A network of bHLH factors controls self-renewal and bipotential differentiation in the *Drosophila* intestine

Aleix Puig Barbé

Thesis submitted for the award of Doctor of Philosophy

September 2018
DECLARATION

This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award.

Signed ………………………………………… (candidate) Date ……………………………

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements for the degree of PhD

Signed ………………………………………… (candidate) Date ……………………………

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where otherwise stated.

Other sources are acknowledged by explicit references. The views expressed are my own.

Signed ………………………………………… (candidate) Date ……………………………

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.

Signed ………………………………………… (candidate) Date ……………………………

STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loans after expiry of a bar on access previously approved by the Academic Standards & Quality Committee.

Signed ………………………………………… (candidate) Date ……………………………
Acknowledgements

I would like to start expressing all my gratitude to my supervisor, Dr Joaquín de Navascués. First of all, for giving me the opportunity to join you in the lab. Second, because I had your support from the first moment, inside and outside the lab. I could count on you when I had any problem, and you cannot imagine how important this is when you live far from home for three years and a half. It has been a pleasure to work and learn by your side all these years and I am very proud to be the first PhD student (the first of many!) from your lab. I wish you all the luck in the future and I know that we will keep in touch.

I want to thank Cardiff University for supporting my PhD studentship.

I would like to express my gratitude to Dr Sonia López de Quinto and Dr Tony D. Southall for agreeing to be the examiners for my viva.

During the course of this thesis we initiated some experiments using the DamID method. This are ongoing at the time of writing, and are not included in the thesis, but I would like to thank Dr Tony Southall for his invaluable help with the DamID protocol and troubleshooting.

In the last four years I have been very lucky to be surrounded by wonderful people that supported me, in the lab and outside; in Cardiff or from the distance, and I would like to take the opportunity to thank them:

Sonia, Helen, Mike, Wynand: for all your suggestions and feedback during the fly meetings, that made this thesis much better. Especialmente quiero agradecerte, Sonia, que nos hayas hecho la vida mucho más fácil todos estos años, encargándote de que la comida de moscas nunca faltara, ayudándome a organizar los meetings y mil cosas más.

David, Simona and Angelo: I have really missed you the last year and a half. Friday’s evenings at Woodville, discovering sushi places, watching Champions league matches (especially Barça-Roma!), … I wish you all the best in Verona and Valencia, and I hope we can meet again in the future.
María Ángeles: la fiesta en Cardiff ya nunca fue lo mismo desde que te fuiste. Llegaste poco después que yo y me ayudaste muchísimo en el laboratorio. Pero sobretodo quiero agradecerte que me insistieras para que saliera de mi zona de confort en muchas ocasiones y recordarme que había más cosas aparte del lab.

Ramon Arens and Suzanne: for accepting me in your lab when I had no experience. Only now I can realize all the patience you had with me.

Marco, Ana y todos los milanos: por introducirme en el mundo de la mosca y enseñarme tanto. También por acogerme con los brazos abiertos cada vez que voy de visita.

Jo: I really cannot imagine how this lab would work without you. You are always helping everyone with a smile on your face.

Mark: for helping me every time the confocal decided not to work (or any machine in the lab!)

I would like to thank all the ECSCRI members for all the moments that we shared in the lab.

Adri: por todos esos partidos al Fifa, luchas con el Mortal Kombat, juegos de mesa, cenas en kaspas, chinos y japoneses, scape rooms y partidas al poker. Espero que ahora que volvemos los dos para España podamos seguir viéndonos.

Raquel: por todas las risas durante estos años, ya fueran en tu casa que la pared se caía a trozos o saliendo a cenar de vez en cuando. Te agradezco que pudieras hacerme huecos en tu tan apretada agenda, y aunque hubieras trabajado mil horas en la cafetería o tuvieras un deadline en breves.

Juan: per aguantar-me durant tots aquests anys. Encara no entenc que volguessis mudar-te a la mateixa casa (de fet sí, no podies dir que no a una casa que estava literalment a 25 m del lab). Sempre podrem recordar els teus sucs de taronja…

Leigh Anne: I really enjoyed getting to know you, especially in the last couple of years. If you come to Catalonia with Juan, it is obligated to come to visit me in Barcelona!
Ana: Literalmente no recuerdo cómo era el lab antes de que vinieras. ¿Con quién cotilleaba yo? ¿Quién aguantaba mis quejas por cualquier tontería o mis paranoias? Realmente nos hemos reído mucho todos estos años, y no te imaginas cuanto lo echaré de menos. ¡Ahora te toca a ti terminar la tesis para que nos podamos ir a Florida!

Irina: Thank you for always taking care of me, like an older sister. And also thank you for being my Portuguese mentor. You are the only one who speaks understandable Portuguese.

Pedro: ¡por ser el que siempre intenta engañar al resto para jugar a GOT! Ha sido un placer conocerte y compartir tantos momentos. También quiero destacar la gran labor que haces para intentar que Ana sea puntual, es un trabajo que no está lo suficientemente reconocido.

Joana: lab mate, house mate, image assessor, food supplier, … I am really glad that it was you who moved in the house when Fabio left. I really miss living with you, so just find a job to Barcelona and we can be housemates again!

Carlotta: just thanks for being the way you are. You bring joy to the lab and whenever we meet outside. Also, I would like to let you know that when I grow up, I would like to be like you, working so hard in the lab, and somehow you find the time to do thousands of activities!

Fabio: Obrigado! Queres sumo? I really enjoyed living with you, playing PS4 until late or watching TV shows (although you know how I am with slow TV shows). And now inviting me from time to time to have brunch eating your famous pancakes.

Giusy: you are one of the people who made my integration in the lab easy. I feel really lucky to do my PhD in the same institute as you. Your mentoring was priceless, and I wish you all the best to you and your beautiful son in the future

Laura: mi hermana (mayor, cómo me recordarías tú). Sé que puedo contar contigo siempre que lo necesite. Que si tengo un día de bajón solo me hace falta llamarte para que mejore. Simplemente, quiero agradecerte que siempre, siempre estés ahí, incluso cuando hay miles de quilómetros de distancia.
Als meus pares: pel vostre suport incondicional, que m’estimeu tant tot i que sigui tant esquerp (inclús més que la Lana). No hauria arribat fins aquí sense vosaltres, ni seria la persona que sóc. Gràcies de tot cor.

Al meu germà i a tota la meva família: Per tot el vostre suport i estima.
Table of contents

ACKNOWLEDGEMENTS... 1

TABLE OF CONTENTS... 5

ABSTRACT .. 8

LIST OF ABBREVIATIONS ... 9

SECTION 1: INTRODUCTION ... 12

A. ADULT STEM CELLS .. 14

B. THE DROSOPHILA MIDGUT ... 15

B1. Parallelisms and differences with the mammalian intestine ... 16

B2. Signalling pathways regulating the differentiation of the ISC .. 18

B2.1. The Notch pathway controls intestinal stem cell fate .. 18

B2.1.1. Notch signalling .. 18

B2.1.2. Notch signalling in the Drosophila midgut .. 20

B2.1.3. Notch signalling in the mammalian midgut ... 22

B2.2. The Jak/Stat pathway promotes both ISC proliferation and differentiation 23

B3. Control of ISC proliferation ... 24

B4. Maintenance of the progenitor state .. 26

B5. Secretory differentiation .. 28

B5.1. Drosophila secretory differentiation ... 28

B5.2. Secretory differentiation in the mammalian system ... 31

C. bHLH FACTORS ... 33

C1. General remarks .. 33

C1.1. Class I bHLH transcription factors ... 35

C1.2. Class II bHLH transcription factors ... 36

C1.3. Class V HLH factors .. 36

C2. Notch and bHLH factors in the development of the peripheral nervous system 37

C3. bHLH proteins in the Drosophila developing eye ... 38

C4. bHLH proteins in the mammalian gut ... 40

SECTION 2: MATERIALS AND METHODS ... 42

1. Fly stocks .. 43

Driver lines: ... 43

UAS-transgenes: .. 43

Expression reporter genes: .. 44

Mosaic Analysis with a Repressible Cell Marker (MARCM) stocks: ... 44

Mutants: .. 44
SECTION 3: RESULTS

CHAPTER 1A: A NETWORK OF βHLH FACTORS CONTROLS SELF-RENEWAL AND BIPOTENT DIFFERENTIATION IN THE INTESTINE: EMC

1.A.1 Introduction ... 54
1.A.2. Aims ... 55
1.A.3. Results .. 55
 1.A.3.1. Expression of emc in the midgut 55
 1.A.3.2. Loss of emc arrests terminal dedifferentiation 57
 1.A.3.3. Loss of emc induces apoptosis 63
 1.A.3.4. Emc is necessary to inhibit dedifferentiation of EBs 65
 1.A.3.5. Expression of emc selects for absorptive fate 69
 1.A.3.6. emc acts downstream of Notch activation 69
1.A.4. Conclusions .. 74

CHAPTER 1B: A NETWORK OF βHLH FACTORS CONTROLS SELF-RENEWAL AND BIPOTENT DIFFERENTIATION IN THE INTESTINE: DA AND SC

1.B.1. Introduction .. 75
1.B.2. Aims .. 76
Abstract

The mechanism that controls adult stem cell commitment is not fully elucidated, although it is known that the transcriptional control plays a major role in this process. Since the discovery of stem cells in the Drosophila melanogaster posterior midgut, many transcription factors have been identified to control whether intestinal stem cells (ISC) remain in the stem compartment, commit into the absorptive fate (enterocytes, EC) or differentiate into enteroendocrine (EE) cells. However, the molecular mechanisms governing these cell fate decisions remain to be fully elucidated.

We have identified a network of basic helix-loop-helix (bHLH) transcription factors to be key for ISC fate and the maintenance of the tissue homeostasis. The class I bHLH factor Daughterless (Da) impedes terminal differentiation by forming Da:Da homodimers, accumulating cells as ISCs or as absorptive committed cells (enteroblasts, EB). However, the class V HLH protein Extramacrochaete (Emc) inhibits the formation of Da:Da by forming dimers which lack transcriptional activity. We confirmed that emc is expressed in the posterior midgut and we showed that emc over-expression produces terminal differentiation of ISCs into ECs. Moreover, we found that Emc function is downstream of the Notch-Delta pathway. Importantly, we identified that Emc is also important in EBs to block de-differentiation of EBs into ISCs. This blocking is due to Emc inhibition over a bHLH class II, Scute (Sc). We showed that Sc has a dual role; it drives the expression of stem cells genes, such as Dl, while when being expressed at high levels, Sc initiates secretory differentiation.

Finally, we studied the function of a bHLH-leucine zipper called Cropped (Crp), whose expression produces the complete arrest of cell division and differentiation in ISCs.

Our results indicate that a simple Sc/Da/Emc network of bHLH factors act as a three-position toggle switch, choosing between the stem, secretory and absorptive fates by swapping dimerization partners. This is the first time that such a mechanism can account for all cell fate transitions in the fly gut, and it has direct implications for the maintenance of the mammalian intestine.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>Achaete</td>
</tr>
<tr>
<td>AD1</td>
<td>Activation Domain 1</td>
</tr>
<tr>
<td>AiA</td>
<td>Apoptosis induced Apoptosis</td>
</tr>
<tr>
<td>AS-C</td>
<td>Achaete-Scute complex</td>
</tr>
<tr>
<td>Ascl2</td>
<td>Achaete-Scute complex like 2</td>
</tr>
<tr>
<td>Ase</td>
<td>Asense</td>
</tr>
<tr>
<td>ASF1</td>
<td>Anti-Silencing Factor 1</td>
</tr>
<tr>
<td>Ato</td>
<td>Atonal</td>
</tr>
<tr>
<td>Atoh1</td>
<td>Atonal homolog 1</td>
</tr>
<tr>
<td>BDSC</td>
<td>Bloomington Drosophila Stock Center</td>
</tr>
<tr>
<td>bHLH</td>
<td>basic Helix-loop-Helix</td>
</tr>
<tr>
<td>CBC</td>
<td>Columnar Base Cell</td>
</tr>
<tr>
<td>Chn</td>
<td>Charlatan</td>
</tr>
<tr>
<td>CPTI</td>
<td>Cambridge Protein Trap Insertion</td>
</tr>
<tr>
<td>CtBP</td>
<td>C-terminal Binding Protein</td>
</tr>
<tr>
<td>Da</td>
<td>Daughterless</td>
</tr>
<tr>
<td>DGRC</td>
<td>Drosophila Genetic Resource Center</td>
</tr>
<tr>
<td>Dl</td>
<td>Delta</td>
</tr>
<tr>
<td>Dome</td>
<td>Domeless</td>
</tr>
<tr>
<td>E(spl)</td>
<td>Enhancer of split</td>
</tr>
<tr>
<td>EB</td>
<td>Enteroblast</td>
</tr>
<tr>
<td>EC</td>
<td>Enterocyte</td>
</tr>
<tr>
<td>EE</td>
<td>Enteroendocrine</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal Growth Factor</td>
</tr>
<tr>
<td>Egr</td>
<td>Eiger</td>
</tr>
<tr>
<td>Emc</td>
<td>Extramacrochaetae</td>
</tr>
<tr>
<td>EMT</td>
<td>Endothelial-Masenchymal Transition</td>
</tr>
<tr>
<td>Esg</td>
<td>Escargot</td>
</tr>
<tr>
<td>Ex</td>
<td>Expanded</td>
</tr>
<tr>
<td>Ey</td>
<td>Eyeless</td>
</tr>
<tr>
<td>Eyg</td>
<td>Eyegone</td>
</tr>
<tr>
<td>Fkh</td>
<td>Fork head</td>
</tr>
<tr>
<td>FO</td>
<td>FlipOut</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Term</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>GBE</td>
<td>Grainyhead palindromic binding site</td>
</tr>
<tr>
<td>GMC</td>
<td>Ganglion Mother Cell</td>
</tr>
<tr>
<td>H</td>
<td>Hairless</td>
</tr>
<tr>
<td>Hdc</td>
<td>Headcase</td>
</tr>
<tr>
<td>Hh</td>
<td>Hedgehog</td>
</tr>
<tr>
<td>HLH</td>
<td>Helix-loop-Helix</td>
</tr>
<tr>
<td>Hop</td>
<td>Hopscotch</td>
</tr>
<tr>
<td>Hpo</td>
<td>Hippo</td>
</tr>
<tr>
<td>Id</td>
<td>Inhibitor of differentiation / Inhibitor of DNA binding</td>
</tr>
<tr>
<td>ISC</td>
<td>Intestinal Stem Cell</td>
</tr>
<tr>
<td>l'sc</td>
<td>Lethal of scute</td>
</tr>
<tr>
<td>Lgr5</td>
<td>Leucin-rich repeat-containing G-protein-coupled receptor 5</td>
</tr>
<tr>
<td>LH</td>
<td>Loop Helix</td>
</tr>
<tr>
<td>Mam</td>
<td>Mastermind</td>
</tr>
<tr>
<td>mcs</td>
<td>Microchaetae</td>
</tr>
<tr>
<td>MCs</td>
<td>Macrochaetae</td>
</tr>
<tr>
<td>MF</td>
<td>Morphogenetic Furrow</td>
</tr>
<tr>
<td>NECD</td>
<td>Notch Extracellular Domain</td>
</tr>
<tr>
<td>NEXT</td>
<td>Notch Extracellular Truncation</td>
</tr>
<tr>
<td>Ngn3</td>
<td>Neurogenin 3</td>
</tr>
<tr>
<td>NICD</td>
<td>Notch Intracellular Domain</td>
</tr>
<tr>
<td>NIG</td>
<td>National Institute of Genetics</td>
</tr>
<tr>
<td>NRE</td>
<td>Notch Responsive Element</td>
</tr>
<tr>
<td>PNS</td>
<td>Peripheral Nervous system</td>
</tr>
<tr>
<td>PH3</td>
<td>Phospho Histone 3</td>
</tr>
<tr>
<td>Phyl</td>
<td>Phyllopod</td>
</tr>
<tr>
<td>PNC</td>
<td>Pro-Neural Cluster</td>
</tr>
<tr>
<td>pre-EE</td>
<td>pre-Enteroendocrine</td>
</tr>
<tr>
<td>REP</td>
<td>Repression Domain</td>
</tr>
<tr>
<td>Sc</td>
<td>Scute</td>
</tr>
<tr>
<td>Ser</td>
<td>Serrate</td>
</tr>
<tr>
<td>SOP</td>
<td>Sensory Organ Precursor</td>
</tr>
<tr>
<td>Spdo</td>
<td>Sanpodo</td>
</tr>
<tr>
<td>Su(H)</td>
<td>Suppressor of Hairless</td>
</tr>
<tr>
<td>TA</td>
<td>Transit Amplifying</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>TACE</td>
<td>TNF-alfa converting enzyme</td>
</tr>
<tr>
<td>TAD</td>
<td>Transactivator Domain</td>
</tr>
<tr>
<td>Tap</td>
<td>Target of Poxn</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Necrosis Factor</td>
</tr>
<tr>
<td>Ttk69</td>
<td>Tramtrack69</td>
</tr>
<tr>
<td>UAS</td>
<td>Upstream Activated Sequence</td>
</tr>
<tr>
<td>UBP</td>
<td>Unknown Binding Partner</td>
</tr>
<tr>
<td>Upd</td>
<td>Unpaired</td>
</tr>
<tr>
<td>VDRC</td>
<td>Vienna Drosophila Resource Center</td>
</tr>
<tr>
<td>VM</td>
<td>Visceral Muscle</td>
</tr>
<tr>
<td>Vn</td>
<td>Vein</td>
</tr>
<tr>
<td>Wg</td>
<td>Wingless</td>
</tr>
<tr>
<td>Yki</td>
<td>Yorkie</td>
</tr>
</tbody>
</table>

During the elaboration of this thesis, I decided to write the Results section using the first person, plural personal pronoun “we”. The aim is to avoid constant changes between the singular and the plural pronouns. All the experiments were planned and discussed by Aleix Puig and Dr. Joaquín de Navascués. Unless otherwise stated, all the experiments, data acquisition and data analysis were performed by Aleix Puig. The development of the scripts to analyse the data were done by Aleix Puig under the supervision of Joaquín de Navascués.
Section 1: Introduction
“The fixity of the milieu supposes a perfection of the organism such that the external variations are at each instant compensated for and equilibrated” (Bernard, 1878). With this sentence, Claude Bernard described a dynamic process that later Cannon termed as homeostasis: “The coordinated physiological reactions which maintain most of the steady states in the body are so complex, and are so peculiar to the living organism, that it has been suggested that a specific designation for these states be employed — homeostasis” (Cannon, 1929).

Adult tissues maintain homeostasis through a delicate equilibrium between proliferation and differentiation of adult stem cells. In this thesis we will try to comprehend the transcriptional regulation of adult stem cell differentiation in the Drosophila midgut.
A. Adult stem cells

During the first stages of development, embryonic stem cells are the source that will generate all cell types of the different tissues and organs. However, once the individual is formed and has grown, how will all the different organs be maintained? Adult stem cells are a subset of cells that resides in adult tissues, having the capacity to divide in order to generate new stem cells (self-renewal) and differentiate directly or through multiple steps. This capacity to self-replicate and commit is needed to replenish the tissue when differentiated cells are lost. Moreover, stem cells need to maintain the multipotency in order to replace any cell type that has been lost in the tissue. However, stem cell processes are tightly regulated, as an indiscriminate proliferation or lack of it would lead to disease situations such as cancer. Therefore, there is a balance between divisions and cell loss that will maintain the homeostasis of the tissue. Thus, in a tissue injury situation, the number of cell division will increase, followed by differentiation to replenish all cells that are lost.

Some tissues can be maintained with unipotent stem cells, as they only need to replace one cell type. In these tissues, stem cells only control proliferation and when to differentiate, but do not need mechanisms that decides the different cell fates. This is the case of the skeletal muscle (Costamagna et al., 2015; Wosczyna and Rando, 2018). However, in other organs stem cells can differentiate into a number of different fates. These are the cases of the small intestine, the trachea or the airway epithelia (reviewed in Gehart and Clevers, 2015; Rawlins and Hogan, 2006). Some organs are exposed to insults; for instance, in the midgut the resident microbiota, digestive enzymes and biliary and gastric acids produce the necessary environment to process the nutrients, which can be damaging for the cells exposed to it. Hence, there is an active replacement of the different cell types and after cell proliferation, daughter cells are programmed for correct differentiation. Therefore, the intestine has been raised as a paradigmatic organ where to study the transcriptional regulation of stem cell differentiation, as it has a great biomedical value. The Drosophila melanogaster midgut captures the essence of the problem of the multipotent stem cell, as it contains bipotent stem cells whose fate depend on a precise transcriptional regulation. Moreover, the Drosophila midgut is the only organ in the fly that contains multipotent cells.
B. The Drosophila midgut

The D. melanogaster midgut is a flat tube that contains adult stem cells that sustain the differentiated cells (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006). The homeostatic intestine has four cell types: the intestinal stem cells (ISC), cells committed to differentiation, called enteroblasts (EB), the absorptive enterocytes (EC) and secretory enteroendocrine (EE) cells (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006) (fig. 11A, B). Once an ISC differentiates into an EB, this cell commits to differentiation without further divisions. Some studies propose that EBs differentiate to ECs or EEs (Ohlstein and Spradling, 2006; Ohlstein and Spradling, 2007). However, two recent studies show that there could be two different types of progenitors, one that will differentiate into an EC (EBs) and a different one, named pre-EE cells, which are a very short-lived cell that quickly differentiates to an EE cell (fig. 1C) (Biteau and Jasper, 2014; Zeng and Hou, 2015). EE cells secrete peptide hormones and there are different subgroups depending on the hormones they secrete, such as allostatin or tachykinin (Beehler-Evans and Micchelli, 2015). ECs contain an actin-rich brush at the apical side to take nutrients. The size of ECs is bigger with respect to the other cell types in the gut due to multiple cycles of endoreplication.

