁹⁴Pt = [M]⁺.
<table>
<thead>
<tr>
<th>Complex</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal form</td>
<td>yellow block</td>
<td>colourless block</td>
<td>colourless block</td>
</tr>
<tr>
<td>Dimensions/mm</td>
<td>$0.2 \times 0.18 \times 0.12$</td>
<td>$0.2 \times 0.18 \times 0.03$</td>
<td>$0.3 \times 0.2 \times 0.06$</td>
</tr>
<tr>
<td>Emp. Formula</td>
<td>$C_{39}H_{31}Cl_3F_2NPPt$</td>
<td>$C_{38}H_{30}Cl_2F_2NPPt$</td>
<td>$C_{41}H_{36}Cl_2F_2NOPPt$</td>
</tr>
<tr>
<td>Mw</td>
<td>884.06</td>
<td>835.59</td>
<td>893.67</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C2/c</td>
<td>P2₁/n</td>
<td>P-1</td>
</tr>
<tr>
<td>a/Å</td>
<td>36.4648(9)</td>
<td>10.92104(15)</td>
<td>9.33343(14)</td>
</tr>
<tr>
<td>b/Å</td>
<td>8.3932(2)</td>
<td>15.5683(2)</td>
<td>12.19811(15)</td>
</tr>
<tr>
<td>c/Å</td>
<td>23.2143(7)</td>
<td>18.6739(3)</td>
<td>16.57528(15)</td>
</tr>
<tr>
<td>a°</td>
<td>90</td>
<td>90</td>
<td>99.8343(9)</td>
</tr>
<tr>
<td>$β^\circ$</td>
<td>104.094(3)</td>
<td>95.5114(15)</td>
<td>105.1171(10)</td>
</tr>
<tr>
<td>$γ^\circ$</td>
<td>90</td>
<td>90</td>
<td>101.2367(11)</td>
</tr>
<tr>
<td>U/Å3</td>
<td>6891.0(3)</td>
<td>3160.30(8)</td>
<td>1737.24(4)</td>
</tr>
<tr>
<td>T/K</td>
<td>150(2)</td>
<td>150(2)</td>
<td>150(2)</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>D_{calc}/Mg m$^{-3}$</td>
<td>1.704</td>
<td>1.756</td>
<td>1.708</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>3472.0</td>
<td>1640.0</td>
<td>884.0</td>
</tr>
<tr>
<td>$μ$(MoKα)/mm$^{-1}$</td>
<td>4.392</td>
<td>4.701</td>
<td>4.284</td>
</tr>
<tr>
<td>$θ$ max/°</td>
<td>31.29</td>
<td>30.891</td>
<td>31.497</td>
</tr>
<tr>
<td>Refl. Measured</td>
<td>27581</td>
<td>42117</td>
<td>97999</td>
</tr>
<tr>
<td>Unique data</td>
<td>10276</td>
<td>9104</td>
<td>11081</td>
</tr>
<tr>
<td>$R1$ [$I > 2σ(I)$]</td>
<td>0.0321</td>
<td>0.0232</td>
<td>0.0216</td>
</tr>
<tr>
<td>$wR2$</td>
<td>0.0677</td>
<td>0.0437</td>
<td>0.0691</td>
</tr>
<tr>
<td>Data/rest/param</td>
<td>10276/0/464</td>
<td>9104/0/409</td>
<td>11081/0/446</td>
</tr>
</tbody>
</table>
Supporting Information

Full details and discussions of the Xray structures are available. CIF files are also available to download from the CCDC, reference numbers: 1565876-1565878.

Acknowledgements

We thank EPSRC for a DTG award to PAS and support from Advantage West Midlands (AWM) (part funded by the European Regional Development Fund) for the purchase of a high resolution mass spectrometer and the XRD system that was used to solve the crystal structures.

The authors declare no competing financial interests.

References

