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Abstract

The fractional non-homogeneous Poisson process was introduced by a time

change of the non-homogeneous Poisson process with the inverse α-stable

subordinator. We propose a similar definition for the (non-homogeneous)

fractional compound Poisson process. We give both finite-dimensional and

functional limit theorems for the fractional non-homogeneous Poisson process

and the fractional compound Poisson process. The results are derived by using

martingale methods, regular variation properties and Anscombe’s theorem.

Eventually, some of the limit results are verified in a Monte Carlo simulation.
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1. Introduction

The (one-dimensional) homogeneous Poisson process can be defined as a renewal

process by specifying the distribution of the waiting times Ji to be i.i.d. and to follow
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an exponential distribution with parameter λ. The sequence of associated arrival times

Tn =

n
∑

i=1

Ji, n ∈ N, T0 = 0,

gives a renewal process and its corresponding counting process

N(t) = sup{n : Tn ≤ t} =

∞
∑

n=0

n1{Tn≤t<Tn+1}

is the Poisson process with parameter λ > 0. Alternatively, N(t) can be defined

as a Lévy process with stationary and Poisson distributed increments. Among other

approaches, both of these representations have been used in order to introduce a frac-

tional homogenous Poisson process (FHPP). As a renewal process, the waiting times

are chosen to be i.i.d. Mittag-Leffler distributed instead of exponentially distributed,

i.e.

P(J1 ≤ t) = 1− Eα(−(λt)α), t ≥ 0 (1.1)

where Eα(z) is the one-parameter Mittag-Leffler function defined as

Eα(z) =

∞
∑

n=0

zn

Γ(αn+ 1)
, z ∈ C, α ∈ [0, 1).

The Mittag-Leffler distribution was first considered in Gnedenko and Kovalenko (1968)

and Khintchine (1969). A comprehensive treatment of the FHPP as a renewal process

can be found in Mainardi et al. (2004) and Politi et al. (2011).

Starting from the standard Poisson process N(t) as a point process, the FHPP can

also be defined asN(t) time-changed by the inverse α-stable subordinator. Meerschaert

et al. (2011) showed that both the renewal and the time-change approach yield the same

stochastic process (in the sense that both processes have the same finite-dimensional

distributions). Laskin (2003) and Beghin and Orsingher (2009, 2010) derived the

governing equations associated with the one-dimensional distribution of the FHPP.

In Leonenko et al. (2017), we introduced the fractional non-homogeneous Poisson pro-

cess (FNPP) as a generalization of the FHPP. The non-homogeneous Poisson process

is an additive process with deterministic, time-dependent intensity function and thus

generally does not allow a representation as a classical renewal process. However,

following the construction in Gergely and Yezhow (1973, 1975) we can define the

FNPP as a general renewal process. This is done in the next Section 2. Following
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the time-change approach, the FNPP is defined as a non-homogeneous Poisson process

time-changed by the inverse α-stable subordinator.

Among other results, we have discussed in our previous work that the FHPP can be

seen as a Cox process. Following up on this observation, in this article, we will show

that, more generally, the FNPP can be treated as a Cox process discussing the required

choice of filtration. Cox processes or doubly stochastic processes (Cox (1955), Kingman

(1964)) are relevant for various applications such as filtering theory (Brémaud, 1981),

repeat-buy consumer behavior (Ehrenberg, 1988), credit risk theory (Bielecki and

Rutkowski, 2002) or actuarial risk theory (Grandell, 1991) and, in particular, ruin

theory (Biard and Saussereau, 2014, 2016). Moreover, the fractional Poisson process

has been recently applied to queueing theory in Cahoy et al. (2015). Subsequently,

using the Cox process theory we are able to identify the compensator of the FNPP. A

similar generalization of the original Watanabe characterization (Watanabe, 1964) of

the Poisson process can be found in case of the FHPP in Aletti et al. (2018).

Limit theorems for Cox processes have been studied by Grandell (1976) and Serfozo

(1972a,b). Specifically for the FHPP, long-range dependence has been discussed in

Maheshwari and Vellaisamy (2016), scaling limits have been derived in Meerschaert

and Scheffler (2004) and discussed in the context of parameter estimation in Cahoy

et al. (2010).

The rest of the article is structured as follows: In Section 2 we give a short overview of

definitions and notation concerning the fractional Poisson process. Section 3 is devoted

to the application of the Cox process theory to the fractional Poisson process which

allows us to identify its compensator and thus derive limit theorems via martingale

methods. A different approach to deriving asymptotics is followed in Section 4 and

requires a regular variation condition imposed on the rate function of the Poisson

process before time change. The fractional compound Poisson process is discussed

in Section 5, where we derive both a one-dimensional limit theorem using Anscombe’s

theorem and a functional limit. Finally, we give a brief discussion of simulation methods

for the FHPP and corroborate some of our theoretical results using a Monte Carlo

experiment.
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2. The fractional Poisson process

This section serves as a brief revision of the fractional Poisson process, both in the

homogeneous and the non-homogeneous case as well as a setup of notation.

Let (N1(t))t≥0 be a standard Poisson process with parameter 1. Define the function

Λ(s, t) :=

∫ t

s

λ(τ) dτ,

where s, t ≥ 0 and λ : [0,∞) −→ (0,∞) is locally integrable. For shorthand Λ(t) :=

Λ(0, t) and we assume Λ(t) → ∞ for t → ∞. We get a non-homogeneous Poisson

process (N(t))t≥0, by a time-transformation of the homogeneous Poisson process with

Λ:

N(t) := N1(Λ(t)).