Similarly to the mammalian intestine, equivalent ISCs choose stochastically whether to symmetrically self-renew, symmetrically differentiate, or allocate fate asymmetrically, in balanced proportions (de Navascués et al., 2012). A quantitative study of ISC divisions showed that while an 80% of divisions are asymmetric, a 20% are symmetric, 10% giving two ISCs and 10% giving two EBs. de Navascués et al. proposed that after ISC division, daughter cells could be uncommitted and their fates would be defined stochastically (de Navascués et al., 2012).
1. Parallelisms and differences with the mammalian intestine

The mammalian intestinal tract is a folded monolayer that contains multiple units. Each unit is sub-divided in two distinct regions: the villi are evaginations that are more exposed to the lumen and present differentiated cell types for nutrient absorption and digestion; and the crypts of Lieberkühn are invaginations that contains stem cells, progenitor cells and Paneth cells (reviewed in Clevers, 2013). At the base of the crypt we can identify the columnar base cells (CBC), which are stem cells that can be identified with the marker Leucin-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) (fig. I2A) (Barker et al., 2007; Snippert et al., 2010). Interestingly, crypts that had complete ablation...
of CBCs maintained homeostasis, and the Lgr5+ cell pool was restored in the crypt (Tian et al., 2011). Clonal analysis performed by Tian et al. showed that new CBC’s source were cells localized at the +4 position from the base of the crypt. These +4 cells were for long thought to be quiescent stem cells (Muñoz et al., 2012; Potten et al., 1978). However, it was later shown that the +4 cells are secretory precursors that in stress conditions where CBCs are compromised, can de-differentiate into stem cells (Buczacki et al., 2013; Schwitalla et al., 2013). Supporting stem cells, Paneth cells were surrounding CBCs to form the niche with stromal cells, providing Wnt, Notch and EGF signalling to maintain self-renewal and multipotency (Farin et al., 2012; reviewed in Gassler, 2017; Valenta et al., 2016). Moreover, CBCs give rise to the transit amplifying (TA) cells, which rapidly proliferate and migrate to the lumen. These cells are progenitors that will differentiate either into the absorptive fate or the secretory fate (see section B2.1.3). When progenitor cells reach the villus, they terminally differentiate. Absorptive progenitors only

Figure I2. The architecture of the mammalian intestinal epithelium

A. CBCs (Lgr5+ cells) (green) are found at the base of the crypts supported by Paneth cells (red). CBCs can divide and differentiate. Committed progenitor cells (yellow) are specified in the transit amplifying zone, where they are specified into the secretory or absorptive lineage. When cells are completely differentiated, they migrate to the villus. Taken from Anderson-Rolf et al., 2017.

B. CBCs self-renew and differentiate into the absorptive fate (ECs), M cells or the secretory fate, which comprises several subtypes (Goblet cells, Paneth cells, EE cells and Tuft cells). Taken from Anderson-Rolf et al., 2017.
differentiate into ECs, while secretory progenitors can differentiate into EE cells, tuft cells, goblet cells or Paneth cells (fig. 12B), with the later migrating to the crypt (Marshman et al., 2002).

Therefore, both CBCs in mammals and ISCs in Drosophila are multipotent and self-renew. However, while it has been shown that ablation of stem cells in mammals could be reverted with some progenitor cells, to date in Drosophila no de-differentiation has been observed when all progenitor cells disappear (Lu and Li, 2015). In both systems differentiated cells go through a progenitor state, although in Drosophila absorptive progenitor cells do not divide. It has been reported that EBs can migrate before differentiating into ECs (Antonello et al., 2015), which resembles the migration in the TA compartment.

B2. Signalling pathways regulating the differentiation of the ISC

In the Drosophila midgut two pathways have been identified to control whether ISCs can differentiate or not, and to which cell fate: the Notch pathway and the Jak/Stat pathway.

B2.1. The Notch pathway controls intestinal stem cell fate

Notch pathway is an evolutionary conserved pathway that is involved in the correct cell specification during development and adult tissues. In the Drosophila midgut, Notch is the most important pathway for the correct differentiation of ISCs (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006; Ohlstein and Spradling, 2007).

B2.1.3. Notch signalling

Notch is a transmembrane receptor that owes the name to the notches that fly wings had in heterozygous Notch mutant females (Mohr, 1919; Wharton et al., 1985). Notch, with its two ligands DI (Dl) and Serrate (Ser), were first identified as neurogenic genes, as when they were lost epidermal cells transformed into neuroblasts (Fleming et al., 1990; Lehmann et al., 1983; Vässin et al., 1987). Both ligands were shown to be type I single-pass transmembrane, and therefore, activation of Notch needed physical contact with a cell expressing the ligands (Fleming et al., 1990; Heitzler and Simpson, 1991; Kopczynski et al., 1988) (Fig. 13).
Notch contains a long extracellular domain (NECD) and a shorter intracellular domain (NICD). In the NECD there are 36 tandem epidermal growth factor (EGF) repeats, which are also found in Dl (7) and Ser (12). The N-terminal domain of the ligands directly bind with two specific EGF repeats (11-12) in Notch to initiate the activation (Rebay et al., 1991). Notch receptor contains three cleavage sites (S1, S2 and S3). Cleavage on the S1 site is mediated by Furin and it is necessary for the maturation of the protein during the secretory pathway, independently of ligand binding. After ligand-receptor binding, the TNF-α converting enzyme (TACE) and kuzbanian, two metalloproteases of the ADAM family, cleave the S2 site, releasing the NECD and forming an activated Notch extracellular truncation (NEXT) (Brou et al., 2000; Rooke et al., 1996). Then, the γ-secretase protease complex cleaves the S3 site through its catalytic subunit presenilin (Struhl and Adachi, 2000; Struhl and Greenwald, 1999; Ye et al., 1999), releasing the NICD from the membrane. NICD, which is the domain with transcriptional function, translocates to the nucleus and forms a complex with the DNA binding protein Suppressor of Hairless, Su(H) (Fortini and Artavanis-Tsakonas, 1994). Consequently, this complex can recruit the co-activator Mastermind (Mam) (Petcherski and Kimble, 2000) (Fig. I3).

When NICD is not present, Su(H) remains bound to the DNA and to the adaptor protein Hairless (H) (Brou et al., 1994; Furriols and Bray, 2000). H promotes chromatin repression by recruiting the co-repressors Groucho, C-terminal binding protein (CtBP) and anti-silencing factor 1 (ASF1), which is a conserved H3-H4 histone chaperone (Bang and Posakony, 1992; Barolo et al., 2002; Maier et al., 1999).

Notch signaling typically implies two or more cells. Notch signaling is required for acquisition of distinctive fates in neighboring cells that are in contact. Thus, one cell activates the Notch receptor of all surrounding cells, and Notch activation triggers a downstream cascade that prevents their ability to present Notch ligands, and the cell that cannot be inhibited by Notch anymore achieve an alternative fate than the neighbors. This is called lateral inhibition (reviewed in Sjöqvist and Andersson, 2017). After ISC division in the Drosophila midgut, lateral Notch controls the daughter fate by lateral inhibition (Guisoni et al., 2017).
Notch signalling plays a crucial role in the *Drosophila* midgut to control cell lineage and therefore, it has emerged as an excellent model to understand Notch signalling in adult stem cells. ISCs express both Notch and the ligand Delta (Bardin et al., 2010). After ISCs divides both cells inherit Dl and Notch in similar amounts (Ohlstein and Spradling, 2007), although in the majority of cases, Notch is activated in one of the two cells and it becomes an EB. Modulating Notch signalling, Perdigoto et al. showed that a high level of Notch activity was required for cells to become EBs (Perdigoto et al., 2011). EBs do not present Dl anymore, and therefore their sister cells remain as ISCs (asymmetric divisions) (de Navascués et al., 2012; Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2007). However, there are cases where two daughter cells can achieve the same fate, either ISCs or EBs, and it was proposed that this might depend on the amount of Notch signalling between the two daughter cells, as limited by their contact area (Fig. I4) (Guisoni et al., 2017).

B2.1.2. Notch signalling in the Drosophila midgut

Notch activation starts when the receptor binds with the ligand. The metalloproteases from the ADAM family can cleave the S2 site, generating the NEXT. A second cleavage by the γ-secretase releases the NICD to the cytoplasm, which can enter the nucleus. NICD then can bind with Su(H) and recruit Mam to drive transcription of target genes. In the absence of Notch activation, Su(H) binds H and recruits the co-repressors Gro, CtBP (orange) and ASF1 (green).

Figure I3. Notch pathway

Notch activation starts when the receptor binds with the ligand. The metalloproteases from the ADAM family can cleave the S2 site, generating the NEXT. A second cleavage by the γ-secretase releases the NICD to the cytoplasm, which can enter the nucleus. NICD then can bind with Su(H) and recruit Mam to drive transcription of target genes. In the absence of Notch activation, Su(H) binds H and recruits the co-repressors Gro, CtBP (orange) and ASF1 (green).
Apart from the contact area, asymmetric protein segregation during ISC divisions could also be important for daughter fates. Integrins regulate spindle orientation and the re-localization of the Par complex in the putative ISC (Goulas et al., 2012). Suppression of the Par complex induces ISCs and EE cells large clusters, in a similar manner to loss of function mutations of Notch (Goulas et al., 2012). Moreover, the endosomal adaptor protein Numb is also localized to one side of the dividing cell (Sallé et al., 2017). Numb has been identified as a Notch inhibitor in neurogenesis by regulating Notch trafficking to late endosomes and restricting a specific sub-population of Notch that would be recycled (Guo et al., 1996; Johnson et al., 2016). In the midgut, Numb is also found in the new ISC side during mitosis and has been observed to be upstream of Notch signalling (Sallé et al., 2017). In addition, Sara endosomes, which contain Notch and Dl, are inherited by presumptive EBs after mitosis (Montagne and Gonzalez-Gaitan, 2014). Numb could be activated in these endosomes, initiating the acquisition of the fate.

The activation of Notch is key to progress into the absorptive fate and lack of Notch induces ISCs over-proliferation or selection into the secretory fate (Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006). Moreover, inhibiting Notch signalling with H expression or removing Su(H) also induce an accumulation of ISCs (Bardin et al., 2010). On the other hand, ectopic induction of NICD in ISCs results in differentiation into EC differentiation, and a complete loss of the stem pool (Micchelli and Perrimon, 2006).
It is likely that Notch activation in the gut induces the expression of members of the *Enhancer of split* [*E(spl)*] complex (Celis et al., 1996; Jennings et al., 1994), which are transcriptional regulators of the basic helix-loop-helix (bHLH) family, class VI. In the *Drosophila* midgut, loss of the whole E(spl) complex results in accumulation of ISCs (Bardin et al., 2010), without secretory differentiation.

Notch signalling also has a second role in the midgut for secretory specification, as *Notch* loss of function clones increase the number of EE cells (Ohlstein and Spradling, 2006). Guo and Ohlstein reported that in the pupae and later in the adult midgut, after asymmetrical division, the newly formed pre-EE cell express Dl, while ISC has Notch activated transiently to halt secretory differentiation (Guo and Ohlstein, 2015).

B2.1.3. Notch signalling in the mammalian midgut

Notch signalling is also important in the mammalian midgut, although it shows some differences with *Drosophila*. Notch activation has a dual role: to promote proliferation and prevent differentiation in CBC and to select for the absorptive phenotype instead of the secretory in TA cells. In *Notch* loss of function mutations or *Dl1* and *Dl4* mutations, all stem cells halted the proliferation and differentiated into EE cells (Pellegrinet et al., 2011; van Es et al., 2005), while activation of Notch signalling in the gut promotes stem cell proliferation and ceases goblet and EE differentiation (Fre et al., 2005). Notch effectors are the E(spl) mammalian homologs, the Her/Hes family, which target *atonal homolog 1* (*Atoh1*), a member of the bHLH family, responsible for secretory differentiation (Kazanjian et al., 2010; Kim and Shivdasani, 2011; Milano et al., 2004; Shroyer et al., 2007; VanDussen and Samuelson, 2010; Yang et al., 2001). Due to genetic redundancy, the ablation of only one member of the family, such as *Hes1*, is not enough to stop the proliferation and promote secretory differentiation, and it is needed to inactivate at least *Hes1*, *Hes3* and *Hes 5* (Ueo et al., 2012). Interestingly, the inactivation of Hes1 alone is sufficient to eliminate proliferation in intestinal tumours without affecting the homeostasis of the crypt (Ueo et al., 2012).

In the crypt base, Paneth cell presents Dl on the surface to induce activation of Notch in the CBC. In the TA compartment, secretory progenitors signal to the absorptive progenitors to activate Notch and promote differentiation into ECs. Therefore, compared
to the *Drosophila* midgut, Notch activation has opposed effects in ISCs, as in mammals maintains stemness, while in *Drosophila* induces differentiation. However, in both systems Notch signalling selects for absorptive differentiation over secretory fate (reviewed in Fre et al., 2011; Perdigoto and Bardin, 2013).

B2.2. The Jak/Stat pathway promotes both ISC proliferation and differentiation

The Jak/Stat pathway is a conserved pathway active in numerous developmental processes. In *Drosophila*, there are three leptin-like cytokines (Unpaired (Upd), Upd2 and Upd3) which are the secretable ligands, one transmembrane receptor called Domeless (Dome), one tyrosine kinase called Hopscotch (Hop) and a transcription factor, Stat92E. Binding of Upd, Upd2 or Upd3 to Dome activates the receptor associated kinase Hop, which phosphorylates Dome and itself. This phosphorylation generates docking sites in Dome/Hop dimers, allowing cytoplasmic Stat92E to bind Dome/Hop through the Stat92E SH2 domains. Then, Stat92E is also phosphorylated by itself and forms homodimers with other phosphorylated Stat92E to translocate into the nucleus and drive transcription of target genes, including its own expression to create a positive feedback loop (fig. 15) (reviewed in Arbouzova & Zeidler 2006).

![Figure 15 Jak/Stat pathway](image)

Figure 15 Jak/Stat pathway

Upd/Upd2/Upd3 bind and activate the receptor Dome, which have Hop associated. Dome activation induces Hop trans-phosphorilation and therefore, Hop activation. Then, Hop phosphorilates Dome, inducing Stat92E recruitment and phosphorilation. Phosphorilated Stat92E dimerise and translocate to the nucleus to bind DNA target sequences to regulate gene transcription.
In the fly midgut, Upd, Dome, Hop and Stat92E are expressed in all progenitor cells (Beebe et al., 2010; Jiang et al., 2009; Lin et al., 2010; Liu et al., 2010). However, it seems that the localization of Stat92E in the majority of these cells is cytoplasmic, and only newly formed EBs shows a strong nuclear intensity (Liu et al., 2010). Loss of function of hop or Stat92E in progenitor cells caused an inability of these cells to terminally differentiate either to ECs or to EE cells (Beebe et al., 2010; Jiang et al., 2009; Lin et al., 2010; Liu et al., 2010). Moreover, while some studies show that ISCs can still progress to EBs (Jiang et al. 2009; Lin et al. 2010), others show that this commitment step is also arrested (Liu et al., 2010). However, the strong nuclear signal in newly formed EBs supports the hypothesis that Stat92E is also necessary for EB differentiation.

There are multiple sources for Upd signalling to activate the Jak/Stat pathway in ISCs. The activation of JNK in old ECs will lead to apoptosis and induces the expression and secretion of Upd, Upd2 at low levels, and of Upd3 at very high levels in ECs (Jiang et al., 2009; Zhou et al., 2013). Upd has also been shown to be secreted by progenitor cells themselves and from the visceral muscle (VM) (Lin et al., 2010).

The expression of Stat92E seems to be under the control of Notch, as loss of Notch increase Stat92E expression. Interestingly, loss of Notch also enhances upd expression (Liu et al., 2010). In addition, ectopic expression of NICD in progenitor cells to activate the Notch pathway cannot induce terminal differentiation when the Jak/Stat pathway is not functional (Beebe et al., 2010; Jiang et al., 2009; Lin et al., 2010). It could be possible either that Notch negatively regulates directly the expression of members of the Jak/Stat pathway or activates the expression of Jak/Stat inhibitors, such as windpipe (Ren et al., 2015).

B3. Control of ISC proliferation

To maintain the integrity of an adult tissue, when a cell is lost a new cell needs to be generated. The *Drosophila* midgut contains multiple signalling pathways that can sense that a cell is lost, either if is at small scale (an old EC is lost due the wear and tear) or at a big scale (infection, damaging agents) (Amcheslavsky et al. 2009). Therefore, the newly formed cell can proceed to differentiation and replace lost cells. Therefore, multiple pathways are responsible to control ISCs divisions.
One of the most important mitogenic pathways in the Drosophila midgut is the Jak/Stat pathway (Beebe et al., 2010; Buchon et al., 2009; Cordero et al., 2012a; Jiang et al., 2009; Lin et al., 2010; Liu et al., 2010; Suijkerbuijk et al., 2016). However, although inhibition of the Jak/Stat pathway reduces drastically the proliferation when cell death is induced in ECs, it is not absolutely required for ISC self-renewal, as loss of function of Stat92E or hop clones still contain mitotic ISCs (Beebe et al., 2010).

Another important proliferation pathway is the EGFR/Ras/MAPK pathway by which, similarly to the Jak/Stat, ISCs receive mitogenic signals from other cells (Buchon et al., 2009; Jiang et al., 2011). EBs secrete the EGFR ligands Spitz and Keren (Buchon et al., 2010; Xu et al., 2011), ECs secretes Keren at low levels (Jiang et al., 2011) and the VM secretes Vein (Vn) (Biteau and Jasper, 2011; Jiang et al., 2011; Xu et al., 2011) to induce proliferation of ISCs. In conditions of inhibition of vn expression, the ISC population still persists or is not affected (Biteau and Jasper, 2011; Jiang et al., 2011; Xu et al., 2011). Some studies show that Upd3 secreted from ECs drives expression of spitz in EBs and vn in the VM, showing a synergy between both pathways (Zhou et al., 2013). Finally, the activation of the MAPK pathway seems to induce phosphorylation in one of the two necessary phosphorylation sites of Fos (JNK pathway) (Biteau and Jasper, 2011). However, the role of the JNK pathway in ISCs has not been elucidated yet, as so far it has been shown to have a role only in aging, mediating the loss of homeostasis of the tissue in old flies (Biteau et al., 2008). Therefore, it is possible that MAPK has different targets to promote proliferation.

The Wingless (Wg) pathway can also affect ISC proliferation. The activation of the pathway resulted in an increased number of ISC mitosis (Lee et al., 2009; Lin et al., 2008). In addition, ectopic expression of wg in progenitor cells also induced more cell divisions. However, these two studies differ in whether Wg had an essential role in ISC self-renewal or not, as Lin et al. reported that attenuated wg signal induced loss of ISC, while Lee et al. did not observe any difference in the number of clones when Wg was hyperactivated.

The Hippo (Hpo) pathway is implicated in the coordination of organ growth during development (reviewed in Hariharan, 2006). The activation of this pathway results in the phosphorylation and inactivation of the transcription factor Yorkie (Yki) (Huang et al.,
Yki promotes proliferation by inducing the expression of cell cycle genes and inhibits apoptosis inducing anti-apoptotic genes (Huang et al., 2005). However, in the homeostatic Drosophila gut, inhibition of yki does not affect ISC proliferation. When upstream members of the Hpo pathways are not present or Yki is activated, the number of ISC mitoses increase greatly (Karpowicz et al., 2010; Li et al., 2014a; Ren et al., 2010; Shaw et al., 2010; Staley and Irvine, 2010). This indicates that the Hpo pathway is inhibiting Yki in homeostatic conditions. Interestingly, loss of function clones of one of the Yki targets, a microRNA called bantam, reduced proliferation (Huang et al., 2014). Although Huang et al. claim that bantam regulates proliferation downstream of the Hpo pathway, it is likely that another transcription factor can regulate bantam expression.

Hedgehog (Hh) signalling is also implicated in ISC division regulation, inducing ISC proliferation. During development, Hh is implicated in tissue grow and patterning (Cohen, 2003; Zecca et al., 1995). hh is expressed in ISCs, ECs and VM and knock down of hh in all these cells (using and ubiquitous promoter) reduced the number of ISC divisions (Li et al., 2014b).

B4. Maintenance of the progenitor state

Apart from the differentiation and proliferation pathways, several transcriptional regulators have been identified, that are expressed in then intestinal progenitor cells and play a role in the maintenance of the undifferentiated state.

Two members of the Snail family of transcription factors are important in Drosophila adult ISCs. Snail proteins are zinc-finger transcription factors normally implicated in epithelial-mesenchymal transition (EMT) processes (Nieto, 2002), but are also involved in stem cell processes. In the Drosophila midgut, Escargot (esg) is expressed in ISCs, EBs and pre-EE cells, but not in EE cells and ECs (Antonello et al., 2015; Micchelli and Perrimon, 2006; Zeng and Hou, 2015). Two recent studies have stated the importance of Esg maintaining ISC stemness and blocking differentiation (Korzelius et al., 2014; Lozacoll et al., 2014). They showed that overexpressing esg in progenitor cells block terminal differentiation and leads to the formation of clusters of EBs with some ISCs. Loss of esg drives ISCs and EBs cells to differentiate into ECs and EE cells (Korzelius et al., 2014). In progenitor cells, Esg inhibits the expression of nubbin, which is necessary for EC
differentiation (Korzelius et al., 2014). Antonello et al. speculated that EBs could sense cell loss or tissue stress and express the micro-RNA mir-8, which would inhibit the expression of esg and allow terminal differentiation (Antonello et al., 2015). On the other hand, Esg inhibits secretory differentiation by directly repressing the expression of prospero (pros) (Korzelius et al., 2014; Li et al., 2017a). It has also been suggested that Esg induces EMT in mature EBs to integrate into the epithelial layer and differentiate (Antonello et al., 2015). **Snail**, another member of the Snail family, is also expressed in progenitor cells and it has been shown to inhibit both differentiation and proliferation, maintaining progenitor cells in a quiescent state (Dutta et al., 2015).

