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Abstract
Purpose of Review It is well established that sporadic Alzheimer’s disease (AD) is polygenic with common and rare genetic
variation alongside environmental factors contributing to disease. Here, we review our current understanding of the genetic
architecture of disease, paying specific attention to rare susceptibility variants, and explore some of the limitations in rare variant
detection and analysis.
Recent Findings Rare variation has been shown to robustly associate with disease. These include potentially damaging and loss
of function mutations that are easily modelled in silico, in vitro and in vivo, and represent potentially druggable targets. A number
of risk genes, including TREM2, SORL1 and ABCA7 showmultiple independent associations suggesting that they may influence
disease via multiple mechanisms. With transcriptional regulation, inflammatory response and modification of protein production
suggested to be of primary importance.
Summary We are at the beginning of our journey of rare variant detection in AD. Whole exome sequencing has been the
predominant technology of choice. While fruitful, this has introduced a number of challenges with regard to data integration.
Ultimately the future of disease-associated rare variant identification lies in whole genome sequencing projects that will allow the
testing of the full range of genomic variation.
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Introduction

Alzheimer’s disease (AD) is a devastating and progressive
neurodegenerative disease that is estimated to account for up
to 80% of all dementia cases, meaning there are over 37 mil-
lion AD sufferers world-wide. With an ageing population, the
incidence of AD is expected to rise exponentially, and with no
effective prevention or treatment, dementia is now one of the
world’s greatest public health issues.

It is well established that while AD has some symptoms
common to all sufferers, aetiologically, there are at least two
different forms of disease. A small number of individuals (~

1%) carry a disease-causing mutation within the APP, PSEN1
or PSEN2 genes. These Mendelian forms of disease underpin
the amyloid cascade hypothesis of AD. The hypothesis claims
the misprocessing ofβ-amyloid (Aβ) and its deposition as the
primary causal event in AD pathogenesis [1]. However, the
failures of clinical trials focussed on Aβ pathology suggest
that this hypothesis may only relate to Mendelian forms of
disease. Conversely, these tested therapeutics may only be
effective in the prodromal stages of AD, rather than the symp-
tomatic phase when participants for clinical trials are recruited
[2, 3]. Undoubtedly, the amyloid cascade is part of a complex
interplay of influences on disease development that includes
tau and immunity/inflammation.

Other forms of disease are seen to segregate, although not
completely, in families where there are no fully penetrant
causative mutations (heritability estimates of over 90%) [4].
Non-familial, sporadic AD is a highly heritable (estimates of
58–79%) [5] and polygenic disorder [6], with over 40 risk loci
reliably established [3]. The majority of the identified loci are
common (minor allele frequency > 1%) with small effect sizes
and reside in non-coding parts of the genome. The identifica-
tion of these common loci has greatly improved our under-
standing of the underlying biology of disease, highlighting
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immunity, endocytosis, cholesterol metabolism, protein
ubiquitination and more recently Aβ processing [7].
However, the identified common variants do not pinpoint pro-
tein coding changes for direct modelling, nor do they explain
the estimated disease heritability. In fact, the common variants
known to associate with AD are thought to account for less
than half of the genetic liability for disease [8]. In recent years,
and as genotyping and sequencing technologies have ad-
vanced, the field has focused on the identification of rare var-
iation for disease. Here, we will focus on these discoveries, the
technologies that enabled their discovery and the challenges of
working with big data for rare variant detection.

Identified Common Risk Loci

Risk for non-familial forms of AD is inferred by both envi-
ronmental and genetic factors, with common and rare varia-
tion involved in non-Mendelian disease aetiology.
Apolipoprotein E (APOE) on chromosome 19 was the first
and remains the strongest genetic risk factor for AD [9].
APOE encodes three isoforms of the protein, ε2, ε3 and ε4.
Disease risk is increased in carriers of the ε4 allele, in a dose-
dependent manner, with a threefold increase in ε4
heterozyogotes (ApoE ε3/ε4), and a 15-fold increase in ε4
homozygotes (ApoE ε4/ε4). The ε2 allele is thought to confer
a small protective effect [10, 11].