The α-stable subordinator is a Lévy process (Lα(t))t≥0 defined via the Laplace trans-

form

E[exp(−uLα(t))] = exp(−tuα), u > 0.

The inverse α-stable subordinator (Yα(t))t≥0 (see e.g. Bingham (1971)) is defined by

Yα(t) := inf{v ≥ 0 : Lα(v) > t}.

We assume (Yα(t))t≥0 to be independent of (N(t))t≥0. For α ∈ (0, 1), the fractional

non-homogeneous Poisson process (FNPP) (Nα(t))t≥0 is defined as

Nα(t) := N(Yα(t)) = N1(Λ(Yα(t))) (2.1)

(see Leonenko et al. (2017)). Note that the fractional homogeneous Poisson process

(FHPP) is a special case of the non-homogeneous Poisson process with Λ(t) = λt, where

λ(t) ≡ λ > 0 a constant. Recall that the density hα(t, ·) of Yα(t) can be expressed as

(see e.g. Meerschaert and Straka, 2013; Leonenko and Merzbach, 2015)

hα(t, x) =
t

αx1+
1
α

gα

(

t

x
1
α

)

, x ≥ 0, t ≥ 0, (2.2)

where gα(z) is the density of Lα(1) given by

gα(z) =
1

π

∞
∑

k=1

(−1)k+1Γ(αk + 1)

k!

1

zαk+1
sin(πkα)
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The Laplace transform of hα can be given in terms of the Mittag-Leffler function

h̃α(t, y) =

∫ ∞

0

e−xyhα(t, x) dx = Eα(−ytα), y > 0, (2.3)

and for the FNPP the one-dimensional marginal distribution is given by

P(Nα(t) = k) =

∫ ∞

0

e−Λ(u)Λ(u)
k

k!
hα(t, u) du, k = 0, 1, 2, . . . .

Alternatively, we can construct a non-homogeneous Poisson process as follows (see

Gergely and Yezhow (1973)). Let ξ1, ξ2, . . . be a sequence of independent non-negative

random variables with identical continuous distribution function

F (t) = P(ξ1 ≤ t) = 1− exp(−Λ(t)), t ≥ 0.

Define

ζ ′n := max{ξ1, . . . , ξn}, n = 1, 2, . . .

and

κn = inf{k ∈ N : ζ ′k > ζ ′
κn−1

}, n = 2, 3, . . .

with κ1 = 1. Then, let ζn := ζ ′
κn

. The resulting sequence ζ1, ζ2, . . . is strictly

increasing, since it is obtained from the non-decreasing sequence ζ ′1, ζ
′
2, . . . by omitting

all repeating elements. Now, we define

N(t) := sup{k ∈ N : ζk ≤ t} =

∞
∑

n=0

n1{ζn≤t<ζn+1}, t ≥ 0

where ζ0 = 0. By Theorem 1 in Gergely and Yezhow (1973), we have that (N(t))t≥0

is a non-homogeneous Poisson process with independent increments and

P(N(t) = k) = exp(−Λ(t))
Λ(t)k

k!
, k = 0, 1, 2, . . . .

It follows via the time-change approach that the FNPP can be written as

Nα(t) =

∞
∑

n=0

n1{ζn≤Yα(t)<ζn+1}
a.s.
=

∞
∑

n=0

n1{Lα(ζn)≤t<Lα(ζn+1)},

where we have used that Lα(Yα(t)) = t if and only if t is not a jump time of Lα (see

Embrechts and Hofert (2013)).
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3. Martingale methods for the FNPP

Cox processes go back to Cox (1955) who proposed to replace the deterministic

intensity of a Poisson process by a random one. In this section, we discuss the

connection between FNPP and Cox processes. Cox processes are also known as

conditional Poisson processes.

Definition 1. Let (Ω,F ,P) be a probability space and (N(t))t≥0 be a point process

adapted to a filtration (FN
t )t≥0. (N(t))t≥0 is a Cox process if there exist a right-

continuous, increasing process (A(t))t≥0 such that for any 0 < s < t

P(N(t)−N(s) = k|Ft) = e−(A(t)−A(s)) (A(t)−A(s))k

k!
, k = 0, 1, 2, . . . ,

where

Ft := F0 ∨ FN
t , F0 = σ(A(t), t ≥ 0). (3.1)

Then the Cox process N is said to be directed by A.

In particular we have by definition E[N(t)|Ft] = A(t).