Charlatan (Chn) is a zinc-finger transcription factor of the C2H2 family important for maintaining the progenitor state (Amcheslavsky et al., 2014a). Over-expression of chn in progenitor cells blocks the differentiation into ECs or EE cells and promotes proliferation. However, although loss of chn reduces ISCs divisions, it does not promote direct differentiation. Cells remain as Esg+, but neither express the ISC marker Dl, nor activates Notch (a trademark of EBs). This suggests that ISCs lose some stem properties upon chn loss, but do not differentiate (Amcheslavsky et al., 2014a).

The **Osa**-containing SWI/SNF remodelling complex has also seen to play a role in maintaining the stem fate. Zeng et al. showed that knocking down the expression of osa in progenitor cells induce accumulation of Dl− ISCs (identified by the ISC marker Sanpodo [Spdo]). They identified that Osa binds to the promoter regions of Dl and asense (ase) regulating their transcription (Zeng et al., 2013). Therefore, when osa is not present, Dl and ase cannot be expressed. Lack of Dl interrupts the Notch pathway to promote the absorptive differentiation, while loss of ase also blocks the secretory differentiation (see section B5.1) (Bardin et al., 2010). Therefore, ISCs proliferate and accumulate without differentiating.

A member of the Sox family, **Sox21A**, is expressed in progenitor cells, although there is a disagreement about which cell express higher levels of sox21A. While some groups indicate that EBs, specially the more mature ones, express higher levels of sox21A than ISCs (Chen et al., 2016), others shows that ISC express higher levels than EBs (Meng and Biteau, 2015; Zhai et al., 2017), and the levels of Sox21A decrease when EBs mature (Zhai
et al., 2017). The inconsistency of the results could be explained by the different detection methods, as Chen et al. use an antibody that detects cytoplasmic Sox21A, while Zhai et al. use Sox21A reporter. Meng and Biteau developed an independent Sox21A antibody that detects specifically nuclear Sox21A and although they did not quantify the signal in each cell, it seems that ISC has a stronger nuclear signal (Meng and Biteau, 2015). It also would be possible that progenitor cells have different requirements depending on the state of the midguts, as it has been shown that in homeostatic guts, Sox21A limits cell division, whereas in a stress context, Sox21A is required in the ISC to activate proliferation (Chen et al., 2016; Zhai et al., 2017). Moreover, Sox21A also has a differentiation function in EBs, as loss of function of sox21A promotes accumulation of EBs (Chen et al., 2016; Meng and Biteau, 2015; Zhai et al., 2015; Zhai et al., 2017). The activation of Sox21A depends on the Jak/Stat pathway and activates expression of Dl in ISCs and GATAe and dpp in differentiating EBs during active regeneration (Zhai et al., 2017).

FoxA transcription factor Fork head (Fkh) is a transcription factor highly expressed in ISCs and EBs and has lower expression in EE cells, while ECs do not express it (Lan et al., 2018). Loss of fkh in progenitor cells induce terminal absorptive differentiation. The function of fkh seems to be, rather than acting as a transcription factor, to keep the chromatin open and allow the binding of other transcription factors to maintain the progenitor pool (Zaret et al., 2010).

Finally, Daughterless (Da) is a member of the bHLH class I that has also been shown to be crucial to maintain the progenitor state, as loss of da induce terminal differentiation (Bardin et al., 2010). In this thesis we will explore the function of Da extensively.

B5. Secretory differentiation

B5.1. Drosophila secretory differentiation

For long, it was believed that EBs could differentiate either to ECs or to EE cells, and the terminal fate was solely dependent of the Notch signal. EBs that received a strong Notch signal would be selected for absorptive differentiation, while weak Notch activation resulted in secretory differentiation (Ohlstein and Spradling, 2007). However, recent
studies showed that EE cells came from ISCs, although they went through a very short lived transient state, termed pre-EE (Biteau and Jasper, 2014; Zeng and Hou, 2015). This pre-EE cell still expresses Dl and esg, although it also expresses the secretory marker pros (Fig 11C) (Guo and Ohlstein, 2015; Zeng and Hou, 2015).

It is generally accepted that the main initiators of EE differentiation are two bHLH class II transcription factors encoded in the achaete-scute complex (AS-C): Scute (Sc) and Asense (Ase) (Bardin et al. 2010; Amcheslavsky et al. 2014), although it has not been investigated if they work in parallel or if one regulates the other. Sc and Ase promote the initiation of the secretory differentiation by expressing the differentiating gene pros that will lead to terminal differentiation (Wang et al., 2015; Zeng and Hou, 2015). Pros, aside from promoting terminal differentiation into EE cell, also blocks cell cycle genes induced by Sc, arresting any mitotic event in the terminal EE cell (Chen et al., 2018).

Although sc is expressed in almost all ISCs, its expression levels are not homogeneous and it is weakly expressed in the majority of cells, while small subsets of cells have a higher expression (Chen et al., 2018). This suggests that sc levels need to surpass a certain threshold to promote secretory differentiation.

Moreover, it has been reported that Sc drives expression of a member of E(spl) complex, which belongs to the class VI of the bHLH family: E(spl)m8 (Chen et al., 2018). This is a negative regulator of the expression of sc and together they form a negative feedback loop to maintain low expression levels of sc in ISCs. sc expression is also repressed by Notch. Although the mechanism is not clear, knock-down of Notch in progenitor cells elevates sc expression in all ISCs (Chen et al., 2018; Li et al., 2017a). Therefore, in Notch knocked down guts, secretory differentiation is largely increased (Ohlstein and Spradling, 2006; Ohlstein and Spradling, 2007). Interestingly, it has been reported that when an ISC asymmetrically divide to generate a new ISC and a pre-EE, the expression of Dl in the pre-EE induces weak activation of Notch in the ISCs (Guo and Ohlstein, 2015). Moreover, this paper also shows that Pros, which is expressed just before mitosis, is asymmetrically segregated to the pre-EE cell (Guo and Ohlstein, 2015).

Tramtrack69 (Ttk69) has also been postulated as an inhibitor of the expression of sc and ase (Wang and Xi, 2015; Wang et al., 2015). Ttk69 is an isoform of tramtrack, a C2H2...
zinc-finger transcription factor and is expressed at low levels in ISCs and EE cells, medium levels in EBs and high levels in ECs (Wang et al., 2015). By inhibiting the expression of sc and ase, Ttk69 supress the formation of EE cells. Loss of function of ttk produces an increment of secretory differentiation, indicating that sc is being actively repressed to avoid an excess of EE cells. Moreover, Ttk69 is needed in EBs to maintain the absorptive fate, as knocking down the expression of ttk69 in this transient state induces secretory miss-differentiation and cell proliferation (Wang et al., 2015).

In the peripheral nervous system (PNS), Ttk is repressed by Numb to specify distinct fates after cell division (Guo et al., 1995). It was proposed that Numb represses Notch signalling and Notch activates ttk expression (Guo et al., 1996). In the Drosophila midgut, overexpression of Numb induces secretory differentiation, while in the absence of numb EE cells are not formed (Sallé et al., 2017). Sallé et al. showed that in loss of function of Numb clones, knocking down the expression of ttk69 rescued the differentiation of secretory cells, indicating that in this context Numb could be also repressing ttk69.

Interestingly, in the gut the expression of ttk69 is unaffected by knocking down the expression of Notch, indicating that in the adult midgut, Ttk69 and Notch act in parallel (Wang et al., 2015). However, a recent report from the same group showed that Notch signalling inhibits the expression of phyllopod (phyl) which encodes an adaptor protein that facilitates ubiquitination of Ttk69 by the E3 ubiquitin ligase Sina, and its proteolytic degradation (Yin and Xi, 2018). Moreover, Sc induces the expression of phyl, promoting a positive feedback loop.

The regulation of sc and ase is not limited to the control of their expression. esg in progenitor cells halts EE cell formation by a different mechanism (Loza-coll et al., 2014). CHIP-seq analysis of the pros promoter region showed that both Esg and Sc share the same binding site, suggesting that Esg competes with Sc to prevent pros expression EE differentiation (Li et al., 2017a).

It was also suggested that EE cells could be inhibiting secretory differentiation in ISCs through Robo2 receptor, which is expressed in progenitor cells (Biteau and Jasper, 2014). Knock down of Robo2 in progenitor cells increases the number of EE cells, while overexpression of Robo2 in progenitor cells does not reduce the number of secretory
differentiation (Biteau and Jasper, 2014). However, the mechanism whereby Robo2 is activated is unknown. While EE cells express Slit, a ligand for Robo2, slit knock down has no effect on EE differentiation (Biteau and Jasper, 2011; Sallé et al., 2017).

B5.2. Secretory differentiation in the mammalian system

The mammalian gut is the organ that contains more hormone producing cells (Rehfeld, 1998). However, this cell population is not the predominant in the intestine by far. This is due to a regulation in the differentiation that promotes that more cells differentiate into the absorptive cells to replenish the lost ECs. The Notch signalling pathway is key for the correct cell fate acquisition (see section B2.1.2). The main target of Notch is Atoh1, which is repressed by Her/Hes genes, the E(spl) mammalian homologues (Kim and Shivdasani, 2011). Lineage tracing of Atoh1+ progenitors showed that this cells could differentiate into all the secretory cells (Yang et al., 2001). In this study Yang et al. also observed that loss of Atoh1 in the gut resulted in a failure to generate Paneth, EE or goblet cells (Yang et al., 2001). Moreover, expression of an Atoh1 transgene resulted in secretory differentiation, suggesting that Atoh1 is sufficient to induce secretory differentiation (VanDussen and Samuelson, 2010). Atoh1+ secretory progenitors further specialize into EE progenitors or into Paneth cells/Goblet cells progenitors, and this is specification is dependent on the expression of the Atoh1 downstream target Gfi1, which is only expressed in Paneth cells/Goblet cells progenitors. Gfi1−/− mice could not generate Paneth cells and only few goblet cells, while there was an increased amount of EE cells (Shroyer et al., 2005).

neurogenin 3 (ngn3) is a bHLH expressed in the EE progenitors (Atoh1+ Gfi−). Ngn3 is required for the specification into the EE fate, as ngn3−/− mice lack EE cells, but all other cell types were present normally (Bjerknes and Cheng, 2006; Jenny et al., 2002). ngn3 expression is regulated by Atoh1 (Bjerknes and Cheng, 2006).

It is remarkable that in Drosophila and mammals bHLH class II are the promoters of secretory differentiation. However, in the Drosophila midgut Atonal (Ato) is not essential for cell fate (Bardin et al., 2010). However, the Ngn3 Drosophila homolog, target of Poxn (Tap), is also necessary for secretory differentiation (Hartenstein et al., 2017). Interestingly, one of the mammalian homologs of Sc, achaete-scute-complex like 2
(Ascl2) (Johnson et al., 1990), is important to maintain the stem state but not to induce secretory differentiation (Schuijers et al., 2015; van der Flier et al., 2009). It is also interesting that the secretory Paneth cells support stem cells in mammals (Sato et al., 2011), as some reports show that EE cells could also secrete neuroendocrine hormones to control negatively ISC proliferation (Scopelliti et al., 2014).
C. bHLH factors

bHLH proteins are of high importance for the correct fate specification in the *Drosophila* and mammalian midgut. Moreover, they are intimately related to the Notch pathway, which is also important in ISC self-renewal and differentiation. In this section we will review the bHLH transcription factor family.

C1. General remarks

bHLH transcription factors are an evolutionary conserved family. Almost all the members of this family share two main domains: the basic domain, which consist of basic residues that are important for DNA binding, and the helix-loop-helix, necessary for dimerization with other bHLH factors (fig. 16) (Murre *et al.*, 1989a).

Figure 16. bHLH structure

Almost all bHLH proteins (except class V factors) share two structural domains. They contain a dimerization domain formed by two amphipatic α-helices bound with a loop (Helix-loop-Helix or HLH) and a DNA interaction domain (the basic). Through their HLH domain, bHLH factors form dimers, which then can recognize specific sequences in the DNA to regulate the expression of target genes.
The bHLH family is subdivided in different classes based on the sequence similarity (fig. I7A) (Murre et al., 1994):

- Class I bHLH factors, also known as E proteins, are generally ubiquitously expressed in the organisms and form homo- or heterodimers (Murre et al., 1989a).
- Class II bHLH factors have a more restricted expression and heterodimerize with class I members (Murre et al., 1989a).
- Class III bHLH factors contain a leucine zipper after the HLH domain (Zhao et al., 1993).
- Class IV bHLH factors can dimerize with class III members or with themselves (Blackwood and Eisenman, 1991; Blackwood et al., 1992).
- Class V HLH factors lack the basic domain and only contain the HLH dimerization region. Bind with class I and II to inhibit their DNA binding (Banezra et al., 1990; Ellis et al., 1990; Garrell and Modolell, 1990; Van Doren et al., 1991).
- Class VI bHLH factors contain a proline in the basic domain (Klambt et al., 1989; Rushlow et al., 1989).
- Class VII bHLH factors contain a bHLH-PAS domain (Crews, 1998).

Other authors have done a second classification of all bHLH factors depending on their sequences, DNA binding regions, protein regions and additional domains (fig. I7B) (Atchley and Fitch, 1997; Jones, 2004; Ledent et al., 2002). With this classification, class I and class II factors form group A which bind CAGCTG or CACGTG E boxes. Class III and class IV form group B which bind CACGTG or CATGTTG binding regions. Class VII factors with the PAS domain are the only members of group C and bind to ACGTG or GCGTG sequences. Class V factors, which do not bind the DNA, form group D. Finally, class VI members form group E and bind preferentially to N boxes with CACGCG or CACGAG sequences (reviewed in Jones, 2004).

Next, we will review class I, II and V as they are the most relevant for this thesis.
C1.1. Class I bHLH transcription factors

Da is the only class I factor in *Drosophila*. Da was named after the homozygous deficiencies of the *da* locus (chromosome 2L) in females, which caused that all their progeny were males (Sandler, 1972). *da* expression is ubiquitous and it is expressed almost in all tissues (Cronmiller and Cummings, 1993). Da has three mammalian homologs: E2.2, HEB and E2A. E2A has two spliced products, E47 and E12 (Kamps et al., 1990; Murre et al., 1989b; Walker et al., 1990).

![Figure 17. Classification of bHLH factors](image-url)

A. Phylogenetic tree of *Drosophila* bHLH factors based on their bHLH domain sequence similarity. Da (class I), the ac/sc complex (AS-C, class II) and Emc (class V) are indicated (magenta arrows). Modified from Paeyreifite et al., 2001.

B. Phylogenetic tree of metazoan bHLH factors based on their domain structure and the similarity of both their aminoacid sequence and of their DNA binding sequence. E12/E47 (da in *Drosophila*, Group A), Achaete-Scute (Group A) and Emc (Group D) are indicated (magenta arrows). Taken from Ledent et al., 2002.
The Da protein contains a basic domain, an HLH domain with two amphipathic helices that mediated dimerization, a repression domain (REP) and two trans-activator domains (TAD): activation domain 1 and loop-helix (LH) (Murre et al., 1989a; Voronova and Baltimore, 1990; Wong et al., 2008; Zarifi et al., 2012a). Through the HLH domain, Da can form homodimers or heterodimers with members of bHLH class II factors (Cabrera and Alonso, 1991).

C1.2. Class II bHLH transcription factors

There are multiple bHLH class II in Drosophila and they typically heterodimerize with Da, as the majority of class II members cannot homodimerize or form heterodimers with other class II factors (Cabrera and Alonso, 1991; Castanon et al., 2001). Twist, a bHLH factor required for mesoderm specification (Leptin, 1991), is an exception to this rule and can form homodimers (Castanon et al., 2001).

The most paradigmatic class II bHLH factors are the AS-C, which have been extensively studied, especially in neurogenesis (Alonso and Cabrera, 1988; Campuzano et al., 1985; Cubas et al., 1991; Garcia-Bellido, 1979; Villares and Cabrera, 1987). Located in the X chromosome, it comprises around 90 kb and contain four genes: achaete (ac), scute (sc), lethal of scute (l’sc) and asense (ase), which heterodimerise with Da to promote neural differentiation in Drosophila.

C1.3. Class V HLH factors

Extramacroachaetae (Emc) is the only member in Drosophila of the HLH class V. It was identified during a screening to find negative regulators of the AS-C (Botas et al., 1982). Botas et al. used an extra copy of the AS-C in combination with X-ray mutated flies, and they identified 20 flies that presented extra macrochaetae (large bristles) and all mapped their mutations in a locus on the third chromosome. Emc mammalian homologs are the inhibitors of DNA binding or inhibitors of differentiation (Id) family (Banezra et al., 1990). It comprehends 4 members: Id1, Id2 (Sun et al., 1991), Id3 (Christy et al., 1991) and Id4 (Riechmann et al., 1994). In different cancers, such as astrocytic cancer or pancreatic cancer, the high expression of Id genes is correlated with poor differentiation of cancer cells (reviewed in Ruzinova and Benezra, 2003; Sikder et al., 2003).
Emc also contains the dimerization HLH domain but lacks the basic domain to bind the DNA (Ellis et al., 1990; Garrell and Modolell, 1990). Thus, Emc does not have transcriptional activity. However, it can dimerize with high affinity with class I and class II bHLH transcription factors, sequestering them and inhibiting their binding to DNA (Cabrera et al., 1994; Martínez et al., 1993; Van Doren et al., 1991).

C2. Notch and bHLH factors in the development of the peripheral nervous system

The Drosophila notum is covered by a regular pattern of small bristles or microchaetae (mcs) and large bristles or macrochaetae (MCs), which are mechanosensory organs. Adult flies contain 22 MCs (11 per side with invariable positions) and about 200 mcs (Hartenstein and Posakony, 1989). Each bristle consists of four cells (shaft, glial cell, socket and neuron) that arise from a single cell, the sensory organ precursor cell (SOP) (Hartenstein and Posakony, 1989).

Each SOP arises from a pro-neural cluster (PNC), a group of cells that express AS-C genes, also known as pro-neural genes (Cubas et al., 1991; Romani et al., 1989; Skeath and Carroll, 1991). Initially, all cells in the PNC are equipotent epithelial cells, and for one of them to become an SOP, it must have pro-neural activity above a threshold. When ac and sc are not expressed, adult flies do not develop any bristles (Moscoso del Prado and Garcia-Bellido, 1984). Pro-neural genes induce their own expression to create a positive feedback loop and accumulate at high levels to overcome the threshold (Culí and Modolell, 1998).

To avoid accumulation of pro-neural genes in all cells of the PNC, emc is expressed through the wing disc in a complex pattern, being also expressed in PNCs (Cubas and Modolell, 1992). Therefore, Emc can bind with Da and pro-neural genes to impede that low levels of AS-C genes could auto-activate and form a SOP (Martínez et al., 1993; Van Doren et al., 1992). Hence, inhibiting the expression of emc in the notum resulted in the formation of extra MCs. Interestingly, ac and sc are not required when emc is not expressed, and when these genes are missing SOPs still emerge (Troost et al., 2015). As Da can form homodimers that are able to bind to the same E-boxes than Da:Sc or Da:Ac (Cabrera and Alonso, 1991), it is possible that Da:Da is enough to induce neurogenesis.
This hypothesis is supported by the formation of SOP when da is over-expressed in the absence of the whole AS-C (Jafar-Nejad et al., 2006; Zarifi et al., 2012a) or when a tethered Da:Da with a flexible polypeptide chain to force Da homodimerization is expressed (Wang and Baker, 2015). Therefore, Emc would also be inhibiting the formation of SOP by Da:Da in the absence of pro-neural genes, and neurogenesis is only possible when the levels of pro-neural genes and Da are sufficiently high to homo- or heterodimerize.

Once the threshold of proneural activity is surpassed, the cell that becomes neural inhibits neural differentiation in the surrounding cells, forcing them to differentiate into epidermal cells. This process, mediated by the Notch pathway, is termed lateral inhibition (Simpson, 1990). Loss of Notch activity induces all cells within the PNC to adopt the SOP fate (Heitzler and Simpson, 1991). Some authors argue that pro-neural genes induce the expression of Dl into the SOP to inhibit all the surrounding cells, as they are also expressing pro-neural genes at high levels (Kunisch et al., 1994). When cells around the SOP activate Notch, they express E(spl) proteins, which bind to Da:Sc TADs and inhibit both AS-C self-stimulation and downstream target activation (Culí and Modolell, 1998; Giagtzoglou et al., 2003; Zarifi et al., 2012a).

Importantly, the range of activation of Notch in the PNC seems to be of one cell diameter (Troost et al., 2015), contrary to previous reports where it was proposed that filopodia extended the range of Delta signalling to several cell diameters (Cohen et al., 2010; De Joussineau et al., 2003). This implies that cells in the PNC that are not in direct contact with the SOP are activating Notch through mutual inhibition with other non-SOP cells in the PNC, and the selection of the SOP is mostly due to the relative levels of bHLH and Notch is only a safeguarding mechanism (Troost et al., 2015).

Interestingly, ase seems to be expressed only in the SOP and its expression is partly downstream of pro-neural genes (Jarman et al., 1993). Therefore, ase is a pan-neural gene necessary for the specification of the SOP (Brand et al., 1993).