Over the past 9 years, genome-wide association studies
(GWAS) in case-control cohorts of tens of thousands of indi-
viduals have identified nearly 40 common genome-wide sig-
nificant risk loci. The identified susceptibility variants gener-
ally have small effect sizes (odds ratios ~ 1.2) and are often
found in intergenic or intronic regions (therefore termed locus
rather than gene) making it difficult to pinpoint which gene
has a functional effect. The CLU, PICALM and CR1 loci [12,
13] were identified in 2009 in two back-to-back publications.
Subsequent publications have identified BIN1, EPHA1,
MS4A, CD2AP, ABCA7, HLA-DRB5/HLA-DRB1, PTK2B,
SORL1, SLC24A4-RIN3, INPP5D, MEF2C, NME8,
ZCWPW1, CELF1, FERMT2 and CASS4 as risk loci for spo-
radic AD [14–16]. This success can be largely attributed to the
extensive collaboration across four genetic consortia; Genetic
and Environmental Risk in AD (GERAD), European AD
Initiative (EADI), Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) and AD Genetics
Consortium (ADGC), badged together as the International
Genomics of Alzheimer’s Project (IGAP). In addition,
genome-wide gene-wide analyses identified five novel
genome-wide significant loci, TP53INP1, IGHV1–67, [17]
PPARGC1A, RORA and ZNF423 [18] using the IGAP dataset.
Building upon the initial IGAP dataset, TRIP4 [19], ECHDC3
[7, 20], IQCK, ACE, ADAM10 and ADAMTS1 [7] have more
recently been reported as genome-wide susceptibility loci.

A novel approach to AD risk variant detection has been to
infer AD diagnosis based on reports of parental history of
dementia in the UK Biobank dataset [21•, 22]. Although this
approach lacks power and introduces diagnostic noise, it
proved informative when combined with clinically defined
AD cohorts. Combination of UKBiobank data with additional
datasets identified association for AD risk with variants in
KAT8 [21•], HESX1, CLNK/HS3ST1, CNTNAP2, APH1B,
ALPK2 and LOC388553 loci [22•].

It is estimated that a substantial proportion (approximately
60%) [23, 24] of the genetic variance of sporadic AD is not
accounted for by APOE or the common genome-wide associ-
ated loci. GWAS in other complex traits suggest that more
powerful GWAS will identify further additional associations
[25]. However, a substantial proportion of the ‘missing heri-
tability’ of AD is likely to be accounted for by rare and low
frequency variation of small to moderate effect.

Identified Rare Risk Loci

A flurry of recent reports has confirmed that a proportion of AD
is explained by rare variation with larger effect sizes than normal-
ly seen with common variation. Such variants point to the in-
volvement of novel genes in the pathophysiology of disease and
importantly highlight protein-coding changes that are novel ther-
apeutic targets.

To date, four genes have been identified showing replicable
genome-wide significant association with disease. In 2013, two
groups identified p.Arg47His (R47H) within the triggering re-
ceptor expressed on myeloid cells 2 (TREM2) gene as a late-
onset AD risk variant; the independent studies were published
in back-to-back publications in the New England Journal of
Medicine [26, 27]. Both studies utilised a multi-stage study
design. Guerreiro and colleagues [27] undertook whole exome
sequencing (WES) and Sanger sequencing in a discovery co-
hort of 1092 AD cases and 1107 controls, before confirming
their identified association through additional independent
genotyping and meta-analysis of imputed GWAS data.
Simultaneously, Jonsson and colleagues [26] identified the
same TREM2 variant through whole genome sequencing
(WGS) of 2261 Icelandic participants and reported that the
R47H variant significantly associated with risk of AD in a
largely Scandinavian population. Replication of their findings
was achieved through additional genotyping of independent
cohorts and imputed datasets from Europe and the USA, with
meta-analysis of the datasets showing association at the
genome-wide level (odds ratio, 2.90; 95% CI, 2.16 to 3.91;
P = 2.1 × 10−12) [26]. The association at TREM2
p.(Arg47His) and AD has been replicated in multiple popula-
tions of European descent [28–35, 36•, 37, 38], and although
the risk-effect sizes vary by cohort, cumulatively, the results
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suggest that TREM2 R47H is the largest genetic effector of
sporadic AD after APOE ε4.