Since FHPP is also a renewal process, it can be shown that it is also a Cox process

by using the Laplace transform of the waiting time distributions (see Section 2 in

Leonenko et al. (2017)). However, in the non-homogeneous case, we cannot apply the

theorems which characterize Cox renewal processes as the FNPP cannot be represented

as a classical renewal process. We will follow the construction of doubly stochastic

processes given in Section 6.6 in Bielecki and Rutkowski (2002) and verify Definition

1. Let (FNα

t )t≥0 be the natural filtration of the FNPP (Nα(t))t≥0

FNα

t := σ({Nα(s) : s ≤ t})

and define

F0 := σ({Yα(t), t ≥ 0}). (3.2)

We refer to this choice of initial σ-algebra F0 as non-trivial initial history as opposed

to the case of trivial initial history, which is F0 = {∅,Ω}. The overall filtration (Ft)t≥0

is then given by

Ft := F0 ∨ FNα

t , (3.3)

which is sometimes referred to as intrinsic history. If we choose a trivial initial history,

the intrinsic history will coincide with the natural filtration of the FNPP.
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Proposition 1. Let the FNPP be adapted to the filtration (Ft) as in (3.3) with non-

trivial initial history F0 := σ({Yα(t), t ≥ 0}). Then the FNPP is an (Ft)-Cox process

directed by (Λ(Yα(t)))t≥0.

Proof. This follows from Proposition 6.6.7. on p. 195 in Bielecki and Rutkowski

(2002). We give a similar proof for completeness: As (Yα(t))t≥0 is F0-measurable we

have

E[exp{iu(Nα(t)−Nα(s))}|Fs]

= E
[

exp{iu(Nα(t)−Nα(s))}|F0 ∨ FNα

s

]

= E

[

exp{iu(N1(Λ(Yα(t)))−N1(Λ(Yα(s))))}|F0 ∨ FN1

Λ(Yα(s))

]

(3.4)

= E [exp{iu(N1(Λ(Yα(t)))−N1(Λ(Yα(s))))}|F0] (3.5)

= exp[Λ(Yα(s), Yα(t))(e
iu − 1)],

where in (3.4) we used the time-change theorem (see for example Thm. 7.4.I. p.

258 in Daley and Vere-Jones (2003)) and in (3.5) the fact that the standard Poisson

process has independent increments. This means, conditional on (Ft)t≥0, (Nα(t)) has

independent increments and

(Nα(t)−Nα(s))|Fs ∼ Poi(Λ(Yα(s), Yα(t)))
d
= Poi(Λ(Yα(t))− Λ(Yα(s))).

Thus, (N(Yα(t))) is a Cox process directed by Λ(Yα(t)) by definition. �

The identification of the FNPP as a Cox process in the previous section allows us to

determine its compensator. In fact, the compensator of a Cox process coincides with

its directing process. From Lemma 6.6.3. p.194 in Bielecki and Rutkowski (2002) we

have the result

Proposition 2. Let the FNPP be adapted to the filtration (Ft) as in (3.3) with non-

trivial initial history F0 := σ({Yα(t), t ≥ 0}). Assume E[Λ(Yα(t))] < ∞ for t ≥ 0.

Then the FNPP has Ft-compensator (A(t))t≥0, where A(t) := Λ(Yα(t)), i.e. the

stochastic process (M(t))t≥0 defined byM(t) := N(Yα(t))−Λ(Yα(t)) is an Ft-martingale.

3.1. A central limit theorem

Using the compensator of the FNPP, we can apply martingale methods in order

to derive limit theorems for the FNPP. For the sake of completeness, we restate the
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definition of F0-stable convergence along with a lemma which will be used later.

Definition 2. If (Xn)n∈N and X are R-valued random variables on a probability space

(Ω, E ,P) and F is a sub-σ-algebra of E , then Xn → X (F-stably) in distribution if for

all B ∈ F and all A ∈ B(R) with P(X ∈ ∂A) = 0,

P({Xn ∈ A} ∩B) −−−−→
n→∞

P({X ∈ A} ∩B)

(see Definition A.3.2.III. in Daley and Vere-Jones (2003)).

Note that F-stable convergence implies weak convergence/convergence in distribution.

We can derive a central limit theorem for the FNPP using Corollary 14.5.III. in Daley

and Vere-Jones (2003) which we state here as a lemma for convenience.

Lemma 1. Let N be a simple point process on R+, (Ft)t≥0-adapted and with contin-

uous (Ft)t≥0-compensator A. Suppose for each T > 0 an (Ft)t≥0-predictable process

fT (t) is given such that

B2
T =

∫ T

0

[fT (u)]
2 dA(u) > 0.

and define

XT :=

∫ T

0

fT (u)[dN(u)− dA(u)].

Then the randomly normed integrals XT /BT converge F0-stably to a standard normal

variable W ∼ N(0, 1) for T → ∞.

The above lemma allows us to show the following result for the FNPP.

Proposition 3. Let (N(Yα(t)))t≥0 be the FNPP adapted to the filtration (Ft)t≥0 as

defined in Section 3. Then,

N(Yα(T ))− Λ(Yα(T ))
√

Λ(Yα(T ))
−−−−→
T→∞

W ∼ N(0, 1) F0-stably. (3.6)

Proof. First note that the compensator A(t) := Λ(Yα(t)) is continuous in t. Let

fT (u) ≡ 1, then

B2
T =

∫ T

0

[fT (u)]
2 dA(u) = Λ(Yα(T )) > 0, ∀T > 0

and

XT :=

∫ T

0

fT (u)[dN(Yα(u))− dA(u)] = [N(Yα(T ))− Λ(Yα(T ))].
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It follows from Lemma 1 above that

XT

BT
=
N(Yα(T ))− Λ(Yα(T ))

√

Λ(Yα(T ))
−−−−→
T→∞

W ∼ N(0, 1) F0-stably.