C3. bHLH proteins in the Drosophila developing eye

During the third larval instar, in the Drosophila eye precursor, the eye imaginal disc, appears a fold in the epithelium called the morphogenetic furrow (MF), which starts the
ommatidia differentiation. The MF progresses from the posterior margin inducing differentiation of anterior cells into photoreceptors. This is controlled by the diffusible ligand Hh, expressed in the posterior margin. Hh travels into the anterior compartment, inducing cells to express hh to prolong the signalling, as well as decapentaplegic (dpp). In addition, Hh activates expression of the bHLH factor class II ato, which in turn promotes differentiation into the photoreceptor R8. The refining of ato expression is driven by Notch lateral inhibition (reviewed in Raignant and Treisman author, 2010).

ato expression is also controlled by the retinal determinant factor Eyeless (Ey) which synergistically interacts with Da:Da homodimers to drive the ato transcription (Brown et al., 1996; Tanaka-Matakatsu et al., 2014). In the wing disc, Da can drive its own expression for a positive feedback loop, and at the same time drive emc expression, to create a negative feedback loop (Bhattacharya and Baker, 2011). However, Hh and Dpp downregulate emc expression in the MF, inhibiting the negative feedback loop and elevating the levels of Da (Lim et al., 2008). Outside the MF, Emc restricts the progression of the MF by negative regulation of Hh signalling (Spratford and Kumar, 2013).

There are conflicting reports about the requirement of Da to dimerize with Ato to induce the differentiation to R8 cells. On one hand, it was shown that cells ectopically expressing ato outside of the MF were not able to undergo neural differentiation, and only co-expression of da and ato resulted in neural differentiation in this region (Bhattacharya and Baker, 2011). On the other hand, expression of da:ato forced heterodimers could not induce retinal differentiation ectopically (Tanaka-Matakatsu et al., 2014). This suggests that Da:Ato dimers may be dispensable for neural differentiation in the fly retina, and that the neural differentiation induced by co-expression of ato and da is not due to their heterodimerisation, but to a combined titration of Emc that frees additional Ato to induce neural differentiation.

Emc in the eye disc has functions beyond the repression of Ato and Da. For instance, it contributes to the specification of the photoreceptor R7 (Bhattacharya and Baker, 2009) and to the early dorso/ventral patterning and planar cell polarity (Spratford and Kumar, 2015a), in both cases acting downstream of the Notch pathway. Interestingly, these Emc functions seem to be Da independent. However, it was shown that Emc was acting
downstream of Notch to promote proliferation in the eye disc by titrating Da (Spratford and Kumar, 2015b). Therefore, in the eye disc, Notch and bHLH factors play a crucial role for the correct development of the tissue.

C4. bHLH proteins in the mammalian gut

bHLH transcription factors play a role in many differentiation processes in mammals. The first dimerization studies of bHLH proteins were to show that E12 and E47 could form dimers with the class II factor MyoD. These dimers induce muscle specific genes, like the muscle kreatine kinase, to promote myogenesis, while Id proteins could inhibit these dimerizations (Murre et al., 1989a; Neuhold and Wold, 1993).

bHLH factors are also important in fate decisions in the mammalian gut (see section B). Indeed, the secretory differentiation is completely dependent of Atoh1. Also, Ascl2 is expressed in Lgr5+ cells downstream of Wnt pathway (Jubb et al., 2006; van der Flier et al., 2009). Ascl2 forms an auto-activating loop that is dependent on Wnt signalling, and at the same time, co-operates with β-catenin to drive transcription of stem genes (Schuijers et al., 2015). Ascl2 dimerizes with E2A and HEB, whose expression is restricted to the crypt (van der Flier and Clevers, 2009). In experiments where Ascl2 was overexpressed, crypts where hyperplastic, whereas villi were only partly affected, as differentiated cells do not express E proteins and cannot form functional dimers. Moreover, Ascl2 knock out induced loss of stemness in the crypts, whereas Ascl2 up-regulation induced invasiveness, tumorigenesis and metastasis in colorectal cancer (Basu et al., 2018).

Id proteins also play a role in the intestine, as Id1 is expressed in the crypts (CBCs, +4 cells and TA cells) and Id2 and Id3 are expressed in more mature cells outside of the crypts (Wice and Gordon, 1998; Zhang et al., 2014). In mice reared in normal conditions, Id1 loss of function had no effects on ISC function. However, when mice were fed with dextran sodium sulfate to produce colitis, Id1 knockout mice had more severe symptoms, with shorter colons, ulcerations, loss of crypt integrity and inflammation (Zhang et al., 2014). Conversely, expression of Id1 in the mouse small intestine induces the formation of adenomas. Moreover, it also produced a down-regulation of Id2 and Id3m while E12 and E47 levels were not affected (Wice and Gordon, 1998).
ID proteins are important not only in adult homeostasis but also during development. Nigmatullina et al. found that Lgr5+ cells are formed at E13.5 embryonic stage. They also observed that Id2 knock out mice could develop Lgr5+ cells at E9.5, resulting in an augment of Lgr5+ cells at later stages and the appearance of neoplastic cells. Therefore, Id2 restricts the specification of Lgr5+ cells in early stages (Nigmatullina et al., 2017).

In conclusion, bHLH trancription factors control many differentiation programs, including intestinal fates, both in mammals and Drosophila. Notch and lateral inhibition programs often involve the regulation of bHLH factors and their transcriptional programs. In the Drosophila midgut, Notch-Delta signaling is important for the correct fate acquisition and to exit the stem compartment. Moreover, bHLH transcription factors play a major role in differentiation and stem cell function in mammals. This make them of obvious interest of study in the Drosophila intestine. Indeed, Bardin et al. (2010) showed that Da is important to maintain the progenitor compartment and Sc to exit it into the secretory fate. However, much is unknown about how the bHLH network functions in the Drosophila midgut. Therefore, in this thesis we will investigate the role of different bHLH factors in depth to find a mechanism responsible for the maintenance of the progenitor state and differentiation. We will mainly focus in Emc, Da and Sc.

It is not known if emc is expressed in the Drosophila midgut, and as the main inhibitor of class I and II bHLH factors, it could play a major role to impair Da and Sc function. Moreover, in the formation of wing margins and veins, emc expression is regulated by Notch (Baonza et al., 2000), which is the main differentiation pathway in the gut. The role of Da is not clear, as it has only been shown that loss of da induces ISCs to differentiate. Moreover, apart from the initiation of the secretory differentiation (Bardin et al., 2010), recent findings have shown that Sc might play other roles in ISCs (Chen et al., 2018).

Therefore, we will use different genetic tools and confocal microscopy to fill all these gaps and study how these three bHLH factors interact with each other to control ISC fate and maintain the homeostasis of the posterior midgut.
Section 2:
Materials and Methods
1. **Fly stocks**

Most fly stocks were sourced from the *Drosophila* stock centres in the USA (BDSC: Bloomington *Drosophila* Stock Center), Japan (DGRC: *Drosophila* Genetic Resource Center; NIG: National Institute of Genetics), and Austria (VDRC: Vienna *Drosophila* Resource Center); for these, a stock reference number is provided. Strains sourced from the scientific community are referenced to the person who provided it and whenever possible to the publication that described that strain, mutation or transgenic insertion.

Driver lines:

Driver lines are flies that express the yeast protein Gal4 under the control of a native gene promoter. Gal4 is a transcription factor that binds with a specific enhancer to drive gene expression: the upstream activated sequences (UAS). This method allows expression of certain genes or reporters in specific tissues.

- **esg**: *y, w; esg^NP7397/Cyo; tub-GAL80^6, UAS-GFP/TM6B* (Jiang and Edgar, 2009).
- **esg-F/O**: *y, w; esg-Gal4, UAS-GFP, tub-Gal80^6/Cyo; UAS-flp, Act5C>CD2>Gal4/TM6C* (Jiang et al., 2009).
- **Rab3**: *w; tub-GAL80^6, UAS-GFP/Cyo; Rab3-Gal4/TM6B*.
- **GBE-Su(H)**: *y, w; GBE-Su(H)-Gal4/Cyo; tub-GAL80^6, UAS-GFP/TM6B* (Zeng and Hou, 2015).
- **Myo31DF**: (also known as **Myo1A**^NP0001^) (DGRC#112001).
- **eyg-Gal4** (provided by S. Campuzano).

UAS-transgenes:

- **UAS-da/Cyo** (S. Campuzano), **UAS-da:da** (II and III chromosomes) (Sangbin Park), **UAS-emc_{5,1}** (Baonza et al., 2000), **emc_{EP3620}** (this insertion allows UAS-dependent control of endogenous emc; (Abdelilah-Seyfried et al., 2000), *y, w; If/Cyo; UAS-N^Intra*(A. Martinez-Arias), *w, UAS-crp_{1,250}*(BDSC#43494), *w, UAS-Dicer2* (BDSC # 24646), **UAS-sc_{11}/Cyo** (S. Campuzano), **UAS-sc_{9}/Cyo** (S. Campuzano), **UAS-sc_{42}/TM6B** (S. Campuzano), **UAS-H/Cyo** (A. Bardin), **UAS-p35** (S. Campuzano), **UAS-E(spl)-m8** (BDSC # 26872), **UAS-esg** (Korzelius et al., 2014).
Expression reporter genes:

dmcCPTI002740 (DGRC #115-317), crpCPTI004164/SM6A (H. White-Cooper),
esg-lacZk00606/CyO (Spradling et al., 1999), Myo1A-lacZ (B. Edgar), da:GFP:FPTB
(Expresses GFP, FLAG, PreScission, TEV and BLP tagged da protein) (BDSC#55836).

Mosaic Analysis with a Repressible Cell Marker (MARCM) stocks:

Marker strains

y, w, hsflp1.22, tub-Gal4, UAS-GFP; tub-Gal80, FRT40A/CyO, act-GFP (A. Bardin)
y, w, hs-flp1.22, tub-Gal4, UAS-GFP; tub-Gal80, FRT80B/TM6B (S. Campuzano)
y, w, hs-flp1.22, tub-Gal4, UAS-GFP; tub-Gal80, FRT2A/TM6B (S. Campuzano)
w hs-Flp tub-Gal80 FRT19A; tub-Gal4, UAS-GFP/CyO (S. Yamamoto)

Wild type arm strains
w;FRT40A (BDSC#1646)
w;FRT80B (BDSC#1620)
y, w; FRT2A (BDSC#1997)
y, w, FRT19A (BDSC#1709)

Mutants:

w; Df(2L)da10, FRT40A/In(2LR)Gla, Bc (BDSC # 5531), w; emcAp6, FRT80B/TM6B
(BDSC#36544), w; emcAp6 FRT2A/TM6B (recombined by me using BDSC stocks
#36544 and BDSC#1997), w; emc1 FRT80B/TM2 (BDSC #5532), emcL02590 FRT2A,
FRT82B/TM6C (DGRC#140.642), y, w; crpK00809 FRT40A/CyO (DGRC #111.066), y, w;
crpK00834 FRT40A/CyO (DGGR #111622), y, w; crpK00953 FRT40A/CyO (DGRC#114.622),
Df(1)scR57 w FRT19A/FM7g (Bardin et al., 2010)

RNAi stocks

y, sc; UAS-daRNAi_550185 (BDSC # 38382), y, v; UAS-daRNAiJF02488b (BDSC #29326),
UAS-emcRNAi_1007 (NIG#409.02) (a.k.a. UAS-emcRNAiJF02488b), UAS-emcRNAiKK108316
(VDRC#100587), UAS-emcRNAiJF02300 (BDSC #26738), UAS-NotchRNAi, UAS-IFRNAiJF02624
(BDSC #27315), UAS-crpRNAiKK108316 (VDCRC#100565), UAS-crpRNAiGD13194 (VDCRC#26886),
UAS-scRNAiKK108141 (VDCRC#105951), UAS-esgRNAi_5500025 (BDSC #34063).
For all knock down experiments, the RNAi transgene was co-expressed with UAS-Dicer-2 to exacerbate the phenotype, unless explicitly indicated. Dicer-2 (Dcr-2) is a ribonuclease of the RNase III family that forms a complex with R2D2, which contains two dsRNA binding domains. This complex is responsible for processing long double-strand RNA and short hairpin RNA into small interference RNA (siRNA) (Liu et al., 2003) and for loading the siRNA into the RNA-induced silencing complex (siRISC) (Liu et al., 2006). Therefore, co-expression of Dcr-2 facilitates the RNAi processing.

FlipOut Lineage tracing

For combination with Gal4 drivers: UAS-flp, Act5C-FRT-CD2-FRT-Gal4/TM6C (from esg-FO)
For sparse induction: y w hs-flp1.22;Act5C-FRT-yc-FRT-Gal4, UAS-lacZ20b (a.k.a. Ay-Gal4, modified from BDSC #4410)

Drosophila melanogaster husbandry

Adult flies were raised in standard cornmeal medium, collected daily and maintained in fresh vials with added dry yeast (food replaced every 24-48 h) until 4-7 days old. Flies for temperature sensitive experiments were reared and aged to gut maturity (~7 days) at the permissive temperature (18 ºC), and then transferred to 29 ºC. For MARCM experiments or Ay-Gal4, when flies were 4-7 days old, 1 hour heat shock at 37 ºC was induced (unless otherwise indicated), and then kept at 25 ºC. In both cases, flies were maintained for 7 days (food replaced every 24-48 h) prior to dissections, unless otherwise indicated.

Fly food recipe (for 50L): 337 g of agar, 3.62 kg of maize, 3.75 kg of dextrose, 1.75 kg of yeast, 111 g of Hydroxybenzoic acid methyl ester, 1.3 L of absolute ethanol, 175 ml of propionic acid, 48.5 L of dH₂O.

2. Lineage Tracing experiments

MARCM clones

Mosaic Analysis with a Repressible Cell Marker (MARCM) is a lineage tracing technique based on mitotic recombination (Lee and Luo, 2001). Flies were heat shocked for one hour to induce expression of FLPase (flp). The FLP can induce mitotic recombination on
FRT sequences in trans to exchange sister chromatids. Therefore, if one of the chromatids was carrying a mutation, there is a 50% chance that one of the daughter cells will inherit this mutation. *tub-Gal80* loss in the daughter cell carrying the mutation allows the expression of *UAS-GFP* as a marker and other desired transgenes (fig. M1).

Figure M1 Clonal labeling for lineage analysis

All cells have Gal4 repressed by the expression of Gal80. The expression of *flp* induces mitotic recombination, inheriting one daughter cell the *tub-Gal80* while the other one does not and is labeled with GFP. If the homologous chromosome carries a mutation, GFP+ cells will be homozygous for this mutation. Author: Joaquín de Navascués.

FlipOut

The flipOut cassette contains a constitutive driver (typically a ubiquitous driver such as *Act5C-FRT-STOP-FRT-Gal4*), that will be activated by the expression of a *flp* to remove the STOP cassette. In this thesis we used two different ways to express the *flp*: 1) Using a

Figure M2 escargot-FlipOut

A-B. Progenitor cells at 18°C express Gal80, which represses Gal4. At 29°C, Gal4 is active and drives expression of the desired gene (X), the *flp* and *GFP* to label progenitor cells. The Flp induces excision of the STOP cassette, activating the expression of *act5C-Gal4*. Therefore, after cell differentiation, cells which do not express *esg* will still be expressing Gal4.

C. After the temperature switch, all progenitor cells express the desired genes and GFP. When the tissue grow, differentiated cells will sustain gene and GFP expression.
specific driver and a UAS-flp (fig. M2) or 2) using a hs-flp to induce clones. With both mechanisms, all induced cells will be labeled and expressing the correspondent transgenes. While the first mechanism affects a determined pool of cells depending on the driver, the second system only affects random cells. Moreover, when these cells divide or differentiate, they will maintain Act5C-Gal4 active.

Although the generation of adult flies with the FlipOUT method is slower than MARCM (flies grow at 18 °C instead of 25 °C), fewer fly generations are needed for the final cross. Moreover, with FlipOUT, the number of recombinations needed are reduced. Therefore, the FlipOUT method allows us to do experiments much faster.

3. Immunohistofluorescence and imaging

Three different fixation methods were performed during this study:

Paraformaldehyde fixation: Flies were dissected for 20 minutes in phosphate-buffered saline (PBS) to collect guts in 4% PFA in ice. Guts were left 2 hours with no agitation at Room Temperature (RT).

Formaldehyde-Methanol fixation: Flies are dissected for 8 minutes in ice-cold PBS and the guts are collected in a basket immersed in cold PBS. Then guts are transferred to the interface between formaldehyde 3.7% in PBS and heptane. After 15 minutes, the formaldehyde and heptane are removed and methanol is added. 15 minutes later, guts are re-hydrated by rinsing progressively in 75%, 50% and 25% methanol solutions in PBS with 0.1% Triton-X100 (PBT).

Heat fixation: Flies are dissected for 8 minutes in cold PBS and the guts are collected in a basket in cold PBS. The basket with the guts is introduced in heat fixation buffer (0.7 % NaCl + 0.05% Triton in milliQ water) in a double beaker at 95 °C for 5 seconds. The tissue is quickly cooled for 2 minutes in cold PBS.

After fixation, guts were rinsed three times with PBT and blocked with PBT:BSA (2% BSA: bovine serum albumin) for 45 minutes (three 15 minutes washes). Then, guts were incubated with primary antibody overnight with mild agitation at 4 °C in PBT:BSA. The following day guts were washed as above (3x rinses, 3x 15 minutes washes) in PBT,
incubated with the secondary antibody for 2 hours at RT and washed. Finally, guts were equilibrated with mounting medium (4% propyl Gallate in 80:20 Glycerol:PBS) for several hours, and mounted on glass slides.

Confocal stacks were obtained in a Zeiss LSM 710 with an EC Plan-Neofluar 40X oil immersion objective (numerical aperture 1.3). All stack positions were acquired in the posterior midgut. Typically, three positions along the anterior-posterior axis of the posterior midgut were acquired for each organ. In MARCM clone experiments, stacks were acquired from all clones in the posterior midgut.

<table>
<thead>
<tr>
<th>Protein recognized</th>
<th>Host/type</th>
<th>Dilution*</th>
<th>Source (reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFP</td>
<td>Rabbit/polyclonal</td>
<td>1:10000</td>
<td>Abcam (ab6556)</td>
</tr>
<tr>
<td>GFP</td>
<td>Chicken/polyclonal</td>
<td>1:3000</td>
<td>Abcam (ab13970)</td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>Rabbit/polyclonal</td>
<td>1:10000</td>
<td>Abcam (ab11132)</td>
</tr>
<tr>
<td>β-Galactosidase</td>
<td>Chicken/polyclonal</td>
<td>1:2000</td>
<td>Abcam (ab9361)</td>
</tr>
<tr>
<td>Armadillo</td>
<td>Mouse/monoclonal</td>
<td>1:50*</td>
<td>DSHB** (N27A1)</td>
</tr>
<tr>
<td>Delta</td>
<td>Mouse/monoclonal</td>
<td>1:100</td>
<td>DSHB (C594.9B)</td>
</tr>
<tr>
<td>Prospero</td>
<td>Mouse/monoclonal</td>
<td>1:200</td>
<td>DSHB (MR1A)</td>
</tr>
<tr>
<td>Prospero</td>
<td>Rabbit</td>
<td>1:1000</td>
<td>Yuh Nung Jan (Vaessin et al., 1991)</td>
</tr>
<tr>
<td>Headcase</td>
<td>Mouse/monoclonal</td>
<td>1:50</td>
<td>DSHB (HDC U33)</td>
</tr>
<tr>
<td>Phospho Histone 3</td>
<td>Rabbit/polyclonal</td>
<td>1:200-500</td>
<td>Cell signalling (#9701)</td>
</tr>
<tr>
<td>Cropped</td>
<td>Rabbit/polyclonal</td>
<td>1:500</td>
<td>Michael Lehmann (King-Jones et al., 1999)</td>
</tr>
</tbody>
</table>

*The indicated dilutions correspond to Formaldehyde-methanol fixation. As Armadillo staining did not work with this fixation method, the dilution indicate is for heat-fixation. For heat fixation the amount of antibody used was doubled.

**DSHB: Developmental Studies Hybridoma Bank

Secondary antibodies conjugated with Alexa fluorophores were from Thermo (1:500).

<table>
<thead>
<tr>
<th>Host</th>
<th>Species reactivity</th>
<th>Alexa fluorophores (reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donkey</td>
<td>Rabbit</td>
<td>594 (A21207)</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>594 (A21203)</td>
</tr>
<tr>
<td>Goat</td>
<td>Rabbit</td>
<td>488 (A11034), 633 (A21071)</td>
</tr>
<tr>
<td></td>
<td>Chicken</td>
<td>488 (A11042), 633 (A21103)</td>
</tr>
<tr>
<td></td>
<td>Mouse</td>
<td>633 (A21052)</td>
</tr>
</tbody>
</table>
DNA was stained with Hoescht (10 mg/ml from Sigma Aldrich, B2261) (1:5000) and incubated 2 hours with the secondary antibodies.