A second TREM2 variant that had previously shown sugges-
tive evidence for association with disease [39, 40•, 41] was
shown to increase risk for sporadic AD at the genome-wide sig-
nificance level via an exome-chip microarray study [36•]. The
Illumina exome-chipwas designed as an intermediate experiment
between current genotyping arrays, which focus on relatively
common variants, and exome sequencing of very large numbers
of samples. The array contains over a quarter of a million variants
identified from WGS and WES data of over 12,000 individuals.
We and others showed a rare coding mutation at TREM2
p.Arg62His (R62H) increased risk for disease independently of
the R47H TREM2 mutation with an odds ratio of 1.67 [36•]. In
the same publication, we identified novel association within two
additional genes, phospholipase C gamma 2 (PLCG2) and ABI
Family Member 3 (ABI3). The PLCG2 variant p.Pro522Arg
(P522R) shows a protective effect against disease, while the
ABI3 variant p.Ser209Phe (S209F) increased disease risk [36•].
AD risk inferred by TREM2 does not appear to be population-
specific with association reported in European [26, 27, 36•],
African American [42] and Asian [43] populations. However, a
number of studies show conflicting data with the TREM2 R47H
variant not significantly associated with AD risk in an African-
American cohort [38], and four studies failing to detect the R47H
variant in Chinese subjects [44–47]. In one study of Japanese
subjects, the R47H variant was extremely rare (minor allele fre-
quency < 0.006) and no association was found with AD.

In 2012, Jonsson and colleagues [39] showed, for the first
time in sporadic AD, an association with the amyloid precur-
sor protein (APP) gene that causes familial forms of AD. The
identified protein-coding change p.Ala673Thr (A673T) was
identified in WGS data from 1795 Icelanders and was shown
to protect against disease, and cognitive decline in elderly
non-diseased participants [39]. The protein change is thought
to reduce β-cleavage of APP with approximately 40% reduc-
tion in the formation of amyloidogenic peptides in vitro.

Exome-wide significant association with sporadic disease was
recently identified in the AD Sequencing Project (ADSP). Novel
single nucleotide variant (SNV) association with disease was
identified at the IGHG3 (an immunoglobulin gene whose
antibodies interact with β-amyloid) and AC099552.4 (a long
non-coding RNA) genes, while exome-wide gene-wide associa-
tion was identified at the ZNF655 (zinc-finger protein) gene
[40•]. These newly discovered genes point to the important role
of transcriptional regulation in AD pathogenesis and add further
support to the role of inflammatory response and modification of
protein production in disease biology [40•]. Analysis of the
ADSP data to examine the contribution to disease across demen-
tia genes and clinically diagnosed AD identified rare pathogenic
variants within ARSA, CSF1R and GRN, along with candidate
variants in GRN and CHMP2B. A further independent case-
control study provided evidence of association between variants

in TREM2, APOE, ARSA,CSF1R, PSEN1 andMAPTand risk of
AD [41]. Interestingly, the ADSP also identified a number of rare
disease-associated variants within loci known to harbour com-
mon variants associatedwith sporadicAD, includingABCA7 and
SORL1. [48–51]. Bellenguez and colleagues [50] also observed
that variants in SORL1, ABCA7, TREM2 associated with AD.
More specifically, the authors identified an exome-wide signifi-
cant association between early onset AD risk and rare variants in
all three genes. The authors estimated that the associated variants
contributed equally to the heritability of early onset AD, and each
explains between 1.1 and 1.5% of sporadic early onset AD her-
itability [50]. Further evidence for the role of SORL1 in AD
aetiology was provided by Holstege and colleagues [52], who
observed that unique protein-truncating variants in SORL1 oc-
curred exclusively in a substantial proportion of AD cases.
Variants in ABCA7 have been identified to influence disease risk
both across ethnic populations [15], and in an ethnic specific
manner, with a frameshift deletion identified in African
American and Caribbean Hispanic populations, but not a non-
Hispanic White population [53].