�

3.2. Limit α → 1

In Section 3.2(ii) in Leonenko et al. (2017), in the context of the governing equations

for the FNPP, we have argued that for α = 1 the FNPP simplifies to the non-fractional

non-homogeneous Poisson process. In the following, we can show that under certain

conditions we have convergence of Nα → N for α → 1. Concerning the type of

convergence, we consider the Skorokhod space D([0,∞)) endowed with a suitable

topology (we will focus on the J1 andM1 topologies). For more details see Meerschaert

and Sikorskii (2012).

Proposition 4. Let (Nα(t))t≥0 be the FNPP as defined in (2.1). Let the FNPP

be adapted to the filtration (Ft) as in (3.3) with non-trivial initial history F0 :=

σ({Yα(t), t ≥ 0}). Then, we have the limit

Nα
J1−−−→

α→1
N in D([0,∞)).

Proof. By Proposition 2 we see that (Λ(Yα(t)))t≥0 is the compensator of (Nα(t))t≥0.

According to Theorem VIII.3.36 on p. 479 in Jacod and Shiryaev (2003) if suffices to

show the following convergence in probability

Λ(Yα(t))
P−−−→

α→1
Λ(t) ∀t ∈ R+.

We can check that the Laplace transform of the density of the inverse α-stable subor-

dinator converges to the Laplace transform of the delta distribution:

L{hα(·, y)}(s, y) = Eα(−ysα) α→1−−−→ e−ys = L{δ0(· − y)}(s, y). (3.7)

We may take the limit as the power series representation of the (entire) Mittag-Leffler

function is absolutely convergent. Thus (3.7) implies the following convergence in

distribution

Yα(t)
d−−−→

α→1
t ∀t ∈ R+.
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As convergence in distribution to a constant automatically improves to convergence in

probability, we have

Yα(t)
P−−−→

α→1
t ∀t ∈ R+.

By the continuous mapping theorem, it follows that

Λ(Yα(t))
P−−−→

α→1
Λ(t) ∀t ∈ R+,

which concludes the proof. �

4. Regular variation and scaling limits

In this section, we will work with the trivial initial filtration setting (F0 = {∅,Ω}),
i.e. Ft is assumed to be the natural filtration of the FNPP. We follow the approach

of results given in Grandell (1976), Serfozo (1972a,b), which require conditions on the

function Λ. Recall that a function Λ is regularly varying with index β ∈ R if

Λ(xt)

Λ(t)
−−−→
t→∞

xβ , ∀x > 0. (4.1)

Example 1. We check whether typical rate functions (taken from Remark 2 in Leo-

nenko et al. (2017)) fulfill the regular variation condition.

(i) Weibull’s rate function

Λ(t) =

(

t

b

)c

, λ(t) =
c

b

(

t

b

)c−1

, c ≥ 0, b > 0

is regulary varying with index c. This can be seen as follows

Λ(xt)

Λ(t)
=

(xt)c

tc
= xc, ∀x > 0.

(ii) Makeham’s rate function

Λ(t) =
c

b
ebt − c

b
+ µt, λ(t) = cebt + µ, c > 0, b > 0, µ ≥ 0

is not regulary varying, since

Λ(xt)

Λ(t)
=

(c/b)ebxt − (c/b) + µxt

(c/b)ebt − (c/b) + µt
=

(c/b)ebt(x−1) − (c/b)e−bt + µxte−bt

(c/b)− (c/b)e−bt + µte−bt

t→∞−−−→



















0 if x < 1

1 if x = 1

+∞ if x > 1

does not fulfill (4.1). △
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In the following, the condition that Λ is regularly varying is useful for proving limit

results. We will first discuss a one-dimensional limit theorem before moving on to its

functional analogue.

4.1. A one-dimensional limit theorem

Proposition 5. Let the FNPP (Nα(t))t≥0 be defined as in Equation (2.1). Suppose

the function t 7→ Λ(t) is regularly varying with index β ∈ R. Then the following limit

holds for the FNPP:
Nα(t)

Λ(tα)

d−−−→
t→∞

(Yα(1))
β . (4.2)

Idea of proof. The result can be directly shown by invoking Lévy’s continuity the-

orem, i.e. one only needs to prove that the characteristic function of the random

variables on the left hand side of (4.2) converges to the characteristic function of

(Yα(1))
β . Alternatively, the result follows from Theorem 3.4 in Serfozo (1972a) or

Theorem 1 on pp. 69-70 in Grandell (1976). �

Remark 1. As a special case of the theorem we get for Λ(t) = λt, for constant λ > 0

Λ(xt)

Λ(t)
= x1

which means Λ is regularly varying with index β = 1. It follows that

N1(λYα(t))

λtα
d−−−→

t→∞
Yα(1).

This is in agreement with the scaling limit given in Cahoy et al. (2010) who showed

that
N1(λYα(t))

E[N1(λYα(t))]
=
N1(λYα(t))

λtα

Γ(1+α)

d−−−→
t→∞

Γ(1 + α)Yα(1).

4.2. A functional limit theorem

The one-dimensional result in Proposition 5 can be extended to a functional limit

theorem.