4. Cell counting and quantification

All the stacks were maximum-intensity projected using fiji-ImageJ (Schindelin et al., 2012) for each field of view. Using the Cell Counter plugin, each cell type was labelled as follows:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ISC GFP⁺</td>
<td>Dl⁺ NRE⁻ Pros⁻ GFP⁺ / Hdc⁺ NRE⁻ Pros⁻ GFP⁺</td>
</tr>
<tr>
<td>2</td>
<td>EB GFP⁺</td>
<td>Dl⁻ NRE⁺ Pros⁻ GFP⁺ / Hdc⁺ NRE⁺ Pros⁻ GFP⁺</td>
</tr>
<tr>
<td>3</td>
<td>EE GFP⁻</td>
<td>Dl⁻ NRE⁻ Pros⁺ GFP⁻ / Hdc⁻ NRE⁻ Pros⁺ GFP⁻</td>
</tr>
<tr>
<td>4</td>
<td>EC GFP⁻</td>
<td>Dl⁻ NRE⁻ Pros⁻ GFP⁻ / Hdc⁻ NRE⁻ Pros⁺ GFP⁻</td>
</tr>
<tr>
<td>5</td>
<td>EC GFP⁺</td>
<td>Dl⁻ NRE⁻ Pros⁺ GFP⁺ / Hdc⁻ NRE⁻ Pros⁺ GFP⁺</td>
</tr>
<tr>
<td>6</td>
<td>ISC GFP⁻</td>
<td>Dl⁻ NRE⁻ Pros⁻ GFP⁻ / Hdc⁻ NRE⁻ Pros⁻ GFP⁻</td>
</tr>
<tr>
<td>7</td>
<td>Other</td>
<td>Different combinations from above</td>
</tr>
</tbody>
</table>

Cell Counter generated a table with all cells with their corresponding cell types and their spatial coordinates within the field of view. Percentages of each cell type respective the total number of cells or GFP⁺ cells, number of cells per cluster, number of clusters of a determined size and the accumulation of all cells of a specific cell type were obtained with a python script. The Delaunay triangulation method was used to find GFP⁺ clusters (Delaunay, 1934) (Script code in Appendix 1).

5. Quantification in UAS-sc expression

The large proliferation induced by the expression of UAS-sc generated large clusters of Dl⁺ Pros⁻ cells or Dl⁺ Pros⁺. In the majority of field of views these clusters were uncountable due the high density of cells. Therefore, we counted when possible and, in the rest, estimated the proportion of each cell population.
6. Quantification of Delta expression

All cells were labelled as explained in section 4 with Fiji ImageJ. Using a python script (Script code in Appendix 2), each image was processed separately. Channels were split and the stacks were projected.

Extraction of Pros⁺ cells pixel values

First, a median filter was applied to the Pros/Dl channel to remove small features. A binary mask was created using Otsu thresholding (Otsu, 1979) of the filtered image. This mask captured most of the Pros⁺ nuclei (those with higher expression of Pros). To include in the analysis the Pros⁺ nuclei missed by the thresholding, we created another mask, produced by creating, for each XY position where a Pros⁺ cell was manually determined (see section 4) but not overlapping with the thresholding mask, a disc with a diameter of 3 pixels. We then combined both masks. This was further refined by marker controlled watershed transformation (Meyer and Beucher, 1990) to separate objects that may have been fused by thresholding. Pros expression for each nucleus was determined as the average intensity value of the Pros/Dl channel for each nucleus in the watershed-segmented mask.

Extraction of Dl⁺ cells pixel values in clones

To identify the GFP-labelled MARCM clones, a similar approach was used. First, a mask was generated by thresholding the GFP channel using Li’s minimum cross entropy thresholding (Li and Lee, 1993). As this still missed a few cells, the mask was expanded by adding 3-pixel diameter discs for each GFP⁺ cell, as manually determined, and the mask consolidated by morphological filling and closing (Diggle and Serra, 1983). Individual Dl⁺ cells within the clone were identified by marker-controlled watershed segmentation, using the positions of the cells as manually determined. Dl expression for each cell was determined as the average intensity value of the Pros/Dl channel for each object in the watershed-segmented image.
Calculating cell intensity

For each cell (Pros⁺ or Dl⁺), the mean intensity of all pixels of each cell was obtained. As the imaging conditions were set up so that the maximum intensity pixels were just below saturation (in each genetic condition), to take full advantage of the sensitivity range of the detector, a normalization was required. Since the immunoreactivity to the anti-Protein C antibody is very robust and homogeneous from sample to sample, the mean cell intensity of Pros or Dl was divided by the mean intensity of Pros from the pooled pixels of all Pros⁺ cells in that field of view.

7. Esg-DamID binding regions

DamID data were obtained from Korzelius et al, 2014 and Loza-Coll et al. 2014 (accession number GSE55226). The median values out of the three replicates was plotted. Integrative Genome Viewer software was used for data visualization. The shown area corresponds with the da locus.

An Esg binding region was considered to exist if more than 8 and less than 20 consecutive genomic probes had an Esg-Dam/Dam ratio above 2.

8. Statistical analysis

Graphs and statistical analyses were generated using Prism 7 GraphPad Software or R3.5.1 using RStudio 1.1.383.

Normality was tested with the Shapiro-Wilk normality test. Parametric or non-parametric tests were used accordingly. Unless otherwise indicated, ‘N=’ refers to the number of fields of view.

Stacked bars were used for MARCM clones or for cell death phenotypes. The statistical analysis of this section was performed by Joaquín de Navascués. In these experiments we used binomial regression. We used Firth’s bias reduced logistic regression for experiments with zero observations in one or more of the genotypes considered (‘complete separation’ of data (Albert and Anderson, 1984), which we performed using the R package logistf.
9. Generation of the crppl21.4 mutant allele

This allele was generated by Paminder Lall during her internship in our group and by Dr. Joaquín de Navascués. The sgRNAs were designed by Aleix Puig.

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology was used with the aim of inducing a cleavage in two genomic sites of the crp locus at the same time. By microinjection of the pCDF4 plasmid (Port et al., 2014) in Cas9-expressing blastocyst embryos, two sgRNAs can be expressed simultaneously, albeit from different promoters:

sgRNA1 (U6:1 promoter): GATTGCAACTAGAGGATTC

sgRNA2 (U6:3 promoter): GCCTTCGTGTCTCGGAGC

The plasmids were injected in Act5C-Cas9; FRT40A(isogenic) (modified from BDSC\#54590) embryos. Single emerging adults were crossed with Gla, Bc/CyO and Gla, Bc individuals from F1 were collected and individually crossed with flies containing the crpCPTI00416/CyO, twi-GFP mutant allele. Gla+ Bc+ GFP flies with defects in bristle patterning were kept as a possible mutant line, as this was reported as a mild crp phenotype (Ashburner et al., 1999). A recessive lethal was identified using High Resolution Melting PCR around the cutting regions of the Cas9. A positive mutant was identified, crppl21.4, which contains a small indel that creates a frameshift in the Crp coding region leading to a truncated protein lacking part of the bHLH domain.
Section 3: Results
Chapter 1 A: A network of bHLH factors controls self-renewal and bipotential differentiation in the intestine: Emc

1.A.1 Introduction

The *Drosophila melanogaster* midgut has been shown to be a suitable model to study the transcriptional regulation of adult stem cells. To date, four different transcription factors have been shown to be indispensable to maintain the progenitor state: Da (Bardin *et al.*, 2010), Esg (Antonello *et al.*, 2015; Korzelius *et al.*, 2014; Loza-coll *et al.*, 2014), Fkh (Lan *et al.*, 2018) and Chn (Amcheslavsky *et al.*, 2014a).

In addition to Da, Sc and Ase, which are important for the secretory differentiation, are also bHLH transcription factors (Bardin *et al.*, 2010). Therefore, it is likely that Emc, the HLH class V and main inhibitor of class I and class II bHLH transcription factors, could also be expressed in the midgut to impair Da, Sc and Ase function. Indeed, over-expression of *emc* in progenitor cells induces ISCs and EBs to differentiate into ECs, similar to when *da* is knocked down in progenitor cells (Lan *et al.*, 2018). Emc and its mammalian counterpart have been shown to bind bHLH class I and II to prevent the formation of functional bHLH dimers that can bind the DNA (Cabrera *et al.*, 1994; Cubas *et al.*, 1991; Sun *et al.*, 1991; Van Doren *et al.*, 1991). This titration has been shown to be fundamental in various developmental processes, especially in wing morphogenesis (Baonza and García-Bellido, 1999), correct specification of sensory organs in the wing disc (reviewed in Campuzano 2001) and correct patterning in the eye disc (Bhattacharya and Baker, 2009; Bhattacharya *et al.*, 2017; Spratford and Kumar, 2013; Spratford and Kumar, 2015a; Spratford and Kumar, 2015b). Moreover, the expression of *emc* is induced by Da, and the stability of Emc depends on its binding to Da (Bhattacharya and Baker, 2011), while Emc is a negative regulator of *da* (Li and Baker, 2018). Thus, it is likely that Emc regulates the function of Da in the midgut. This hypothesis is supported by the expression of Id members in the mammalian intestine (Nigmatullina *et al.*, 2017; Zhang *et al.*, 2014).

Therefore, in this chapter we will investigate the role of Emc in the maintenance of the intestinal homeostasis.
1.A.2. Aims

- Describe the expression pattern of emc in the adult gut
- Perform the genetic analysis of emc function in the adult gut
- Determine whether Notch regulates emc expression

1.A.3. Results

1.A.3.1. Expression of emc in the midgut

To describe the expression pattern of emc, we used a protein trap (emcCPTI2740) from the Cambridge Protein Trap Insertion (CPTI) project – a collection of transposon insertions that introduce an artificial exon encoding YFP into endogenous loci (Lowe et al., 2014). This CPTI line is homozygous viable and has a wild type pattern of bristles, indicating that the resulting GFP-tagged Emc protein is functional. In parallel, we used antibodies to label different cell types (Table 1) and examine the co-expression with emc in those cells. First, we used Dl expression (cytoplasmic vesicles and membrane), which marks specifically ISCs, and the nuclear marker Pros, specific for EE cells. We could observe that emc can be expressed in ISCs, but at low levels and in a small subset of cells. Moreover, the expression of emc in EE cells is very infrequent and at low levels (fig. 1.1A-B). Then, we monitored the expression of GBE-Su(H)-lacZ, a Notch activity reporter (a.k.a. Notch responsive element, NRE) that contains three palindromic binding site in tandem of Grainyhead (GBE) and two Su(H)-binding sites derived from the regulatory region of E(spl)-m8 (Furriols and Bray, 2001). As a Notch activity reporter, GBE-Su(H)-lacZ is a EB-specific reporter (Micchelli and Perrimon, 2006). Using this reporter, we could observe that emc expression is uniform (medium levels) within all the EBs (fig. 1.1C). Next, we could score the EC population using the enhancer trap Myo1A-lacZ, where we could find that emc was expressed in all ECs, although there was a large degree of expression variability (fig. 1.1D). In conclusion, all cell populations in the Drosophila midgut have the ability to express emc, although in ISCs and EE cells is very sporadic and at low levels. The highest expression of emc is found in a subpopulation of ECs.
Figure 1.1. *emc* is expressed in all cell types at different levels

A-B. *Emc*⁺ combined with α-DI (cytoplasmic and membrane, ISCs) and α-Pros (nuclear, EE cells). We can observe ISCs DI⁺ and Emc⁺ cells (A-A', arrow heads) and DI⁺ Emc[−] cells (arrows). EE cells (Pros⁺) can be Emc⁺ (B-B', arrow heads) or Emc⁺ (arrows).

C. NRE⁺ cells (EBs) express *emc* homogeneously (arrow heads), and the small variation of Emc signal match the variation of NRE intensity.

D. Myo1A⁺ cells have a wide range of expression of *emc*, from very highly expressed (arrow heads) to very weak expression (arrows).

Data information: *scale bars, 20µm*
1.A.3.2. Loss of emc arrests terminal dedifferentiation

Next, we wanted to elucidate the function of emc in the Drosophila midgut and we generated homozygous clones of a protein null allele (emcAP6), a recessive lethal allele (emcL02590) and a hypomorphic allele (emc1) using the mosaic analysis with a repressible cell marker (MARCM) technique. MARCM is a lineage tracing technique used to induce homozygotic cells in an heterozygotic background by mitotic recombination (Lee and Luo, 2001). We let the clones grow for 7 days and stained with Dl (ISC marker) and Pros (EE marker). As we could not use any specific marker for EBs and ECs, we identified EBs as Dl− Pros− diploid cells; and ECs as Dl− Pros− polyploid cells (Table 1). We could observe that emcL02590 mutant clones contained more Dl+ cells (61%) with respect to wild type (35%), and less ECs (fig. 1.2B, compare with 1.2A; quantification in 1.2F). emc1 clones also presented more ISCs. Interestingly, in emc1 clones, 8% of the cells were EE (11% in wild type), while only 1% were mature ECs compared with the 20% in control conditions, meaning that in the hypomorphic clones only differentiation into the absorptive fate was being affected (fig. 1.2D, quantification in 1.2F). emcAP6 mutant clones showed a mild increase of ISCs, but more importantly an increase of diploid Pros− Dl− cells, presumably EBs or early ECs (fig. 1.2E, quantification in 1.2F). These results suggest that emc is important for terminal differentiation. Moreover, hypomorphic emc conditions allow EE differentiation, but still inhibit the absorptive fate.

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISC</td>
<td>Dl, Hdc, Esg*</td>
</tr>
<tr>
<td>EB</td>
<td>NRE, Hdc, Esg*, Diploidy**</td>
</tr>
<tr>
<td>EE cell</td>
<td>Pros</td>
</tr>
<tr>
<td>Pre-EE cells</td>
<td>Dl, Esg, Pros***</td>
</tr>
<tr>
<td>EC</td>
<td>Polioploidy, Myo1A</td>
</tr>
</tbody>
</table>

*Hdc and Esg are markers for ISCs and EBs (progenitor cells). Esg is also expressed in pre-EE cells.

** Diploidy can be used to identify EBs when there is no marker. In this case, diploid Dl−, Pros− cells are EBs.

*** Pre-EE cells are identified when they are expressing Pros and Dl at the same time. Pros intensity is lower than in EE cells.
Figure 1.2. Expression of emc is required for terminal differentiation

A,B. emc^{L02590} MARCM clones contain more ISCs. Control clones typically contains only one Dl⁺ cells (A-A'; arrow head) in the clonal area. emc^{L02590} clones can contain multiple Dl⁺ cells (B-B'; arrow heads).

C-E. emc¹ and emc^{AP6} MARCM clones has lower differentiation. Control clones contains ECs or EE cells (C-C'). emc¹ clones maintain the secretory differentiation (D-D', arrow) but arrest absorptive differentiation, with more Dl⁺ cells than control (arrow heads). emc^{AP6} clones contain many Dl⁺ cells.

F. Quantification of the different cell types in the clonal area of the different emc alleles and controls (A-E). (N = 194 cells/107 clones for FRT2A clones, N = 213 cell/119 clones for FRT2A emc^{L02590}, N = 310 cells/119 clones for FRT80B, N = 112 cells/98 clones for FRT80B emc¹, N = 208 cells/110 clones for FRT80B emc^{AP6})(*p<0.05, **p<0.01, ***p<0.001, Binomial regression. Each cell type significance level is coloured accordingly).

Data information: **scale bars, 20µm**
Consequently, we wanted to knock down the expression of \(\text{emc} \) in the whole progenitor compartment. We started screening three available RNAi lines: \(\text{UAS-} \text{emc}^{\text{RNAi}_{\text{KK108316}}} \), \(\text{UAS-emc}^{\text{RNAi}_{\text{R2}}} \) and \(\text{UAS-emc}^{\text{RNAi}_{\text{JF02300}}} \). We proceeded with the lineage tracing system \(\text{esg-flipOut (esg-FO)} \), consisting of the \(\text{esg-Gal4} \) driver combined with the flipOut system (Jiang et al., 2009). This temperature sensitive system contains \(\text{actin5C-FRT-STOP-FRT-Gal4, UAS-flippase, UAS-GFP and tub-Gal80^\text{ts}} \). Therefore, the expression of the flippase in progenitor cells results in the excision of the STOP cassette and the progeny of these cells will also be expressing the desired transgenes, even in cells that do not express \(\text{esg} \), as the \(\text{actin5C} \) promoter is ubiquitous (see page 46). We used the expression of \(\text{headcase (hdc)} \) to label specifically progenitors cells (Resende et al., 2017). For this system, only \(\text{UAS-emc}^{\text{RNAi}_{\text{R2}}} \) showed a phenotype, while the other lines displayed wild-type phenotypes (\textbf{fig. 1.3A-D}). In \(\text{UAS-emc}^{\text{RNAi}_{\text{R2}}} \) midguts, we could observe a differentiation arrest in the progenitor clusters, which kept growing without differentiating terminally (\textbf{fig. 1.3B}, quantification in \textbf{1.3E}). This result supported the results obtained with MARCM clones that \(\text{emc} \) loss blocks cell differentiation.

Surprisingly, the posterior midguts where \(\text{emc} \) was knocked down presented few progenitor clusters. In this experiment we are using a lineage tracing system and if cells were differentiating, they would be labelled. Therefore, there must be another mechanism that could involve cell death or cell extrusion. Strikingly, when we studied the composition of the \(\text{emc} \) knocked down clusters that were not lost, we realised that they presented multiple \(\text{Dl}^+ \) cells, meaning an increased number of ISC (\textbf{fig. 1.3F-G}), consistent with the results obtained with \(\text{emc} \) mutant MARCM clones. More important, the \(\text{Dl} \) levels in these cells were surprisingly high. \(\text{Pros} \) staining in the same channel as \(\text{Dl} \) is consistently brighter, and this can be used as a reference to compare the \(\text{Dl} \) intensity in wild type flies and \(\text{emc} \) knocked down (\textbf{compare fig 1.3F’ and 1.3G’}). Thus, the increase of \(\text{Dl} \) levels in cells without \(\text{emc} \) suggests that \(\text{Emc} \) is playing a crucial role to control the expression of \(\text{Dl} \).

However, as \(\text{emc} \) knock down with \(\text{UAS-emc}^{\text{RNAi}_{\text{KK108316}}} \) and \(\text{UAS-emc}^{\text{RNAi}_{\text{JF02300}}} \) lines did not show a phenotype, we validated all the \(\text{emc} \) RNAi lines using \(\text{eyg-Gal4, eyegone (eyg)} \) defines the anterior region of the adult mesothorax, the scutum (Aldaz et al., 2003). Thus, knocking down the expression of \(\text{emc} \) during all larvae and pupal stages should result in
an increased number of bristles. We could observe that flies expressing \(UAS-emc^{RNAI}_{R2} \) had a higher density of bristles compared with the \(UAS-emc^{RNAI}_{KK108316} \) and \(UAS-emc^{RNAI}_{F02300} \) lines which, in turn, presented more bristles than the wild-type (fig. 1.3H-K). Therefore, \(UAS-emc^{RNAI}_{KK108316} \) and \(UAS-emc^{RNAI}_{F02300} \) lines present a weaker phenotype than \(UAS-emc^{RNAI}_{R2} \).

Figure 1.3. \(emc \) knock down arrests terminal differentiation and induces \(DL \) expression (see next page for legend)
Since in both approaches we can appreciate that UAS-emcRNAiR2 is stronger than the other two RNAi lines, we decided to combine UAS-emcRNAiKK108316 and UAS-emcRNAiJF02300 to achieve a stronger phenotype. Indeed, the combination of both RNAi lines increased the number of cells expressing Dl comparing with the control (fig. 1.4A-B, quantification in fig. 1.4D). More importantly, more than half of this Dl+ cells were also expressing GBE-Su(H)-lacZ, while cells only expressing GBE-Su(H)-lacZ represents a 10% of the total GFP population. This result suggests that cells where Notch is activated can still express Dl when Emc is not present (fig. 1.4C, quantification in fig. 1.4E). Moreover, we could not observe the disappearance of progenitor cells that we were seeing in UAS-emcRNAiR2. Thus, the combination of UAS-emcRNAiKK108316 and UAS-emcRNAiJF02300 produced a weaker phenotype than UAS-emcRNAiR2 but is sufficient to induce the expression of Dl in EBs.
Figure 1.4. Combination of UAS-emc^{KK} and UAS-emc^{JF} induce Dl expression

A-B. (A) Comparing control flies and (B) UAS-emc^{KK} construct and UAS-emc^{JF} co-expressed with esg-FO shows an increased number of cells expressing Dl in the latest.

C. Detail from panel B. Co-staining with Dl and NRE reveals co-expression of both markers in some cells (arrows), indicating that in these cells Notch is activated while they are expressing Dl.

D. Quantification of Dl+ cells. Significant increase of Dl cells in UAS-emc^{KK}, UAS-emc^{JF} guts (WT N= 15, UAS-emc^{KK}, UAS-emc^{JF} N=15) (**p<0.001, Mann-Whitney test).

E. Quantification of cells expressing Dl alone, cells co-expressing Dl and NRE and cells expressing NRE only in esg-FO>UAS-emc^{KK}, UAS-emc^{JF} midguts. Dl+ NRE+ cells represents a 46.2% of the total population (UAS-emc^{KK}, UAS-emc^{JF} N=15).

Data information: scale bars, 20µm
1.A.3.3. Loss of emc induces apoptosis

To test if apoptosis was responsible for the disappearance of progenitor cells, we co-expressed UAS-emc^{RNAi}_{R2} with UAS-$p35$ in all progenitor cells with the esg-FO driver. P35 is a caspase inhibitor encoded by the baculovirus *Autographa californica* (Crook *et al.*, 1993), and if cells were dying because of the apoptosis, $p35$ expression would inhibit the cell death. The co-expression of UAS-emc^{RNAi}_{R2} with UAS-$p35$ partly rescued the cell death ([fig. 1.5A,B]), as now there was an evenly distributed progenitor population, although less GFP$^+$ cells were detected compared with wild-type ([fig. 1.5C]). Hence, the knock down of *emc* in progenitor cells unchains a mechanism that will derive into apoptosis through all the posterior midgut and the cell death can be rescued with P35.