Another novel gene with rare coding variants observed to
segregate in an autosomal-dominant way with AD is UNC5C
[54]. Wetzel-Smith et al. proposed that the variants in the gene
could contribute to developing the disease by increasing suscep-
tibility to neuronal cell death in vulnerable regions of the brain in
patients with AD. Based on a family-based study and further
replication, Cruchaga et al. observed that low frequency variants
in PLD3 were enriched in individuals with AD compared to
healthy controls. Furthermore, the authors also showed that
PLD3 was involved in amyloid-β precursor protein processing
and was overexpressed in brain tissue from patients with AD
[55]. However, at present, the statistical evidence for association
with sporadic disease at these gene is not robust, with PLD3
seeming to have a greater influence on familial forms of disease
[32, 56–58].

Other notable studies identifying rare variant associations for
sporadic AD include Jakobsdottir et al. who detected an asso-
ciation in the TM2D3 gene.Work in Drosophila suggest that the
damaging effect of this variant is through the β-amyloid cas-
cade [59]. Kunkle et al. usedWES in a mixed ethnic population
to search for rare variants leading to sporadic early onset AD.
The authors observed associations with missense variants in
PSD2, TCIRG1, RIN3 and RUFY1. Interestingly, these genes
function in clearance of cellular debris and unwanted proteins,
including Aβ, through the endolysosomal transport pathway
[51]. Le Guennec et al. studied sporaric early onset AD and
found a rare recurrent microduplication, affecting the
17q21.31 locus (including the CRHR1, MAPT, STH and
KANSL1 genes) in four cases but not in healthy controls. An
increase in MAPT (encoding tau protein) expression was ob-
served in the affected individuals, and neuroimaging and cere-
brospinal fluid biomarker profiles suggest the primary role of
MAPT in disease development [60].
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The majority of studies testing rare variation in sporadic
AD have focused on identifying association with disease de-
velopment. Ridge and colleagues adopted an innovative,
pedigree-based approach to identify genetic variation that seg-
regate with AD resilience. They studied “AD-resilient” indi-
viduals who had the high-risk APOE ε4 allele and were above
75 years of age without any signs of cognitive decline
assessed clinically and compared them with relatives who
developed AD. The rs142787485 variant in RAB10 was
shown to significantly associate with “AD-resilience”, which
replicated in an independent sample. Furthermore, in cell
models, the knockdown of RAB10 led to a statistically signif-
icant decrease in Aβ42 and Aβ42/Aβ40 ratio [53].

It must be noted that these associations have largely been
observed in Caucasian populations, However, the majority of
non-Caucasian studies are underpowered [61]. The disparity
of results in non-Caucasian studies of TREM2 [26, 27, 36•, 38,
42–47], the work of Kunkle et al. [51] (detailed above), the
cross-population and population-specific associations seen at
ABCA7 [62, 63] and the identification of putative association
at the AKAP9 gene in an African American cohort [64] em-
phasise the ethnic specific genetic aetiology of AD and the
need for further research in this area.

Methods for Rare Variant Discovery

The gold standard for rare variant discovery remains WGS,
assaying every base in the genome. WGS allows the analysis
of the full range of genomic modifications including pathogenic
variants, structural variants and variants in non-coding regulatory
regions [65–68]. Additionally, WGS is the superior method for
covering difficult genomic regions including those with high GC
content due to its PCR-free sequencing protocol. However, given
the nature of rare variation, potentially being seen once in less
than 1000 individuals, the sample sizes required to achieve sta-
tistical power for association analysis make this method of data
generation economically prohibitive. The majority of the known
risk loci were identified by genome-wide genotyping microar-
rays, including low frequency variants PLCG2 and ABI3. These
arrays only assay known genetic variation and despite imputation
accuracy down to MAF= 0.008 when using the latest reference
panels, a large proportion of low and rare frequency variants do
not genotype or impute well on such arrays.

An alternative, and intermediate experiment betweenWGS
and GWAS is WES. This method assays bases in the protein
coding regions of the genome (the exome), meaning that any
identified associations are likely to have an understandable
functional effect. The exome makes up about 1% of the hu-
man genome, making WES a cheaper and popular alternative
to WGS for both exonic and splice-site [69] rare variant de-
tection. It has been estimated that the exome harbours about
85% of mutations with large effects on disease-related traits

[70]. Exome sequencing studies have brought to light the im-
portance of rare coding variants in complex genetic traits that
were undetectable by GWAS [71]. Being a comprehensive
approach, exome sequencing also provides direct identifica-
tion of the casual variants, both common and rare, without the
use of linkage disequilibrium to impute genotypes, as routine-
ly performed with GWAS data. Exome sequencing was espe-
cially successful in the identification of Mendelian disease
genes. This is reflected in almost 2000 new entries in OMIM
since 2008 describing the genetic basis of a certain phenotype
[70]. Therefore, the three primary advantages of exome se-
quencing over other rare variant detection methods are; the
high potential to identify genes responsible for complex traits,
readily available functional annotation of coding variants and
the cost-effectiveness of WES compared to the WGS.