Theorem 1. Let the FNPP (Nα(t))t≥0 be defined as in Equation (2.1). Suppose the

function t 7→ Λ(t) is regularly varying with index β ∈ R. Then the following limit holds

for the FNPP:
(

Nα(tτ)

Λ(tα)

)

τ≥0

J1−−−→
t→∞

(

[Yα(τ)]
β
)

τ≥0
. (4.3)
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Remark 2. As the limit process has continuous paths the mode of convergence im-

proves to local uniform convergence. Also in this theorem, we will denote the homo-

geneous Poisson process with intensity parameter λ = 1 with N1.

In order to prove the above theorem, we need Theorem 2 on p. 81 in Grandell (1976),

which we will state here for convenience as a lemma.

Lemma 2. Let Λ̄ be a stochastic process in D([0,∞)) with Λ̄(0) = 0 and let N = N1(Λ̄)

be the corresponding doubly stochastic process. Let a ∈ D([0,∞)) with a(0) = 0 and

t 7→ bt a positive regularly varying function with index ρ > 0 such that

a(t)

bt
−−−→
t→∞

κ ∈ [0,∞) and

(

Λ̄(tτ)− a(tτ)

bt

)

τ≥0

J1−−−→
t→∞

(S(τ))τ≥0,

where S is a stochastic process in D([0,∞)). Then

(

N(tτ)− a(tτ)

bt

)

τ≥0

J1−−−→
t→∞

(S(τ) + h(B(τ)))τ≥0,

where h(τ) = κτ2ρ and (S(t))t≥0 and (B(t))t≥0 are independent. (B(t))t≥0 is the

standard Brownian motion in D([0,∞)).

Proof of Thm. 1. We apply Lemma 2 and choose a ≡ 0 and bt = Λ(tα). Then it

follows that κ = 0 and it can be checked that bt is regularly varying with index αβ:

bxt
bt

=
Λ(xαtα)

Λ(tα)
−−−→
t→∞

xαβ

by the regular variation property in (4.1).

We are left to show that

Λ̃t(τ) :=

(

Λ(Yα(tτ))

Λ(tα)

)

τ≥0

J1−−−→
t→∞

(

[Yα(τ)]
β
)

τ≥0
. (4.4)

This can be done by following the usual technique of first proving convergence of the

finite-dimensional marginals and then tightness of the sequence in the Skorokhod space

D([0,∞)).

Concerning the convergence of the finite-dimensional marginals we show convergence of

their respective characteristic functions. Let t > 0 be fixed at first, τ = (τ1, τ2, . . . , τn) ∈
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R
n
+ and 〈·, ·〉 denote the scalar product in R

n. Then, we can write the characteristic

function of the joint distribution of the vector

Λ(tαYα(τ))

Λ(tα)
=

(

Λ(tαYα(τ1))

Λ(tα)
,
Λ(tαYα(τ2))

Λ(tα)
, . . . ,

Λ(tαYα(τn))

Λ(tα)

)

∈ R
n
+

as

ϕt(u) := E

[

exp

(

i

〈

u,
Λ(Yα(tτ))

Λ(tα)

〉)]

= E

[

exp

(

i

〈

u,
Λ(tαYα(τ))

Λ(tα)

〉)]

(4.5)

=

∫

Rn

+

exp

(

i

〈

u,
Λ(tαx)

Λ(tα)

〉)

hα(τ, x) dx

=

∫

Rn

+

[

n
∏

k=1

exp

(

iuk
Λ(tαxk)

Λ(tα)

)

]

hα(τ1, . . . , τn;x1, . . . , xn) dx1 . . . dxn

where u ∈ R
n and hα(τ, x) = hα(τ1, τ2, . . . , τn;x1, x2 . . . , xn) is the density of the joint

distribution of (Yα(τ1), Yα(τ2), . . . , Yα(τn)). In (4.5), we use self-similarity. We can

find a dominating function by the following estimate:
∣

∣

∣

∣

exp

(

i

〈

u,
Λ(tαx)

Λ(tα)

〉)

hα(τ, x)

∣

∣

∣

∣

≤ hα(τ, x).

The upper bound is an integrable function which is independent of t. By dominated

convergence we may interchange limit and integration:

lim
t→∞

ϕn(u) = lim
t→∞

∫

Rn

+

exp

(

i

〈

u,
Λ(tαx)

Λ(tα)

〉)

hα(τ, x) dx

=

∫

Rn

+

lim
t→∞

exp

(

i

〈

u,
Λ(tαx)

Λ(tα)

〉)

hα(τ, x) dx

=

∫

Rn

+

exp
(

i
〈

u, xβ
〉)

hα(τ, x) dx = E[exp(i〈u, (Yα(τ))β〉)],

where in the last step we used the continuity of the exponential function and the scalar

product to calculate the limit. By Lévy’s continuity theorem we may conclude that for

n ∈ N
(

Λ(Yα(tτk))

Λ(tα)

)

k=1,...,n

d−−−→
t→∞

(

[Yα(τk)]
β
)

k=1,...,n
.

In order to show tightness, first observe that for fixed t both the stochastic process

Λ̃t on the left hand side and the limit candidate ([Yα(τ)]
β)τ≥0 have increasing paths.