In the guts where we co-expressed UAS-$p35$ and UAS-emc^{RNAi}_{R2}, we also observed that the majority of progenitor cells were Dl$^+$ with increased levels. However, we could also observe a subset of Dl$^+$ cells that were also expressing NRE ([fig. 1.5D, quantification in 1.5E]). Finally, there were some diploid cells with very weak Dl expression. Both of these populations are not present when $p35$ is not expressed in *emc* knocked down, and therefore these two populations are dying.
Figure 1.5. Loss of emc induce cell death

A. esg-FO>emcR2-R2 induces cell death in the majority of the tissue

B. Cell death rescue with UAS-p35 in esg-FO>emcR2-R2 midguts. It can be observed a recovery of the progenitor pool with GFP+ cells along the posterior midgut.

C. Quantification of GFP+ cells shows that after cell death rescue, the number of GFP+ is still significantly reduced (WT N= 15, UAS-emcRNAi-R2, UAS-p35 N=29)(***p<0.001, Unpaired T test).

D. Detail from panel A. In esg-FO>emcR2-R2, p35 midguts can be found Dl+NRE+ (arrow heads) cells and Dl−NRE− diploid cells (arrows).

E. Quantification of the distinct cell populations within the GFP+ cells (UAS-emcRNAi-R2, UAS-p35 N=29).

Data information: scale bars: 20µm
1.A.3.4. Emc is necessary to inhibit dedifferentiation of EBs

We have shown in figure 1.1 that the expression of emc in ISC is variable from not expressed to weakly expressed, while in EBs is consistently expressed. As Dl is expressed in ISCs but not in EBs, there seems to be a correlation between the expression of Dl and the expression of emc and it is possible that Emc is blocking the expression of Dl in EBs. To test this hypothesis, we used an EB specific driver, Su(H)-GBE-Gal4, UAS-GFP, tub-Gal80ts (Su(H)-GBE-Gal4TS) to knock down emc. Whereas in the control guts we normally find single EBs, the guts where emc was knocked down in the EBs presented clusters of GFP+ cells with more than 3 cells (fig. 1.6A-B, quantification in 1.6C). Strikingly, some of these GFP+ cells were also expressing Dl, whereas in control flies we have never observed EBs that were Dl' (fig. 1.6D-E). Moreover, the GFP intensity was not homogenous, and the lower GFP intensity cells presented higher levels of Dl. As this was not a FO system, cells with lower levels of GFP are probably cells that are no longer expressing GFP nor UAS-emcRNAiR2. These cells that no longer expressed GFP had similar levels of Dl than the emc knock down mediated by esg-FO. Therefore, we surmised that loss of emc in EBs results in a loss of committed features and gain of stem characteristics, meaning that these cells could be dedifferentiating into ISCs.

To further test if loss of emc in EBs leads to dedifferentiation and acquisition of stem capacities, such as division ability or multipotency, we generated a Su(H)-GBE-FO, which contains the FO system using the Su(H)-GBE-Gal4TS instead of esg-Gal4. Therefore, we kept the flies at non-permissive temperature for 7 days and we stained with the mitosis marker anti-phospho Histone 3 (PH3) and the EE marker Pros. Whereas in control flies EBs only can be maintained or differentiate into ECs and no longer divide, emcRNAi EBs generated Dl' cells that were positive for PH3, and therefore were dividing (fig. 1.6F). Moreover, we could observe EE cells labelled with GFP. Thus, loss of emc in EBs results in dedifferentiation to an ISC like state. These ISCs can divide and differentiate into EEs.
Figure 1.6. Knock down of emc in EBs induce de-differentiation to ISC-like cells (see next page for legend)
Interestingly, when we knock-down the expression of emc only in EBs, we did not observe any sign of cell death as when we express UAS-emcRNAiR2 in all progenitor cells. In principle, this could suggest that the apoptosis observed in those conditions is non-cell-autonomous, i.e. it is the interaction between cells lacking Emc that induce apoptosis. Therefore, surviving clones in esg-FO experiments could come from ISCs/dedifferentiated EBs that were isolated. As both ISC and EB represent a 18% of the cell population in the midgut (together 36% (Micchelli and Perrimon, 2006)), we wanted to study this hypothetic non-autonomous effect in the whole tissue. Consequently, we combined the esg-Gal4 with the EC-specific driver Myo1A-Gal4 to express UAS-emcRNAiR2 (esg+Myo1A-Gal4TS). When we performed an immunohistochemistry assay and stained with DI and Pros, we could observe that guts were covered with DI+ cells and there were few ECs, compared with control flies (fig. 1.7A-B). Interestingly, some DI+ cells presented protrusions which are not characteristic of ISC (fig. 1.7C) and the cytoplasm and nucleus of ECs were highly enlarged (fig. 1.7D, quantification in 1.7E). Moreover, we wanted to know if the DI+ cells were proliferative, and we stained for PH3. This staining showed that these DI+ cells were proliferative (fig. 1.7F). Together, these results show that knocking down the expression of emc in the whole tissue induce an ISC over-proliferation and EC loss. The remaining ECs increase in volume.
Figure 1.7. Knock down of emc in a large proportion of tissue induce ISC over-proliferation

A. *esg, Myo1A>GFP* in posterior midguts induce expression in all cells except Pros⁺ cells
B. *esg, Myo1A>emcRNAi-R2* midguts shows large clusters of Dl⁺ cells that cover the majority of the tissue
C. Detail of panel B. It can be observed that Dl⁺ cells present protrusions (arrow heads) when they are not in contact with other cells.
D. Detail of panel B. Surviving ECs present large nuclei and cytoplasm due to several endoreplication cycles.
E. Nucleus area is larger in *esg, Myo1A>emcRNAi-R2* ECs compared with control ECs nucleus (WT N= 213 ECs, *emcRNAi-R2* N=66 ECs)(***p<0.001, Mann-Whitney test).
F. Knock down of emc promotes the proliferation in the tissue of Dl⁺ cells.

Data information: **scale bars: 20µm**
1.A.3.5. Expression of emc selects for absorptive fate

Our previous findings led us to hypothesize that Emc is essential for terminal differentiation in progenitor cells. Therefore, it is plausible that if progenitor cells start expressing high levels of emc, they would differentiate. To confirm this, we used the esg-Gal4° driver to express UAS-emc. At 3 days after expression initiation we observed large areas without progenitor cells (fig. 1.8A). Still, other areas showed no difference in progenitor cell content (GFP cells) compared with the controls. After 5 days of overexpression there were not any progenitor cell in the midguts, and the tissue was composed mainly by ECs and some EE cells (fig. 1.8B). However, some polyploid cells had a faint GFP expression. This could indicate that UAS-emc could be forcing the differentiation of all progenitor cells, although it could be also possible that it is promoting apoptosis and the few survivors could differentiate. To distinguish between these possibilities, we used the esg-FO system for lineage tracing to overexpress UAS-emc in progenitor cells and their descendant progeny for 7 days (fig. 1.8C). The guts still contained EE cells (Pros°) and ECs (polyploid), however, now we could observe that a big proportion of these ECs were GFP⁺, meaning that the progenitor pool was lost due to differentiation instead of apoptosis. It was also notable that none of the EE cells were GFP⁺, indicating that emc overexpression induces only absorptive differentiation.

1.A.3.6. emc acts downstream of Notch activation

These results highlight the importance of Emc to promote cell differentiation and ensuring that EBs do not dedifferentiate. Interestingly, we could observe that after 3 days of overexpression, the differentiation was only localized in some parts of the tissue. This suggests that the responsiveness to UAS-emc is not synchronous. This asynchronous kinetics of differentiation of progenitor cells has also been observed as well when NICD is overexpressed (de Navascués, unpublished data); NICD drives the terminal differentiation of ISCs and EBs into ECs (Ohlstein and Spradling, 2007). Moreover, challenging the flies with heat stress can accelerate NICD kinetics of differentiation (de Navascués, unpublished data), possibly through promoting tissue turnover. To confirm that heat stress can accelerate progenitor differentiation I heat-shocked UAS-emc, esgTS flies at 37 °C for 1 hour and then let them recover at 29 °C for 3 days (fig. 1.8D).
Remarkably, all cells in the guts were differentiated, suggesting that the delay depends on the dynamics of the tissue rather than in the expression of UAS-emc.

The similarity between NICD and emc overexpression phenotypes, suggested that emc could be a target downstream of Notch activation. This hypothesis is supported by previous studies which report that Notch drives emc expression during wing vein development.
formation (Baonza et al., 2000) and eye disc development (Spratford and Kumar, 2015b). Therefore, we wanted to analyze the expression of emc in NICD overexpression clones, and to that end we used the emcCPT2740 line in combination with Actin5C-FRT-y′-FRT-Gal4, UAS-lacZ (a.k.a. Ay-Gal4) and hs-flippase. This system allowed us express UAS-NICD in the clones (traced with the UAS-lacZ). In contrast with the MARCM technique, where the clones are formed by mitotic recombination and therefore in dividing ISC, Ay-Gal4 recombination can occur in any cell type. The clones were induced at 37 °C for 15 minutes, and the flies were kept for 3 days at 25 °C prior to dissection to ensure the expression of Notch downstream targets (fig. 1.9A). We could not appreciate any difference with the GFP intensity inside and outside the clones, considering the differential expression in each cell type. Thus, it seemed that there was not an increased expression of emc. However, the expression of emc in WT midguts is not constant within each cell type.

As the expression of emc downstream of Notch activity was not clear, we decided to further investigate with an epistatic analysis. We used esg-FO to knock down the expression of Notch (UAS-NRNAi) and overexpress UAS-emc at the same time. While the UAS-NRNAi typical phenotype results in an over-proliferation of stem cells, formation of clusters of ISC and EE cells and blocking the absorptive differentiation (fig. 1.9B), with UAS-emc co-expression cells differentiate into EC, similar as when we express UAS-emc alone (fig. 1.9C). This result suggests that emc function could be downstream of Notch. However, it also could be that the knock down process is too slow, and when it starts to have an effect, emc has already forced the differentiation into ECs irreversibly. To avoid this potential problem with the expression dynamics, we decided to generate a Notch loss of function phenotype by overexpressing H. The overexpression of UAS-H has been shown to mimic the UAS-NRNAi phenotype in the Drosophila gut (Bardin et al., 2010). Furthermore, the absence of H produce the loss of stemness, similar to the expression of UAS-NICD (Bardin et al., 2010), although while the expression of UAS-NICD drives differentiation in the vast majority of the tissue after 7 days, the knockdown of H takes more time to make the transition from EB to EC (Bardin et al., 2010). Therefore, we proceeded with the epistatic analysis and the co-expression of UAS-H and UAS-emc. Control flies expressing only UAS-H could form clusters of ISC, with few and small EE clusters. However, when we co-express UAS-H and UAS-emc, we arrested completely the
secretory differentiation, ISCs did not proliferate and we increased the absorptive differentiation, with a 36% of ECs compared with the 1% in UAS-H condition (fig. 1.9D-E, quantification in 1.9I). Complementary, the double knock-down with UAS-H^RNAi/HMS0182 and UAS-emc^RNAi showed 32% of Dl' cells after 14 days, with high Dl levels, whereas in UAS-H^RNAi/HMS0182 flies all ISC had differentiated (fig. 1.9F-G, quantification in 1.9I). Noticeable, guts with the double knock-down had an important loss of progenitor cells (fig. 1.9H’). Taken together, these results suggest that Emc activity is epistatic over Notch and Emc is necessary for the correct differentiation towards ECs downstream of N activity.

Figure 1.9. Emc function is epistatic over Notch (panels A-F, continue next page)
Figure 1.9. Emc function is epistatic with Notch (panels A-G, continue next page)

A. Overexpression of UAS-NICD in clones (clones highlighted with arrow heads) shows different emc expression levels, with some cells not expressing emc.

B. Knock down of Notch in progenitor cells produce over-proliferation of ISCs and formation of large ISC clusters and EE cell cluster, inhibiting absorptive differentiation.

C. Expression of UAS-emc in Notch knocked down guts promotes terminal differentiation.

E. Progenitor cells expressing UAS-emc and UAS-H are able to differentiate into ECs, with some remaining Dl+ cells.

F. The percentages of the different cell populations in UAS-H and UAS-H, UAS-emc expression in progenitor cells. (UAS-H N=21; UAS-H, UAS-emc N=27) (**p<0.01, ***p<0.001, Multiple T test).

G. Knock down of H for 14 days slowly promotes absorptive differentiation. All cells are DI−. Moreover, some cells are DI− NRE− and contain a small nuclei (arrow head).

H. Double knock down of emc and H in progenitor cells present DI+ cells and also the unidentified DI− NRE− population (arrow head).

I. Quantiﬁcation of cell population in over-activation of Notch with and without emc expression. Knock down of emc restores DI+ and Pros+ cell populations (UAS-HRNAi N=15 guts, 696 cells; UAS-HRNAi+RNAi, UAS-emcRNAi RNAi N=20 guts, 90 cells) (***p<0.001, Binomial regression. Each cell type signiﬁcance level is coloured accordingly).

Data information: scale bars, 20µm
1.A.4. Conclusions

We have shown that *emc* is expressed in the *Drosophila* posterior midgut in all cell types. However, the expression levels vary among and within cell types, having the highest levels in ECs, and the most constant expression in EBs (fig 1.1). Moreover, Emc is necessary for terminal differentiation (fig 1.2 and fig 1.3) and a high expression of *emc* induces absorptive differentiation (fig 1.8). We have also observed that the differentiation function is downstream of Notch signalling, which activity also induces absorptive differentiation (Micchelli and Perrimon, 2006). However, *emc* expression is not controlled by Notch (fig 1.9).

Aside from inducing absorptive differentiation, we have discovered that Emc is also necessary to maintain EBs committed, and loss of *emc* in these cells induce de-differentiation into ISCs and expression of *Dl* (fig 1.6)(fig 1.10).

Finally, loss of *emc* in progenitor cells induces apoptosis that can be partly rescued with the expression of *p35* (fig 1.5). However, when *emc* is knocked down in progenitor cells and ECs at the same time, ISCs over-proliferate and ECs increase their volume (fig 1.7).

![Figure 1.10. Emc promotes absorptive differentiation and blocks de-differentiation](image)

Emc function is downstream of Notch, although *emc* expression levels do not vary when Notch is activated. High levels of Emc induce terminal absorptive differentiation. Moreover, loss of *emc* induces EB to de-differentiate, indicating that Emc is crucial to halt de-differentiation.
Chapter 1B: A network of bHLH factors controls self-renewal and bipotential differentiation in the intestine: Da and Sc

1.B.1. Introduction

Little is known about how Da controls the homeostasis of the tissue, as it has only been observed that loss of da results in absorptive differentiation (Bardin et al., 2010). To drive transcriptional regulation, Da can form protein complexes of different composition:

1. Da/Class II dimers: Da typically dimerize with bHLH class II for its transcriptional function. The most studied partnership is the one formed by Da and members of the AS-C for the formation of bristles in the notum (Culí and Modolell, 1998; Murre et al., 1989a; Troost et al., 2015). In the midgut, sc and ase have been shown to be important for the secretory fate (Bardin et al., 2010; Li et al., 2017a). Sc is also necessary in ISC, although its function is not fully elucidated and its expression tightly regulated (Chen et al., 2018; Wang et al., 2015).

2. Da/Zn finger complexes: Da is able to physically interact with the C2H2 Zn finger transcription factor senseless (Jafar-Nejad et al., 2006). Hence, Da could maintain the progenitor state by binding to other Zn finger proteins from the C2H2 family, such as Chn.

3. Da/Da homodimers: bHLH class I members can also homodimerize, although the dimer binding is weaker than the heterodimers (Cabrera and Alonso, 1991; Murre et al., 1989a). This homodimeric form can bind DNA and drive transcription, as it has been shown that it induces the expression of ato in the eye disc (Tanaka-Matakatsu et al., 2014) and expanded (ex) in the eye and wing disc (Wang and Baker, 2015). Therefore, Da could also form homodimers in the midgut to prevent terminal differentiation.

It has also been shown that the FoxA factor Fkh and Da share gene targets to maintain the progenitor state (Lan et al., 2018). However, Lan et al. propose that Fhk would serve as an initiator of the transcription by opening the chromatin and facilitate the accessibility of other transcription factors. Therefore, it is likely that Da and Fkh do not dimerise.
Therefore, in this chapter we will explore the role of Da controlling the homeostasis and with which partners does it dimerise to exert its different roles.

1.B.2. Aims

- Determine the function of Da during adult intestinal homeostasis
- Study the functional relationship between Emc and Da in the gut
- Explore the relationship between Sc and Emc during secretory differentiation

1.B.3. Results

1.B.3.1. Emc opposes Da function

In 2010, Bardin et al. showed that when they induced da10 clones in adult midguts, the stemness was lost, the clones did not grow and cells became ECs. Although we have not induced overexpression clones of UAS-emc, the da loss of function phenotype is comparable with the overexpression of UAS-emc. It is highly possible that high levels of Emc binds with all Da and therefore inhibits its function. We then wanted to know the effect of knocking down the expression of da in all progenitor cells using the esg-FO technique and two different RNAi: UAS-daRNAiJF02488 (fig. 1.1A, quantification in 1.1B) and UAS-daRNAiHMS01851 (data not shown, quantification in 1.1B). We obtained the same phenotype with both da RNAi lines, and is similar to UAS-emc overexpression phenotype, although some cells were differentiating into EE cells (fig. 1.1C). We also induced formation of da10 MARCM clones, and observed that all da mutant cells differentiated, as previously described (Bardin et al., 2010). The majority of cells also differentiated into ECs, and a small proportion of them into EE cells (data not shown). This confirms that Da is required to maintain the stem cells. Considering the reduced level of EE differentiation associated with da loss, it is also possible that Da is needed for secretory differentiation.
Figure 1.11. Loss of da leads to loss of stemness

A. Knock down of da with the esg-FO system induce terminal differentiation and loss of stemness (arrow head indicates Pros' GFP+ cells).

B. Knock down of da promotes mainly absorptive differentiation (WT N = 15, UAS-daRNAi-JF N = 15, UAS-daRNAi-HMS N = 19) (**p<0.001, Kruskall-Wallis/Dunn test).

C. Cells without da still can differentiate into EE cells in contrast with over-expression of UAS-emc (UAS-emc N = 18, UAS-daRNAi-JF N = 15, UAS-daRNAi-HMS N = 19) (*p<0.05, ***p<0.001, Kruskall-Wallis/Dunn test).

Data information: scale bars, 20µm
Next, we were interested in whether \textit{da} is necessary to maintain the stem pool and find which is the dimerization partner. To investigate these two points, we started expressing \textit{UAS-da} using the \textit{esg-FO} system (\textbf{fig. 1.12A}, quantification in 1.12B). We found that there were few surviving clusters in the gut, and those were composed mostly of progenitor cells. Moreover, there was an increased number of cells expressing \textit{GBE-Su(H)-lacZ}. We then wanted to know if the levels of Dl were elevated, and we could observe that surviving clones express few Dl+ cells, whose expression was not elevated (\textbf{fig. 1.12C}). Therefore, \textit{UAS-da} strikingly mimics the phenotype of \textit{UAS-emcRNAi_r2} in progenitor cells, although it seems that Da alone is not responsible for the regulation of Dl, and Emc must be inhibiting another bHLH to control \textit{Dl expression}. As the overexpression of \textit{UAS-da} also promotes loss of progenitor cells, we wanted to rescue apoptosis. We co-expressed \textit{UAS-da} and \textit{UAS-p35} using \textit{esg-FO} (\textbf{fig. 1.12D}, quantification in 1.12E). These guts presented cells that were either \textit{Dl}+ or \textit{GBE-Su(H)-lacZ}+, but never both markers together, as we saw when we rescued cell death in \textit{emc} knocked down progenitor cells. Interestingly, the number of Hdc+ NRE− was reduced from a 33% in \textit{UAS-da} only expression to a 19 % with \textit{UAS-p35} co-expression, while the number of Hdc+ NRE+ represents a 78% of the GFP+ population when cell death is rescued. Together, these results show that Emc inhibits a different target than Da to impair the expression of Dl and promote dedifferentiation.
Figure 1.12. Expression of *da* prevents differentiation

A. *esg-FO>da* expression induce disappearance of the majority of progenitor cells. The surviving clusters contain only progenitor cells (A’).

B. Quantification of the cell population in WT and *da* over-expressing midguts shows a complete arrest of differentiation (WT N = 987 cells, UAS-*da* N = 270 cells) (**p<0.01, ***p<0.001, Binomial regression. Each cell type significance level is coloured accordingly).

C. Co-expression of UAS-*da* and UAS-p35 in progenitor cells rescue the disappearance of the majority of progenitor cells.

D. Co-expression of UAS-*da* and UAS-p35 does not rescue completely the cell loss (WT N = 15, UAS-*da* N = 21) (**p<0.001, Unpaired T test).

E. Population distribution in *esg-FO>da, p35* showing that when cell death is impaired, only few cells differentiate, and the majority remain as EBs (UAS-*da* N = 21).

Data information: **scale bars, 20µm**
Our previous results showed that Da and Emc have opposite effects and most likely this is because the main function of Emc is sequestering Da (and other bHLH factors) and inhibiting its transcriptional activity. This model predicts that in the absence of Da, Emc would be dispensable. For this experiment we wanted to avoid the widespread cell death, and therefore we induced MARCM clones of \(\text{emc}^{LL}\) and \(\text{UAS-d}a^{\text{RNAi}_{jR2488}}\) (fig. 1.13A). As expected, all cells differentiated into ECs. To further confirm this effect, we induced \(\text{da}^{10}, \text{UAS-emc}^{\text{RNAi}_{jR2}}\) MARCM clones (fig. 1.13B). Both results showed exactly the same phenotype, all cells differentiated into ECs, and there was not any progenitor cell left in the clones. Thus, when Da is not present, Emc function is not relevant.