Several platforms for human exome capture are on the
market [69, 72, 73]. The question of which of these platforms
is best for a given application remains unanswered, as with
any experimental technique, there are both strengths and lim-
itations. The major difference between these platforms corre-
sponds to the number of genes targeted, the probe/bait lengths,
probe/bait density and sequencing coverage. There is also
some difference in capture efficacy performance (including
specificity, uniformity and sensitivity), technological repro-
ducibility, DNA input requirement and cost effectiveness of
each platforms. A comprehensive comparison of all the com-
mercially available human WES platforms is beyond the
scope of this review and has been performed elsewhere [69,
72, 73]. It has to be said that none of the capture technologies
are able to cover all of the exons of the Consensus CDS,
RefSeq or Ensembl databases.

Challenges of Rare Variant Identification

Rare variant identification has proved challenging in common
disease; there are a number of factors to explain this, including
the method of variant detection and the methods of data merg-
ing. Microarrays assay only known variation meaning that a
substantial proportion of rare risk loci are potentially missed.
Additionally, calling and clustering of rare variants via stan-
dard GWAS techniques have proved to be problematic and
labour intensive, with much of the Illumina exome chip con-
tent requiring visual inspection [36•]. WGS captures all bases
in the genome, resulting in the generation of a large amount of
data. This can prove both computationally challenging and
difficult to interpret given a number of identified variants
may lie outside regions of known functional relevance.
Often WGS data are filtered to include only functionally rel-
evant variation, such as protein-coding and splice site-specific
variation, to reduce such burdens.

The majority of rare variant detection studies utilise, at
least in part, WES. Assembly of WES data within an
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experiment is now relatively standardised, with specifically
designed software, quality control and analysis pipelines
[74]. However, as evidenced from meta-analysis of GWAS
[7, 75], much of the power of genetic analysis of complex
traits is gained through combination of data from multiple
independent experiments. This can prove problematic for
WESexperimentswhere different capture technologies have
been utilised. None of the capture technologies available are
able to cover all of the exons of the Consensus CDS, RefSeq
or Ensembl databases. Of the four commercially available
human capture kits on the market (NimbleGen, Agilent,
TruSeq andNextera), only 26.2Mbof the total targeted bases
overlap, equating to around a 1/3 of the total targeted bases
per kit (NimbleGen targets 64.1Mb,Agilent targets 51.1Mb,
TruSeq and Nextera target 62.08 Mb). Therefore, combina-
tion of data generated via differing capture kits can result in a
significant loss of target bases and subsequent lack of analy-
sis of potential disease-related mutations. An additional
technical issuewith combination ofWESdata is the differing
base coverage achieved by each capture kit. For the 26 Mb
target regions, common to all four technologies, Agilent de-
tected the highest number of variants followed by TruSeq,
Nextera and NimbleGen [72]. Additionally, the areas of op-
timal coverage differ by capture technology, with the largest
number of Illumina variants detected in the untranslated re-
gions compared to NimbleGen detecting the highest number
of variants in the Ensembl regions [72]. These findings em-
phasise the importance of sequence capture uniformity and
capture probe performance, which eventually determine the
amount of raw sequence data available for downstream data
analysis. Ideally, all studieswould use the same capture tech-
nology to allow merging of raw data for optimal rare variant
detection.