Moreover, the limit candidate has continuous paths. Therefore we are able to invoke

Thm. VI.3.37(a) in Jacod and Shiryaev (2003) to ensure tightness of the sequence

(Λ̃t)t≥0 and thus the thesis follows. �
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By applying the transformation theorem for probability densities to (2.2), we can

write for the density hβα(t, ·) of the one-dimensional marginal of the limit process

([Yα(t)]
β)t≥0 as

hβα(t, x) =
1

β
x1/β−1hα(t, x

1/β)

=
1

β
x1/β−1 t

αx1/β(1+1/α)
gα

(

t

y1/(αβ)

)

=
t

αβx1+1/(αβ)
gα

(

t

y1/(αβ)

)

, x > 0. (4.6)

Note that this is not the density of Yαβ(t).

A further limit result can be obtained for the FHPP via a continuous mapping

argument.

Proposition 6. Let (N1(t))t≥0 be a homogeneous Poisson process and (Yα(t))t≥0 be

the inverse α-stable subordinator. Then
(

N1(Yα(t))− λYα(t)√
λ

)

t≥0

J1−−−−→
λ→∞

(B(Yα(t)))t≥0,

where (B(t))t≥0 is a standard Brownian motion.

Proof. The classical result
(

N1(t)− λt√
λ

)

t≥0

J1−−−−→
λ→∞

(B(t))t≥0

can be shown by using that (N1(t)−λt)t≥0 is a martingale. As (B(t))t≥0 has continuous

paths and (Yα(t))t≥0 has increasing paths we can use Theorem 13.2.2 in Whitt (2002)

to obtain the result. �

The above proposition can be compared with Lemma 3 in the next section and a similar

continuous mapping argument is applied in the proof of Theorem 4.

5. The fractional compound Poisson process

Let X1, X2, . . . be a sequence of i.i.d. random variables. The fractional compound

Poisson process is defined analogously to the standard compound Poisson process where

the Poisson process is replaced by a FNPP:

Zα(t) :=

Nα(t)
∑

k=1

Xk, (5.1)
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where
∑0

k=1Xk := 0. The process Nα is not necessarily independent of the Xi’s unless

stated otherwise.

In the following, we need to discuss stable laws as we are dealing with limit theorems.

Stable laws can be defined via the form of their characteristic function.

Definition 3. A random variable S is said to have a stable distribution if there are

parameters 0 < α̃ ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1 and µ ∈ R such that its characteristic

function has the following form:

E[exp(iθS)] =







exp
(

−σα̃|θ|α̃
[

1− iβ sign(θ) tan
(

πα̃
2

)]

+ iµθ
)

if α̃ 6= 1,

exp
(

−σ|θ|
[

1 + iβ 2
π sign(θ) ln(|θ|)

]

+ iµθ
)

if α̃ = 1

(see Definition 1.1.6 in Samorodnitsky and Taqqu (1994)). We will assume a limit

result for the sequence of partial sums without time change

Sn :=

n
∑

k=1

Xk. (5.2)

There exist sequences (an)n∈N and (bn)n∈N and and a random variable following a

stable distribution S such that

S̄n := anSn − bn
d−−−−→

n→∞
S.

(for details see Chapter XVII in Feller (1971) for example). In other words the

distribution of the Xk’s is in the domain of attraction of a stable law.

In the following, we will derive limit theorems for the fractional compound Poisson

process. In Section 5.2, we assume Nα to be independent of the Xk’s and use a

continuous mapping theorem argument to show functional convergence w.r.t. a suitable

Skorokhod topology. A corresponding one-dimensional limit theorem would follow

directly from the functional one. However, in the special case of Nα being a FHPP,

using Anscombe type theorems in Section 6.1 allows us to drop the independence

assumption between Nα and the Xk’s and thus strengthen the result for the one-

dimensional limit.

5.1. A one-dimensional limit result

The following theorem is due to Anscombe (1952) and can be found slightly refor-

mulated in Richter (1965).
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Theorem 2. We assume that the following conditions are fulfilled:

(i) The sequence of random variables Rn such that

Rn
d−−−−→

n→∞
R,

for some random variable R.

(ii) Let the family of integer-valued random variables (Ñ(t))t≥0 be relatively stable,

i.e. for a real-valued function ψ with ψ(t) −−−→
t→∞

+∞ it holds that

Ñ(t)

ψ(t)

P−−−→
t→∞

1.

(iii) (Uniform continuity in probability) For every ε > 0 and η > 0 there exists a

c = c(ε, η) and a t0 = t0(ε, η) such that for all t ≥ t0

P

(

max
m:|m−t|<ct

|Rm −Rt| > ε

)

< η.

Then,

RÑ(t)
d−−−→

t→∞
R.

Concerning the condition (ii), note that the required convergence in probability is

stronger than the convergence in distribution we have derived in the previous sections

for the FNPP. Nevertheless, in the special case of the FHPP, we can prove the following

lemma.

Lemma 3. Let Nα be a FHPP, i.e. Λ(t) = λt. Then with C := λ
Γ(1+α) it holds that

Nα(t)

Ctα
P−−−→

t→∞
1.

Proof. According to Proposition 4.1 from Di Crescenzo et al. (2016) we have the

result that for fixed t > 0 the convergence

N1(λYα(t))

E[N1(λYα(t))]
=
N1(λYα(t))

λtα

Γ(1+α)

L1

−−−−→
λ→∞

1 (5.3)

holds and therefore also in probability.