Conversely, in excess of Da and Emc, we would expect an intermediate phenotype where some cells would stay as progenitors and some cells differentiate. To confirm this, we used the \(\text{esg-FO}\) system to overexpress \(\text{UAS-d}a\) and \(\text{UAS-emc}\) and we found that there were few surviving clusters, and those were mainly progenitor (Hdc\(^+\)) cells, although there were few Hdc\(^-\) GFP\(^+\) cells that had small nuclei (fig. 1.13C-D). This phenotype could indicate that \(\text{UAS-d}a\) transgene is stronger than \(\text{UAS-emc}\), and therefore we are producing a \(\text{UAS-d}a\) phenotype, with some escapers that would start absorptive differentiation an escape from apoptosis but cannot undergo through endoreplication.

Altogether, our data indicates that Emc would have three main functions: inhibit Da function to drive cell differentiation, inhibit EB dedifferentiation and control the expression of \(\text{Dl}\), although the two last activities could be using the same mechanism.
Figure 1.13. Da function is regulated by Emc

A-B. ISCs differentiate into ECs (arrow heads) when both *da* and *emc* expression are impaired. We used MARCM clones to induce knock down of *da* in *emc* \(^{LL02590}\) mutant clones (A) or to induce knock down of *emc* in *da* \(^{10}\) mutant clones (B).

C. Co-expression of UAS-*da* and UAS-*emc* maintains the majority surviving clusters as progenitors. Guts show a low survival of the GFP\(^{+}\) population.

D. Detail of panel C, it can be observed that some GFP\(^{+}\) cells are diploid Hdc\(^{-}\)NRE\(^{-}\) cells.

Data information: **scale bars, 20µm**
1.B.3.2. Da homodimerizes to maintain the progenitor state

Thereafter, we wanted to determine the nature of the dimer that Da was participating in to maintain the progenitor state. In the next chapter of this thesis we will explore a bHLH candidate called Cropped. Da dimerises typically with bHLH class II to bind specific E boxes DNA sequences (CANNTG). Biochemistry assays showed that Da can form homodimers that weakly binds DNA (Murre et al., 1989a; Murre et al., 1991), similarly as the formation of E12 homodimers in mammals (Sun and Baltimore, 1991). In 2014, Tanaka-Matakatsu et al. found that Da homodimers induce retinal neuron differentiation (Tanaka-Matakatsu et al., 2014).

We wanted to explore the possibility that Da:Da dimers have a function in the gut maintaining the progenitor state. For these means we expressed a UAS-da:da: two da sequences linked by a flexible peptide, whose proximity forces the dimerization (this approach was described in mammals (Neuhold and Wold, 1993) and later it was used in Drosophila to create tethered twist homodimers and twist:da heterodimers (Castanon et al., 2001)). This UAS-da:da construct has previously been used (Tanaka-Matakatsu et al., 2014; Wang and Baker, 2015). We expressed UAS-da:da with the esg-FO system (fig. 1.14A, quantification in 1.14B). As a result, we could see that progenitor cells were forming clusters without differentiating. About two thirds of the cells were NRE+ and the other 1/3 were Dl+. In addition, in big clusters with more than one ISC, we could never find two ISC in direct contact, and there were always EBs between them. But more importantly, these midguts did not present any sign of cell death, clusters were comparably distributed like the control, although when these clusters grew, instead of differentiating, they were accumulating progenitor cells. However, comparing the size of clusters, there was not any sign of incremented proliferation compared with wild-type (fig. 1.14C), and the size of the clusters were comparable. To verify that there were not more mitotic cells, we stained with PH3, and there were no significant differences with control flies (fig. 1.14D). As expected, we could not observe any increment in Dl levels, similar than UAS-da over-expression (fig. 1.134). Together, these results show that Da homodimerize in order to maintain the progenitor state, although the homodimer is not responsible of the cell death, and there must be another molecule that partners with Da and is responsible of it.
Figure 1.14. Da:Da prevents terminal differentiation

A. esg-FO guts expressing a tethered UAS-da:da forms clusters of progenitor cells. Cells inside the cluster are Hdc+ (A') and the majority are NRE+ (A''), while there are few NRE- (arrow heads).

B. Quantification of the different cell populations in WT and esg-FO>da:da intestines. EB population increase significantly, in detriment of terminally differentiated ECs (WT N = 19 guts, UAS-da:da N = 13 guts) (*p<0.05 ***p<0.001, multiple t-test) (WT data from figure 1.3A).

C. The cumulative clone frequency shows a comparable size distributions of the clusters (WT N = 552 clones, UAS-da:da N = 288 clones) (not significant p = 0.4187, Log-rank (Mantel-Cox) test) (WT data from figure 1.3A).

D. The total number of cell divisions in WT and esg-FO>da:da guts have no significant difference (WT N = 15 guts, UAS-da:da N = 16 guts) (not significant p = 0.6255, Mann-Whitney test).

E. Dl levels in esg-FO>da:da posterior midguts (arrow heads) are lower than the signal of Pros (arrows).

Data information: scale bars, 20µm
Notably, the accumulation of EBs and the normal levels of Dl in UAS-da and UAS-da:da clusters indicate that they are unable to promote de-differentiation. To test this, we expressed both transgenes with the GBE-Su(H)-FO system (fig. 1.15A-B). As expected, all the GFP cells were EBs, which were accumulating around the ISCs in both cases. Interestingly, when we overexpressed UAS-da only in EBs, these cells do not undergo into apoptotic processes, reinforcing the hypothesis that cell death is not induced in single cells. These results also suggest that Emc controls Dl independently of Da:Da.

Next, we wanted to know the specific function of the Da:Da dimer, and we decided to use two different approaches:

- Remove all the endogenous da and express the forced dimer in all progenitor cells.
- Compare the differential expression of downstream genes when we express the monomer alone or the tethered dimer.

For the first approach we used the esg-FO system to express UAS-da:da and knock down the expression of da. To do this, we had to find a UAS-da RNAi line that does not target our UAS-da:da transgene. Our transgene does not contain the da 5’UTR, which is the UAS-daRNAiJF02488 target sequence. Therefore, we could remove da monomers that could bind other potential partners, while the Da:Da is present. We determined that the homodimer alone is enough to maintain the progenitor state, accumulating EBs and inhibiting their differentiation (fig. 1.16A).
1.B.3.3. Notch controls the function of Da homodimers

Our observations support a model in which Da:Da dimers are antagonized by Emc, whose function would be downstream of Notch activation. Therefore, in the presence of forced Da:Da expression, Notch activation should not enforce terminal absorptive differentiation. To test this, we co-expressed UAS-da:da and UAS-HRNAi_{HMS01182} in all progenitor cells with esg-FO for 14 days. Here, it is possible that there is a delay with the added kinetics of RNAi biogenesis, although, for our experiment, it would be advantageous that UAS-da:da is expressed before H is knocked down, as then we can assess if Notch activation can force differentiation in the presence of Da:Da without worrying that H knockdown would lead to irreversible differentiation before Da:Da was in place. Indeed, Notch activation could not induce terminal differentiation when Da:Da is present, as all GFP+ cells were progenitor cells (Hdc+) (fig. 1.17A, quantification in 1.17B). Interestingly, Hdc+ cells expressed different levels of GBE-Su(H)-lacZ + (fig. 1.17A), from high to no expression in a graded manner, but none of them expressed Dl (fig. 1.17C). In the absence of Dl expression (and therefore NICD production) and the loss of H-mediated repression, the observed lacZ expression is possibly due to the basal enhancer activity of the GBE sequence in the GBE-Su(H)-lacZ transgene.

The presence of only committed cells when Notch is activated and UAS-da:da expressed was expected, as we have previously observed that with the expression of UAS-da:da alone, all GFP+ cells are Dl− due to Notch activation (compare 1.17A with fig. 1.14A). This points out the importance of Emc to inhibit the formation of Da homodimers in the EB to allow absorptive differentiation. This suggests that when cells do not have Da, Notch might not be required to drive differentiation. We demonstrated this hypothesis by knocking down the expression of da and expressing H to block Notch activity (fig. 1.14D).
1.17D, quantification in 1.17E). We observed that the majority of cells adopted the EC fate even when Notch signalling was impaired. We could also see terminal absorptive differentiation with the double knock down of da and Notch using the esg-FO lineage tracing system (fig. 1.17F).

Finally, the data indicates that loss of Notch and expression of UAS-da:da have two main differences: (1) while Da:Da overexpressing cells can differentiate into EBs, but maintain the progenitor state, Notch mutant clones are composed either by ISCs or by EE cells and (2) Notch mutant cells have proliferation rates that are largely increased, while we demonstrated that UAS-da:da over-expression did not affect cell divisions. Therefore, we expressed UAS-da:da and knocked down the expression of Notch with the esg-FO to see if in these conditions cell proliferation would still be increased as when N is knocked down alone, or on the contrary, the expression of UAS-da:da would reduce the proliferation (fig. 1.17G). After 7 days, we could observe clusters of progenitor cells, but there was no sign of over-proliferation. We could find some GBE-Su(H)-lacZ+ cells, but never more than one per cluster and the majority of cells were ISCs. The presence of GBE-Su(H)-lacZ+ cells could be due to a delay of the effect of UAS-NotchRNAi or perdurance of the β-galactosidase. We could also find single Pros+ GFP+ cells, but there was no sign of the typical EE clusters of Notch loss of function. Together, these results indicate that Notch is epistatic to Da and Da:Da dimers prevent cell differentiation and proliferation (fig. 1.17G).

Figure 1.17. da function is regulated by Notch activity (next page)

A. Expression of UAS-da:da and knock down of H using the esg-FO system produce an arrest of terminal absorptive differentiation. Except some Pros+ escapers, all cells are Hdc+ and express different levels of NRE.

B. Quantification of EBs in esg-FO>da:da, HRNAi-HMS guts. As all Hdc+ cells are Dl−, we consider them as EBs that, due a prolonged time without having Notch activated by Dl, Notch reporter expression has ceased. (UAS-HRNAi-HMS N = 15, UAS-da:da, UAS-HRNAi-HMS = 15) (**p<0.001, Mann-Whitney test).

C. All GFP+ cells are Dl− in esg-FO>da:da, HRNAi-HMS guts.

D. Expression of UAS-daRNAi-JF, UAS-H in progenitor cells with esg-FO promotes terminal differentiation, with polyploid Dl− NRE− GFP+ cells.

E. Quantification of ECs in esg-FO>daRNAi-JF, H guts. (UAS-H N = 21, UAS-daRNAi-JF, UAS-H = 21) (**p<0.001, Mann-Whitney test).

F. Double knock down of da and Notch produce a terminal absorptive differentiation in all progenitor cells.

G. Expression of the tethered dimer UAS-da:da and knock down of Notch with esg-FO arrest absorptive differentiation and maintains the majority cells as Dl+ (arrow heads). Cells can still differentiate into Pros+ cells (arrows).
H. When Notch is not activated, Da (orange) homodimerizes to drive the expression of genes that maintain the progenitor state. In Notch activated cells, Emc (grey) dimerizes with Da, inhibiting its transcriptional activity.

Data information: scale bars, 20µm

Figure 1.17. *da* function is regulated by Notch activity (continued)
1.B.3.4. Da homodimers do not auto-regulate and maintain stemness in parallel to Esg

Next, we wondered if Da:Da could be autoregulating da expression. Previous studies indicate that although in many tissues the expression of da is ubiquitous, it has a complex transcriptional regulation. da is autoregulated both positively and negatively in the somatic ovary (Smith and Cronmiller, 2001) and in the eye-antennal disc (Bhattacharya and Baker, 2011). We addressed this question by using the Ay-Gal4, producing clones that express UAS-da:da and comparing the intensity of Da:GFP inside and outside the clones (fig. 1.18A). There were no differences in the GFP intensity within the tissue. Thus, it seems that Da:Da does not auto-regulate da expression.

Esg is a transcription factor expressed only in ISCs and EBs, and it has been shown to be important for maintaining the progenitor state. Loss of esg results in differentiation (either secretory or absorptive), while overexpressing esg in MARCM clones produces clusters of progenitor cells with accumulation of EBs (Korzelius et al., 2014; Loza-coll et al., 2014). Importantly, guts over-expressing esg in progenitor cells have a lower mitotic rate after injury. All these features are similar with the over-expression of UAS-da:da. Moreover, although there is no consensus in this regard, some reports indicate that esg is epistatic to Notch (Li et al. 2017). Thus, esg could be either upstream or downstream of da. Available DamID data for Esg (Korzelius et al., 2014; Loza-coll et al., 2014) showed binding of Esg in the da promoter sequence (fig. 1.18B). However, RNAseq data (Korzelius et al., 2014) of knocked down and over-expressed esg in progenitor cells showed no significant up-regulation or down-regulation of da. Thus, da seems not to be under Esg control. Moreover, we induced clones expressing UAS-esg with Ay-Gal4 to check the variability on the Da:GFP reporter (fig. 1.18C). In accordance with the RNAseq data, the expression of da was not altered by Esg.
Figure 1.18. Da and Esg work in parallel

A. Overexpression of *UAS-da:da* in clones shows that *da* expression is variable inside the clones even in the same cell type. Some *Dl*⁺ cells do not express *da* (arrows), while some have expression (arrow heads).

B. Esg DamID profile surrounding the *da* loci. Bars represent the median log2 (intensity ratio) between Esg:Dam and Dam-control profiles. Blue lines represent escargot binding sites. The red arrow head indicates *da* polarity. In gray there are the different genes and transcripts. (Raw data acquired from Korzelius et al, 2014/Loza-Coll et al, 2014).

C. Esg does not regulate *da* expression, as some clones express *da* (arrow heads) and some do not (arrows).

D. Da:Da homodimers do not regulate *esg* expression. All progenitor cells inside and outside the clones has the same *esg* expression (arrow heads represent *Dl*⁺ cells in clones), while differentiated cells in clones do not express *esg* (arrows).

Data information: **scale bars, 20µm**
To test if esg activity could be controlled by Da:Da, we knocked down expression of da and expressed UAS-esg with esg-FO (fig. 1.19A-B, quantification in 1.19C). All cells could be maintained in the progenitor state even in the absence of da, which could suggest that esg role is downstream of Da. If that were the case, when esg is knocked down (UAS-esgRNAi\textsubscript{HM30023}) and we express UAS-da:da, we would expect that all cells differentiate into ECs and EE cells (fig. 1.20A,B, quantification in 1.20C). Interestingly, in these conditions, progenitor cells did not differentiate into ECs and, although present, secretory differentiation was significantly reduced compared to esg knock down flies. This is interesting, as previous reports have shown Esg as an inhibitor of the secretory differentiation, and knock down of esg induces an increase of EE cells, but we can see that this increment is reduced when UAS-da:da is expressed (fig 1.20C).

These results suggest two different hypotheses:

1. Da:Da has different downstream targets that regulate the progenitor state and one of them is esg. When esg is not present, the other targets are sufficient to inhibit the absorptive differentiation.

2. Da:Da and Esg work in parallel to maintain the progenitor state.

To address this question, we used the Ay-Gal4 system to induce clones expressing UAS-da:da and compare the levels of the esg-lacZ (fig. 1.18D). The resulting clones did not show any increase on the levels of esg. Therefore, the data suggests that Da:Da and Esg are not epistatic and work in parallel (Model 2).
Figure 1.19. Over-expression of esg maintains the undifferentiated state in the absence of da

A. Over-expression of UAS-esg arrests terminal differentiation.
B. Expression of UAS-esg, UAS-da^{RNAi-JF} in progenitor cells arrests terminal differentiation.
C. Quantification of EE cells and ECs in esg>UAS-esg and esg>UAS-esg, UAS-da^{RNAi-JF} conditions, compared with wild type midguts. In both conditions differentiation is arrested completely (WT N=21; UAS-esg N=9; UAS-esg, UAS-da^{RNAi-JF} N=27) (*p<0.05, Kruskall-Wallis/Dunn test).

Data information: scale bars, 20µm
Figure 1.20. Da:Da maintains the progenitor state when esg is lost

A. esg knock down results in terminal differentiation into the absorptive and secretory fates.

B. Knock down of esg and expression of UAS-da:da using esg-FO arrest absorptive differentiation and secretory differentiation.

F. Quantification of EE cells and ECs, comparing WT flies with knock down of esg alone in progenitor cells and with knock down of esg and over-expression of da:da. (WT N=21; UAS-esg
RNAi-HMS N=18; UAS-da:da, UAS-esg
RNAi-HMS N=18 (*p<0.05, **p<0.01, ***p<0.001, Kruskall-Wallis/Dunn test).

Data information: **scale bars, 20µm**
1.B.3.5. Sc forms heterodimers with Da and functionally opposes Da:Da dimers to promote secretory differentiation

The bHLH class II Sc has been described as the main initiator of secretory differentiation in Drosophila (Bardin et al., 2010) by promoting the expression of the transcription factor pros (Wang et al., 2015). Sc binding into a certain pros enhancer is opposed by Esg (Li et al., 2017a). Our results show that in the absence of esg, if Da:Da dimers are present, secretory differentiation is still reduced when compared to the esg knock down (fig. 1.20C). To bind DNA, all members of the AS-C form heterodimers with Da and therefore, more Sc:Da dimers lead to a decrease of Da:Da dimers. It is possible that for secretory differentiation, not only Sc:Da heterodimers are needed, but also the titration of the Da:Da homodimers. Therefore, we proceeded to create three conditions to explore the different scenarios: sc expressed alone to titrate as much Da monomer as technically possible, sc and da co-expressed to create a situation where neither heterodimers nor homodimers are scarce, and finally sc and tethered da:da to ensure that the homodimer is present at high levels and cannot be titrated. We used the esg-FO system to induce the expression for three days. We could observe that the expression of UAS-sc induced an over-proliferation, producing big clusters (fig. 1.21A, quantification in 1.21D). Surprisingly, 63% of the cells in these clusters were Dl⁺ cells. However, only a 4% were expressing Dl alone and the other 59% were expressing Dl and Pros. It has been described that before EE cells are terminally differentiated, they differentiate into a very short-lived transient state that express esg, Dl and pros (Biteau and Jasper, 2014; Chen et al., 2018; Zeng and Hou, 2015). Importantly, these transient cells, called pre-EE cells, can proliferate once before terminally differentiating (Zeng and Hou, 2015). Interestingly, we increased the pre-EE (Dl⁺ Pros⁺) population when we co-expressed UAS-sc and UAS-da, while the terminally differentiated EE cells only represented an 8% compared with the 38% when only UAS-sc is expressed (fig. 1.21B, D). This indicated that the co-expression of UAS-sc and UAS-da is important to retain this transient state. Moreover, this co-expression produced clusters of Dl⁺ Pros⁻ cells, which represent a 21% of the GFP⁺ cells. This phenotype was even more drastic when we co-express UAS-sc with UAS-da:da, with a 45% of Dl⁺ Pros⁻ and 49% of Dl⁺ Pros⁺, with only 5% of Dl⁻ Pros⁺ (fig. 1.21C, D). Therefore, Sc and Da are antagonic in allowing the terminal differentiation of EE cells, but they cooperate to produce Dl⁺ (which Da or Da:Da do not increase).
Then, we wanted to check the proliferation in the three conditions, as these big clusters indicated an important raise of the mitotic index. We could observe by PH3 staining that there were significantly more cell divisions in all three conditions (fig. 1.21).

Interestingly, even if the number of mitosis per gut are greatly augmented in UAS-sc Pros > scDlGFP Pros > sc, da:da:da WT sc + da sc + da:da 0 50 100 150 200 250 PH3 cells/midgut ** * * *** * * ns 50 100 150 200 250 PH3 cells/midgut

Figure 1.21. Sc induces proliferation and secretory differentiation

A-C. Expression of UAS-sc alone (A), with UAS-da (B) or with UAS-da:da (C) using esg-FO for 3 days. Expression of sc increase the number of Dl+ cells, Pros+ cells and the appearance of double positive Dl Pros cells.

D. Estimated population distribution of A-C (see materials and methods) (UAS-sc N = 1241 cells; UAS-sc, UAS-da N = 2131 cells) (***p<0.01, ****p<0.001, Binomial regression. Each cell type significance level is coloured accordingly).

E. Quantification of mitotic events in the whole posterior midgut of WT and guts of A-C (WT N=15 guts; UAS-sc N=10 guts; UAS-sc, UAS-da N=11 guts; UAS-sc, UAS-da:da N=9 guts) (**p<0.01, ***p<0.001, Kruskall-Wallis/Dunn test).
over-expression condition, co-expression of UAS-sc with UAS-da:da double the number of mitosis, while co-expression of UAS-sc and UAS-da does not change significantly the number of divisions respect UAS-sc alone. Thus, Sc is important for cell division not only in pre-EE, but also in ISCs, and presence of Da:Da exacerbates the number of mitoses.

Notably, we obtained these strong phenotypes only after three days of expression. As sc is expressed weakly in ISCs (Chen et al., 2018), we wondered if we could obtain more ISCs if we express UAS-da:da and weakly UAS-sc. To this end, we co-expressed UAS-da:da and UAS-sc, and at the same time UAS-scRNAi_{F02104} (fig. 1.22A). After three days, we observed that the secretory differentiation and proliferation were reduced. Moreover, we obtained clusters that were accumulating EBs, similarly to UAS-da:da expression. Finally, when we expressed UAS-da:da and UAS-scRNAi_{F02104} without expressing UAS-sc, we also obtained accumulation of EBs, without secretory differentiation, forming smaller clusters (fig. 1.22B). The data indicates that mild sc over-expression induces little secretory differentiation, but not an increase of ISCs as cells can progress to EBs, and when sc expression is knocked down, ISCs lose the capacity to differentiate into EE cells.