Another intricacy, specifically in the analysis of rare vari-
ants, is that by definition, rare variants are not frequent and
therefore association tests of individual variants is challenging
[76]. The typical GWAS of common variants strategy is anal-
ysis of one variant at a time. Such analysis will be largely
underpowered for rare variant detection unless the variant ef-
fect size or the sample size of the cohort is very large. This is
why a number of methods have been developed to analyse
multiple rare variants collapsed together thus increasing the
statistical power [77–80]. An exhaustive review of how to
design and analyse data based on rare variants is beyond the
scope of this manuscript and is specific to the study design and
technology utilised. A number of conceptual frameworks for
the design of rare variant association studies have been pub-
lished [76, 81, 82]. Rare variant analyses, whether at the single
variant or gene-wide level, require large sample sizes to pro-
vide the required statistical power for the genetic association
analyses. Zuk et al. have shown that the analysis of common
variant and rare variant studies requires similarly large sample
collections. In particular, a well-powered rare variant

association study should involve discovery sets with at least
25,000 cases, together with a substantial replication set [76].

Benefit of Rare Variant Discovery

The single nucleotide rare variant associations identified are
protein coding, meaning that the effect of the amino acid
change can be easily modelled in silico and via cellular and
animal models. This allows for a much quicker translation
from genetics to a functional outcome and can be utilised in
efforts to validate therapeutic targets [83]. Molecular dynamic
(MD) modelling is an in silico technique that is gaining mo-
mentum in its use to understand rare variants in many diseases
[84–88]. One example of the use of both cellular and in silico
models to further our understanding of the impact rare variants
have on AD is that of the well-studied TREM2 coding chang-
es which have been subject of a number of in vitro, in vivo and
in silico models [89–91]. Homozygous mutations within
TREM2 leading to complete loss of function are a known
cause of Nasu Hakola syndrome [92], which includes symp-
toms of frontotemporal dementia [93]. The identified AD-risk
variants are thought to result in partial loss of function. The
publication of purified proteins including that of TREM2 [91,
94], allows for in silico mutational studies into the impact of
the variants on the protein structure and by inference, its func-
tion. Indeed, we and others have successfully modelled the
TREM2 rare variants in silico with interesting results [91,
95]. Using MD simulations, we were able to conclude that
the binding differences observed in vitro between the two
genome wide significant mutations, R47H and R62H, could
be attributed to a different structural alteration in their binding
loops (Fig. 1) [95]. TREM2 has been shown to bind to apoli-
poproteins, including both APOE and CLU/APOJ and subse-
quently is involved in the uptake of Aβ by microglia. This
may indicate that the different changes to the binding loop can
be attributed to the variants differing genetic risk, and the
differing binding rates as shown in vitro [96].

Alternate Methods

It is becoming ever clearer that complex traits require more
sophisticated data analysis methods to unpick the multifacto-
rial aetiology of disease onset and progression. We know that
AD is a polygenic disorder [6], simultaneous assessment of
common and rare (i.e. polygenic and monogenic) models can
be used to provide additional information about disease genet-
ic architecture. This approach has been fruitful in studying
blood lipid levels and neurodevelopmental disorders in large
number of individuals [82, 97].

Instead of focusing on crude association studies, there are
other innovative approaches that could provide additional
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information while studying rare variants. Some of the ways of
exploring the data, include using other biological information,
including gene expression (as reviewed by Verheijen and
Sleegers [98]), methylation and biological pathways [99–101],
in combination with genetic association data, to boost the statis-
tical power of the analyses. To boost the statistical power of
genetic association analyses, Ho et al. proposed a novel weight-
adjustment approach to combine gene expression, methylation,
transcriptional regulation and protein abundance information into
rare variant analysis. Simulation studies have suggested that in-
corporating together such rich data can lead to substantial gain in
statistical power. This integrative approach was applied success-
fully to find susceptibility variants in genes associated with blood
pressure regulation [78, 102]. Furthermore, a number of studies
have successfully used similar methods to integrate GWAS data
with biological networks data (protein-protein interaction and co-
expression networks) to predict causal genes at associatedGWAS
loci for various disorders [103–106]. Such integrative ap-
proaches, albeit currently focused more on analysis of common
variants, have proved successful in studies of AD [107, 108].

To interrogate data from transcriptome-wide association stud-
ies (TWAS) studies, a TWAS hub was recently developed (http://
twas-hub.org). The hub allows searchable access to TWAS
results from hundreds of complex traits and dozens of
expression studies based on the methodology described initially
in Gusev et al. [109].