It can be shown by using the fact that the moments and the waiting time distribution

of the FHPP can be expressed in terms of the Mittag-Leffler function.
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Let ε > 0. We have

lim
t→∞

P

(
∣

∣

∣

∣

N1(λYα(t))

Ctα
− 1

∣

∣

∣

∣

> ε

)

= lim
t→∞

P

(
∣

∣

∣

∣

∣

N1(λt
αY (1))

λtα

Γ(1+α)

− 1

∣

∣

∣

∣

∣

> ε

)

(5.4)

= lim
τ→∞

P

(∣

∣

∣

∣

∣

N1(τY (1))
τ ·1α

Γ(1+α)

− 1

∣

∣

∣

∣

∣

> ε

)

= 0, (5.5)

where in (5.4) we used the self-similarity property of Yα and in (5.5) we applied (5.3)

with t = 1. �

As a direct application of Theorem 2 we can prove the following lemma.

Lemma 4. Let Nα be a FHPP and X1, X2, . . . be a sequence of i.i.d. variables in

the DOA of a stable law µ. Then, for the partial sums Sn defined in (5.2) there exist

sequences (an)n∈N and (bn)n∈N such that

aNα(t)SNα(t) − bNα(t)
d−−−→

t→∞
S,

where S ∼ µ.

Proof. We would like to use the above theorem for Rn = S̄n and Ñ = Nα. Indeed,

condition (i) follows from the assumption that the law of X1 lies in the domain of

attraction of a stable law and condition (ii) follows from Lemma 3. It is readily proven

in Theorem 3 in Anscombe (1952) that (S̄n) satisfies the condition (iii), if condition

(i) and (ii) are fulfilled. Therefore, it follows from Theorem 2 that

S̄Nα(t) = aNα(t)

Nα(t)
∑

k=1

Xk − bNα(t)
d−−−→

t→∞
S. (5.6)

�

Finally, we would like to replace Nα(t) with ⌊Ctα⌋ in the index of a and b. This requires

additional conditions. The following theorem is a slight modification of Theorem 3.6

in Chapter 9 of Gut (2013).

Theorem 3. Let X1, X2, . . . be i.i.d. random variables with E[X1] = 0 and set

Sn :=

n
∑

k=1

Xk, n ≥ 1.

Suppose that (an)n≥0 is a sequence of positive norming constants such that

Sn

an

d−−−−→
n→∞

S,
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where S follows a stable law with index α ∈ (1, 2]. Let (N(t))t≥0 be a sequence of

integer-valued random variables such that (ii) in Theorem 2 is fulfilled. Then,

a⌊Ctα⌋

Nα(t)
∑

k=1

Xk = a⌊Ctα⌋Zα(t)
d−−−→

t→∞
S.

Idea of proof. By Lemma 4 we have

aNα(t)

Nα(t)
∑

k=1

Xk
d−−−→

t→∞
S,

as bn = 0 by assumption. In order to replace Nα(t) with ⌊Ctα⌋ in the index of a one

has to show that

Nα(t)

Ctα
P−−−→

t→∞
1

implies
aNα(t)

a⌊Ctα⌋

P−−−→
t→∞

1.

The derivation of suitable estimates relies on the fact that n 7→ an is regularly varying

(for details see Lemma 2.9 (a) in Gut (1974)). �

Remark 3.

(i) The conditions restrict to the centered, symmetric case (i.e. E[X1] = 0, bn = 0)

and α ∈ (1, 2] as the mean exists. While it can be shown that an ∈ R−1/α, in

the non-symmetric case, we generally do not have a regular variation property

for bn.

(ii) Note that this convergence result does not require Nα to be independent of the

Xk’s. The above derivation also works for mixing sequences X1, X2, . . . instead of

i.i.d. (see Csörgő and Fischler (1973) for a generalization of Anscombe’s theorem

for mixing sequences).

5.2. A functional limit theorem

Theorem 4. Let the FNPP (Nα(t))t≥0 be defined as in Equation (2.1) and suppose

the function t 7→ Λ(t) is regularly varying with index β ∈ R. Moreover let X1, X2, . . .

be i.i.d. random variables independent of Nα. Assume that the law of X1 is in the

domain of attraction of a stable law, i.e. there exist sequences (an)n∈N and (bn)n∈N
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and a stable Lévy process (S(t))t≥0 such that the partial sums Sn definced in (5.2)

satisfy

(

anS⌊nt⌋ − bn
)

t≥0

J1−−−−→
n→∞

(S(t))t≥0. (5.7)

Then the fractional compound Poisson process Zα defined in (5.1) satisfies the following

limit:

(cnZα(nt)− dn)t≥0
M1−−−−→

n→∞

(

S
(

[Yα(t)]
β
))

t≥0
,

where cn := a⌊Λ(n)⌋ and dn := b⌊Λ(n)⌋.

Proof. The proof follows the technique proposed by Meerschaert and Scheffler (2004):

By Theorem 1 we have

(

Nα(tτ)

Λ(tα)

)

τ≥0

J1−−−→
t→∞

(

[Yα(τ)]
β
)

τ≥0
.

By the independence assumptions we can combine this with (5.7) to get

(

a⌊Λ(nα)⌋S⌊Λ(nα)t⌋ − b⌊Λ(nα)⌋, [Λ(n
α)]−1Nα(nt)

)

t≥0

J1−−−−→
n→∞

(S(t), [Yα(t)]
β)t≥0

in the space D([0,∞),R × [0,∞)). Note that ([Yα(t)]
β)t≥0 is non-decreasing. More-

over, due to independence the Lévy processes (S(t))t≥0 and (Dα(t))t≥0 do not have

simultaneous jumps (for details see Becker-Kern et al. (2004) and more generally Cont

and Tankov (2004)). This allows us to apply Theorem 13.2.4 in Whitt (2002) to get

the thesis by means of a continuous mapping argument since the composition mapping

is continuous in this setting. �

6. Numerical experiments

6.1. Simulation methods

In the special case of the FHPP, the process is simulated by sampling the waiting

times Ji of the overall process N(Yα(t)), which are Mittag-Leffler distributed (see

Equation (1.1)). Direct sampling of the waiting times of the FHPP can be done via a

transformation formula due to Kozubowski and Rachev (1999)

J1 = − 1

λ
log(U)

[

sin(απ)

tan(απV )
− cos(απ)

]1/α

,
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where U and V are two independent random variables uniformly distributed on [0, 1].

For futher discussion and details on the implementation see Fulger et al. (2008) and

Germano et al. (2009).

As the above method is not applicable for the FNPP, we draw samples of Yα(t) first,

before sampling N . The Laplace transform w.r.t. the time variable of Yα(t) is given

by
∫ ∞

0

e−sthα(t, x) dt = sα−1 exp(−xsα).

We evaluate the density hα by inverting the Laplace transform numerically using the

Post-Widder formula (Post (1930) and Widder (1941)):

Theorem 5. If the integral

f̄(s) =

∫ ∞

0

e−suf(u) du

converges for every s > γ, then

f(t) = lim
n→∞

(−1)n

n!

(n

t

)n+1

f̄ (n)
(n

t

)

,

for every point t > 0 of continuity of f(t) (cf. p. 37 in Cohen (2007)).

This evaluation of the density function allows us to sample Yα(t) using discrete inver-

sion.

6.2. Numerical results

Figure 1 shows the shape and time-evolution of the densities for different values of

α. As Yα is a non decreasing process, the densities spread to the right as time passes.

We performed a small Monte Carlo simulation in order to illustrate the one-dimensional

convergence results of Lemma 1 and Proposition 5. In Figures 2, 3 and 4, we can see

that the simulated values for the probability density x 7→ ϕα(t, x) of [N(Yα(t)) −
Λ(Yα(t))]/

√

Λ(Yα(t)) approximate the density of a standard normal distribution for

increasing time t. In a similar manner, Figure 5 depicts how the probability density

function x 7→ φα(t, x) of Nα(t)/Λ(t
α) approximates the density of (Yα(t))

β given in

(4.6), where Λ has regular variation index β = 0.7.
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Figure 1: Plots of the probability densities x 7→ hα(t, x) of the distribution of the inverse

α-stable subordinator Yα(t) for different parameter α = 0.1, 0.6, 0.9 indicating the time-

evolution: the plot on the left is generated for t = 1, the plot in the middle for t = 10

and the plot on the right for t = 40.
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Figure 2: The red line shows the probability density function of the standard normal

distribution, the limit distribution according to Lemma 1. The blue histograms depict samples

of size 104 of the right hand side of (3.6) for different times t = 10, 109, 1012 to illustrate

convergence to the standard normal distribution for α = 0.1.
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Figure 3: The red line shows the probability density function of the standard normal

distribution, the limit distribution according to Lemma 1. The blue histograms depict samples

of size 104 of the right hand side of (3.6) for different times t = 1, 10, 100 to illustrate

convergence to the standard normal distribution for α = 0.6.

7. Summary and outlook

Due to the non-homogeneous component of the FNPP, it is not surprising that

analytical tractability needed to be compromised in order to derive analogous limit

theorems. Most noticeably, the lack of a renewal representation of the FNPP compared

to its homogeneous version leads to the requirement of additional conditions on the

underlying filtration structure or rate function Λ.

The result in Proposition 4 partly answered an open question that followed after

Theorem 1 in Leonenko et al. (2017) concerning the limit α→ 1.

Futher research will be directed towards the implications of the limit results for est-

mation techniques as well as on convergence rates.

Acknowledgements

N. Leonenko was supported in particular by Cardiff Incoming Visiting Fellowship

Scheme and International Collaboration Seedcorn Fund and Australian Research Coun-



Limit Theorems for the FNPP 23

x

-5 0 5 10

ϕ
0.
9
(1
,
x
)

0

0.1

0.2

0.3

0.4

0.5

0.6

x

-5 0 5

ϕ
0.
9
(1
0,
x
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

-5 0 5
ϕ
0.
9
(2
0,
x
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 4: The red line shows the probability density function of the standard normal

distribution, the limit distribution according to Lemma 1. The blue histograms depict
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convergence to the standard normal distribution for α = 0.9.

x

0 2 4

φ
0.
9
(1
0,
x
)

0

0.2

0.4

0.6

0.8

1

1.2

x

0 2 4

φ
0.
9
(1
00
,
x
)

0

0.5

1

1.5

x

0 2 4

φ
0.
9
(1
03
,
x
)

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5: Red line: probability density function φ of the distribution of the random variable

(Y0.9(1))
0.7, the limit distribution according to Proposition 5. The blue histogram is based

on 104 samples of the random variables on the right hand side of (4.2) for time points t =

10, 100, 103 to illustrate the convergence result.
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