To better understand the pathobiology of disease, another
way forward is to study a small number of carefully selected
families with multiple affected individuals and with strong
family history. This analysis is likely to be successful given
the risk variants are likely to have larger effect sizes than
GWAS loci. In addition, because such variants are likely to
be coding, it is easier to subsequently functionally character-
ise, and to develop cellular and animal models. Such ap-
proaches have been reviewed previously in Lord et al. [110].

In a similar vein, another study approach that has proved suc-
cessful in finding novel risk genes for AD is to focus on early
onset sporadic AD rather than late onset sporadic AD exem-
plified by Kunkle et al. and Nicolas et al. [51]. These studies
focus on extreme phenotypes, likely to be enriched for rarer
variants with moderate effect sizes. As sample sizes grow,
identification of disease-modifying genetics-utilising cohorts
with deeply phenotyped data is likely to prove fruitful to un-
derstand more about the genetics of disease progression.
Individuals with AD experience a range of non-cognitive
symptoms that are distinct to each individual with disease
[111].

Another approach recently utilised to identify common risk
variation is to analyse large data sets such as the UK Biobank.
Although most of the participants in these types of studies are
too young to be diagnosed with AD, it is possible to study the
disorder using family history data via a diagnosis by family
history design [21•, 112•]. Currently, the UK Biobank data
only include a limited number of accurate rare variant geno-
type data. However, there are plans for the UKBiobank cohort
to be sequenced and the data to be made available to the
scientific community [113]. Further initiatives such as the
Genomics England project and studies based on data from
electronic health records could provide further opportunities
to mine large sample sets of data [114]. A recent review dis-
cusses the available resources and the statistical challenges
with respect to analysing such data [115]. In the UK, the
newly announced Digital Innovation Hub Programme by
Health Data Research UK (with the help of MRC) aims to
build towards a national hub to connect health-related data
for research across populations of between three to five mil-
lion people [116]. A word of caution with respect to using
primary health and longitudinal cohort data is the potential
overlap of sample sets across multiple studies, which could
lead to false-positive observations, and the continued require-
ment for independent replication of new loci in similar sized
cohorts.

Conclusions

Genetic heritability of sporadic AD is accounted for by both
common and rare genetic variation. Here, we describe the
established and putative rare AD risk variation identified by
the field to date. We note that the rare variants identified con-
tribute to disease susceptibility with larger effect sizes than
generally seen with common risk variation and result in pro-
tein coding changes that can be easily modelled in silico,
in vitro and in vivo. The identification of both common and
rare disease-associated variants loci, including the SORL1 and
ABCA7 genes, suggests that a number of the AD-associated
genes may influence disease susceptibility via multiple
mechanisms.

Fig. 1 The binding domain of the TREM2 protein, the R62H rare variant
is seen in a stick all ball model format
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GWAS in other complex traits suggests that more powerful
GWAS will identify further additional common and low fre-
quency associations [25]. While, collaborative WES and
WGS will undoubtedly unearth a significant number of rare
variants that influence disease risk. As discussed, there are a
number of issues that will need to be addressed to achieve this
goal, primarily combining the differing sequence capture tech-
nologies, and adequately accessing the whole exome/genome.
Further efforts by the IGAP, the European AD Biobank
(EADB), AD European Sequencing (ADES) and ADSP
among others are already underway. Ultimately, the future lies
inWGS projects that will allow the detection and testing of the
full range of genomic variation (including large structural al-
terations) with disease status, and this study design is being
utilised for a range of rare diseases in projects such as
Genomics England. Unfortunately, for complex traits that rely
on large sample sizes to achieve the necessary statistical pow-
er, this is still beyond our reach.

The rare variants shown to associate with sporadic AD
include potentially damaging and loss of function muta-
tions, suggesting that careful assessment has to be consid-
ered for clinical practice and patient feedback along with
the already established variation in APOE, PSEN1, PSEN2
and APP [117]. Unquestionably, we are only at the begin-
ning of our journey to identify rare protein-coding changes
associated with disease. Already, the disease-associated
protein-coded changes detected provide a greater under-
standing of the specific mechanism underlying disease risk
as compared with common non-coding genetic risk factors
and are likely to allow the expedited development of
therapeutics.
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