Figure 1.22. Intermediate expression of sc cannot prevent EB differentiation

A. Expression of UAS-sc and UAS-da:da and knock down of sc expression, reducing the high expression of sc. Cells can still differentiate into EE cells (arrow heads), but they differentiate terminally without proliferating. ISCs cannot form Dl+ clusters, and progenitor cells are accumulated as EBs.

B. Expression of UAS-da:da with UAS-scRNAi halt all terminal differentiation. Progenitor clusters contain Dl+ cells or NRE+ cells.

Data information: scale bars, 20µm
1.B.3.6. Emc downregulates Dl by antagonising Sc

Importantly, our data showed that when we expressed UAS-sc an important number of cells expressed Dl. Interestingly, it has been recently observed that Notch loss of function induces an up-regulation of sc in the ISCs clusters (Li et al., 2017a). Therefore, it is possible that sc can induce the expression of Dl in ISCs. If that is the case, emc could control this expression and that would explain the up regulation of Dl when we knock down the expression of emc. To check this hypothesis, we knocked down the expression of emc in MARCM clones that were wild type for sc or were Df(1)scB57 mutant clones (deficiency of the whole AS-C, comprising the bHLH genes sc, ac, l(1)sc and ase; overexpression of ac and ase has also been shown to induce EE differentiation (Bardin et al., 2010; Guo and Ohlstein, 2015)) (fig. 1.23A-C). The control flies where only emc was knocked down contained clones with high levels of Dl. However, we could reduce the up-regulation of Dl with a null allele of sc. Therefore, Sc regulates the expression of Dl and Emc binds Sc to regulate this activity.

We have observed that Emc inhibits the function of Sc to regulate the expression of Dl, and this suggests that different levels of sc can trigger different effects. When sc is expressed at high levels, it cannot be titrated by Emc and there is secretory differentiation. However, lower expression of sc is not enough to promote differentiation but can induce the expression of Dl. We wondered then if apart from Dl, Sc could regulate other genes that maintained the stemness, and therefore, when over-expressed in EBs, sc could induce de-differentiation. We used the GBE-Su(H)-FO system to express UAS-sc (fig. 1.23D). Interestingly, we found many Dl+, Pros+ and Dl+ Pros+ cells that were labelled with GFP. This result indicates that EBs can de-differentiate when sc is expressed at high levels and, because the de-differentiated ISCs will maintain the UAS-sc expression, they can differentiate into pre-EE cells and finally into EE cells. The large amount of GFP+ cells suggests that after de-differentiation cells gain the capacity to proliferate. We wanted to confirm this by staining with PH3 and we could observe that GFP cells were now proliferating and ISCs and pre-EE cells were both proliferating (fig. 1.23D). Together, these results suggest that sc has a dual function: on one side it promotes the secretory differentiation, and on the other it is important for the expression of stem genes.
Figure 1.23. sc induces EB de-differentiation and DI expression

A. Expression of UAS-ec**NIG** in clones induce an upregulation of DI (arrow heads), whose signal is higher than Pros (arrows).

B. The upregulation of DI when UAS-ec**NIG** is expressed, is reduced in Df(1)sc**B57** mutant clones. DI levels (arrow heads) are lower than Pros (arrows).

C. Normalized expression of DI expression in each DI**+** GFP**+** cell respect the mean intensity of Pros in each ROI (see materials and methods). It can be observed a significant downregulation of DI expression in Df(1)sc**B57** clones (UAS-ec**NIG** Pros = 210 cells DI = 146 cells; UAS-ec**NIG**, Df(1)sc**B57** Pros = 718 cells DI = 201 cells) (**p<0.001, Mann-Whitney test**).

D. Expression of UAS-sc in EBs induce de-differentiation. De-differentiated ISC cells (arrow head) can proliferate and differentiate into EE cells (asterisk). While differentiating they go through the pre-EE state (arrows) in which they still can proliferate.

Data information: **scale bars, 20µm**
1 B.4. Conclusions

In this chapter we have observed that over-expressing *da* in progenitor cells, terminal differentiation was arrested, although apoptosis was also induced (**fig. 1.12**). Apoptosis could be rescued co-expressing *p35* (**fig. 1.12**). Interestingly, we have found that Da homodimerizes to maintain the progenitor state (**fig. 1.14**). However, although we have stated that Emc regulates negatively Da (**fig. 1.13**), Da:Da over-expression did not increase *Dl* levels (**fig. 1.14**).

We have also confirmed that Notch function regulates negatively Da (**fig. 1.17**), most likely through Emc.

Esg, a transcription factor responsible to maintain the progenitor state, acts in parallel with Da:Da, neither upstream nor downstream (**fig. 1.18**). Over-expression of one of the two transcription factors are sufficient to maintain the progenitor state, even in the absence of the other (**fig. 1.19** and **fig. 1.20**).

We have confirmed that Sc induces secretory differentiation, although we have observed that sustaining the expression of *sc*, cells remain as pre-EE cells and keep proliferating. Moreover, when we co-expressed sc with *da* or *da:da*, the number of terminally differentiated EE cells was reduced, while the number of ISCs increased (**fig. 1.21**).

Finally, we have found that Sc is responsible to upregulate *Dl* levels when *emc* expression is knocked down (**fig. 1.23**). Furthermore, *sc* expression in EBs induces de-differentiation into ISCs, which can then differentiate into secretory cells (**fig. 1.23**).
1 A&B.5. Discussion

Ours results indicate that a regulatory network of bHLH transcription factors controls the proliferation and differentiation of ISCs. In previous studies, it has been reported that da is necessary to maintain the progenitor state in the posterior gut (Bardin et al., 2010). We have found that Da is also sufficient to inhibit differentiation, as when we expressed da, cells were accumulated in clusters as progenitor cells. More importantly, the accumulation was also observed when we expressed a covalent da:da homodimeric form, indicating that Da homodimerize to inhibit terminal differentiation. The HLH Emc has been studied extensively as an inhibitor of the transcriptional activity of Da and bHLH class II (Cubas et al., 1991; Van Doren et al., 1991), and we confirmed that emc is expressed in the Drosophila midgut and antagonise Da. We showed that its function is found downstream of Notch activity for correct acquisition of the absorptive fate. Moreover, we also found that Emc is important in the EB to inhibit de-differentiation. Emc performs this repression by inhibiting Sc, which has a double function: on one hand starts the secretory differentiation, as reported previously (Bardin et al., 2010; Li et al., 2017a; Zeng and Hou, 2015), and on the other sc induces expression of stem genes like Dl. Altogether, Da, Emc and Sc constitute a network that regulates the stem cell fate (fig. 1.24).

1.5.1. Imbalance of the bHLH equilibrium controls proliferation and differentiation

All our experiments have been performed by inducing high expression of a certain bHLH gene or by removing it completely, in specific cell types. However, we and others have observed that emc (fig. 1.1), da (Bardin et al., 2010) and sc (Chen et al., 2018) are all expressed in ISCs and there has to be a constant functional tension between them. Li and Baker described that this tension is important for the stability of the bHLH factors, as the Emc half-life increases ten times when it has dimerized with Da compared with the monomeric Emc (Li and Baker, 2018). They also showed that when dimerization with Emc, Da degradation was increased. Therefore, Da is important for Emc stability. In addition, it has been proposed that prior to neurogenesis of the adult bristles, the onset of neural precursor selection occurs when AS-C genes are expressed in a context where there is a prior balance between Emc and Da, tipping this balance towards formation of
Da:ClassII heterodimers – but in the absence of Emc and AS-C, DaDa homodimers can initiate bristle development too (Troost et al., 2015). This breaks the equilibrium between Da and Emc, and now Da will be able to dimerise with proneural genes and/or homodimerize. Altogether, this suggests that bHLH factors are constantly interacting in the different cells of the gut, and depending on the levels of each bHLH factors, different binding combinations will be formed and cells will respond differentiating (Emc:Da/Sc for absorptive differentiation and Sc:Da for secretory differentiation), proliferating (Da:Da and Sc:Da) or remaining undifferentiated (Da:Da).

Importantly, the predominance of one of these dimeric combinations depends on three variables: 1) bHLH levels (altered by expression and degradation rates), 2) dimerization affinity and 3) DNA binding. Biochemical assays showed that Da:Da homodimer binds very weakly to the DNA compared to heterodimers of Da and members of the AS-C. More important, AS-C proteins have more affinity for Da than Da for itself (Cabrera and Alonso, 1991). Therefore Da, in the presence of Sc (at similar expression levels) will form

Figure 1.24. A network of bHLH factors controls self-renewal and bipotent differentiation in the *Drosophila midgut* (see main text for details)
heterodimers rather than homodimers, and when Da:Da dimers are form, they weakly bind the DNA. In this study, they also observed that although members of the AS-C can dimerise with themselves, they cannot bind the DNA. In addition, in the presence of Emc, AS-C factors and Da preferentially form inactive dimers with Emc (Cabrera et al., 1994). Thus, when present, Emc binds to Da and Sc inhibiting functional heterodimers and homodimers. Therefore, ISCs need to have enough Da as part of it is inhibited by Emc, another part binds with Sc and probably to another bHLH class II and still have to homodimerize to maintain the progenitor state even with a weak DNA binding. Hence, any variation of the levels of Emc or Sc is likely to to shift the equilibrium towards less Da:Da and more Da:Partner.

1.5.2. emc expression is controlled by different signals

emc can be expressed in all cell types, although its most clear function would be in EBs, where its expression is homogeneously high. It has been previously reported that emc expression depends on Notch activity in the formation of the wing margins and veins (Baonza et al., 2000) and in the eye disc to promote growth by inhibiting Da (Spratford and Kumar, 2015b). Moreover, it has been observed two Su(H)/Mam binding sites close to the emc transcriptional start site and null mutations of either Su(H) or mam results in loss of emc expression in the eye disc (Spratford and Kumar, 2015a). However, we could not see an increased signal of emc.CPT1002740 when we express NICD (fig. 1.9A). Interestingly, it has already been reported that in the eye disc, Notch activation affects emc RNA levels, but not protein levels (Bhattacharya et al., 2017).

Notably, emc expression in ISCs, EE cells and ECs vary from cell to cell, although in these cells Notch is not activated. We have not identified how emc is regulated in these cells, although a possibility would be that Da itself drives transcription of emc in the other cells, as expression of da seems to be ubiquitous (Bardin et al., 2010), creating a negative feedback loop. This kind of regulation has already been described in the larval eye disc (Bhattacharya and Baker, 2011) and in mammals, where the Da homolog E47 can activate the expression of members of the Id family (Jordà et al., 2007; Schwartz et al., 2006). Interestingly, Jordà et al. (2007) reported that the Zn finger transcription factor Snail, founding member of the family of proteins which Esg belongs to, can positively regulate
the expression of the *emc* homolog Id1 in immortalized canine epithelial kidney cell lines (Jordà *et al.*, 2007). By contrast, RNAseq data for ISCs and EBs where *esg* levels had been manipulated showed no significant differences in the expression of *emc* (Korzelius *et al.*, 2014). Therefore, we are planning to test whether Da can regulate *emc* using RNAseq analysis of tissue where *da* and *da:da* have been overexpressed in ISCs and EBs. In any case, the expression pattern of *emc* strongly suggests that one should consider more candidate regulators beyond Notch and Da.

Recent work suggests that our analysis of Emc function in the fly gut may be relevant in mammalian intestinal biology. Id family proteins are also expressed in the gut. Id1 expression is restricted to the CBC, the +4 cells and TA cells (Zhang *et al.*, 2014), while Id2 and Id3 expression increases when cells leave the crypt (Wice and Gordon, 1998). During development, Id2 is important for the proper specification of CBCs (Nigmatullina *et al.*, 2017). In addition, Id1 is necessary for regeneration when the intestine is damaged (Zhang *et al.*, 2014), and forced expression of Id1 induce adenomas (Wice and Gordon, 1998). These functions of Id factors contrast with the role of Emc in *Drosophila*, as Emc promotes differentiation (see figure 1.8). However, the Notch pathway in *Drosophila* promotes absorptive differentiation, while in mammals maintains the stemness. Therefore, it is conceivable that Emc and Id factors produce opposite effects in the *Drosophila* and mammalian intestines, respectively.

1.5.3. Da:Da regulates the progenitor state

The expression of *UAS-da:da* and *UAS-esg* in progenitor cells have very similar effects (see figures 1.14A and 1.19A). Therefore, we studied the possibility that *esg* could be upstream or downstream of *da* transcription and found that they likely work in parallel (see figure 1.18). So far, Esg has been reported as inhibitor of Da, as in the eye imaginal disc Esg promotes Da degradation and negatively regulate *da* expression (Yang *et al.*, 2010). Moreover, in cultured cells Esg can bind to the same E2 boxes than Da:Sc, inhibiting their transcriptional activity (Fuse *et al.*, 1994). However, there is no context known where Esg acts as *da* activator. Thus, it is not strange that they do not control each other’s expression.
Importantly, while it is safe to assume that the tethered Da:Da form is insensitive to repression by Emc, it may still be susceptible of other forms of negative regulation. Da has two TADs, AD1 and LH, of which AD1 can bind to Orange domain-containing E(spl) proteins, recruiting them to E boxes to repress transcription (Zarifi et al., 2012b). Therefore, the homodimeric Da:Da could be susceptible of repression by E(spl) proteins. Interestingly, we have observed that overexpression in progenitor cells of E(spl)-m8, which contains an Orange domain (Zarifi et al., 2012b), drives terminal differentiation into both ECs (predominantly) and EE cells (fig. S1.1A). The level of secretory differentiation was indistinguishable from that resulting from the overexpression of monomeric Da (fig. S1.1B). However, we have noted that expression of UAS-da:da while simultaneously activating the Notch pathway by knocking down H, (a situation where transcription of E(spl) genes should be increased), does not promote terminal differentiation; instead, cells remain as diploid DI− NRE+ (see fig. 1.17A,C). Therefore, our data suggests that E(spl) is not able to inhibit the transcriptional activity of Da:Da, and we propose that regulation of Da depends mostly on Emc.

Figure S1.1. E(spl)-m8 induces differentiation

A. esg-FO>Es(spl)-m8 in posterior midguts induces terminal differentiation, mainly to the absorptive fate, although cells could also differentiate into EE cells (arrow heads).

B. Quantification of EE cells in esg-FO>UAS-daRNAi-JF and esg-FO>UAS-E(spl)-m8 shows no significant differences in secretory differentiation. (UAS-daRNAi-JF N=15; UAS-E(spl)-m8 N=16) (not significant p=0.7958, Mann-Whitney test).

Data information: scale bars: 20µm

1.5.4. Sc triggers commitment to secretory fate, but delays terminal EE differentiation

Recently it was reported that EE cells do not differentiate from EBs, but from a distinct progenitor which was called pre-EE (Zeng and Hou, 2015). It has been observed that pre-
EE cells express lower levels of Pros (Chen et al., 2018). Apart from Pros, pre-EE cells also express Di and Esg (Biteau and Jasper, 2014; Zeng and Hou, 2015) and it has been argued that Esg competes with Sc for the same promoter region of pros (Li et al., 2017a). Therefore, it is possible that in pre-EE cells, Esg/Sc competition reduces the expression of pros until cells terminally differentiate and esg is not expressed. However, in our FO experiments of sc over-expression, Di+ Pros+ cells persist in their sc expression, but Di+ Pros+ cells still express weaker Pros levels than fully differentiated EE cells. Therefore, the competition model might be more complicated than a simple titration or competition for binding with Esg.

Moreover, it is likely that the regulation of pros expression is important to ensure that one round of mitosis can occur in pre-EE cells (Chen et al., 2018; Zeng et al., 2010). This is supported by the Pros function to inhibit cell-cycle and induce terminal differentiation during neurogenesis (Choksi et al., 2006; Lai and Doe, 2014; Li and Vaessin, 2000). While Sc induces pros expression, it also controls its activity and promotes expression of cell cycle genes (Chen et al., 2018). Therefore, there must be other mechanisms involved in the regulation of pros that will allow terminal differentiation.

Interestingly, while EBs are long-lived progenitors that can remain undifferentiated for many days (Antonello et al., 2015), pre-EE cells are very short lived progenitors (Zeng and Hou, 2015). However, we found that uninterrupted expression of sc in pre-EE cells prolongs this intermediate state, suggesting that Sc could be trapping cells into the secretory progenitor pool. This effect is increased when da is co-expressed with sc. Thus, Sc:Da dimers seem to be important to maintain this state where cells can still divide. Therefore, to terminally differentiate pre-EE cells into EE cells, Sc:Da transcriptional regulation needs to be stopped. We propose two different mechanisms for terminal secretory differentiation: 1) Emc, present in a subset of pre-EE cells binds to Sc (and Da) and inhibits transcription of Sc targets, allowing pre-EE cells to progress with the differentiation; 2) Sc induces expression of ase and pros, generating pre-EE cells, which can also divide once more, and Pros induces terminal differentiation by inhibiting the expression of sc and ase. Ase also promotes secretory differentiation (Bardin et al., 2010). ase has already been shown to be expressed downstream of the other AS-C factors in the PNS after SOP specification (Domínguez and Campuzano, 1993; Jarman et al., 1993). A
similar model of what we propose can be found in neuroblasts (neural stem cells), which express *ase* downstream of other proneural genes (Brand *et al.*, 1993), and Da:Ase dimers initiate differentiation by activating *pros*. Neuroblasts divide asymmetrically and produce a ganglion mother cell (GMC). Pros is inherited by the GMC, where it represses the expression of *ase* and initiates differentiation (Choksi *et al.*, 2006; Yasugi *et al.*, 2014).

It is still unclear how ISCs initiate EE formation. While some authors showed that there are three ways for EE differentiation (symmetric differentiation into two EE cells, asymmetric division into one ISC and one EE cell and direct differentiation) (Zeng and Hou, 2015) others stated that ISCs first go through an asymmetric division producing a daughter ISC and a pre-EE cell, and then the pre-EE cell goes through one round of division to form two EE cells (Chen *et al.*, 2018). Our results indicate that the duration of the pre-EE state and whether if it divides or not could depend on how long Da:Sc dimers are active.

1.5.5. Sc regulate Dl expression in ISCs and pre-EE cells

Our data indicate that Sc can regulate the expression of Dl, as when *emc* is impaired, loss of the *AS-C* reverts the elevated levels of *Dl* to normal (see fig. 1.23C). It has been described that there is an enrichment of Da:Sc binding motifs in the cis-regulatory region of *Dl* (Dutta *et al.*, 2015). Therefore, we suggest that the expression of Dl is partially regulated by low levels of sc present in ISCs. Low expression of sc in ISCs has been recently reported (Chen *et al.*, 2018). However, their finding contrast with ours, as they report that the expression of sc in ISCs is heterogenous and cells with higher levels of sc have weaker expression of Dl and will ultimately differentiate (Chen *et al.*, 2018). It could be possible that ISCs that are expressing higher levels of sc are already starting the differentiation into pre-EE cells and Dl expression is weaker. The expression of Dl will be maintained through the pre-EE state, but at lower levels. In fact, the regulation of *Dl* by Sc is also observed in *Drosophila* embryos (Kunisch *et al.*, 1994) and in other organisms. The sc homolog Ascl1, aside from promoting secretory differentiation in zebra fish (Flasse *et al.*, 2013), is also responsible of Dl expression in the intestinal epithelium (Roach *et al.*, 2013). Moreover, Ascl1 is also required for normal Delta-like expression and lateral inhibition in mice and chicks during retinal development (Nelson and Reh, 2008; Nelson *et al.*, 2009).
Nonetheless, it could be possible that another member of the AS-C would be responsible of the regulation of \(DL \), as in our experiment we used a dull deficiency of the whole AS-C. In the future, we would like to check wether \(sc \) is the only gene responsible of this regulation.

We also observed that ectopic expression of \(sc \) in EBs promotes de-differentiation, and the newly formed ISC-like cells are able to proliferate and differentiate. Although \(sc \) expression in EBs was not reported by others (Chen et al., 2018; Li et al., 2017a), our data indicates that there could be that some \(sc \) expression and Emc expression in EBs is necessary to avoid the reversion into ISCs. Actually, in mammals, Ascl2 maintains the stemness of the LGR5\(^+\) population (van der Flier et al., 2009). Although in mammals Ascl2 has no function in secretory differentiation, this indicates that Sc could be driving transcription of stem genes other than \(DL \) and cell proliferation genes (Chen et al., 2018), which would explain why EBs de-differentiate when Sc is expressed. However, in \(Drosophila \) Sc is not necessary to maintain the stem pool like Ascl2 in mammals, as knock down of \(sc \) does not promote absorptive differentiation or lose of \(DL \) expression (Bardin et al., 2010).

In \(C. \ elegans \), a bHLH combinatorial code plays a role in the gonads to select sexual dimorphism of regulatory cells (Sallee et al., 2017). All cells express the \(da \) homolog HLH-2 in combination with different bHLH factors depending on the cell fate. Ectopic expression of a bHLH gene expressed in a different regulatory cell or elimination of its own bHLH trigger a cell reprogramming mechanism.

1.5.6. De-regulation of \(da \) induces cell death

d\(a \) expression has been shown to be ubiquitous (Bardin et al., 2010) which contrast with the expression of the mammalian \(da \) homologs \(E22 \) and \(Heb \), whose expression is restricted to the intestinal crypt (van der Flier et al., 2009). We wondered if this ubiquitous expression is due to a positive feedback loop that maintains a constant expression of \(da \) throughout the tissue, as it has been observed previously that \(da \) has a positive feedback loop (Bhattacharya and Baker, 2011; Smith and Cronmiller, 2001). We checked this possibility by expressing \(UAS-da:da \), and monitoring endogenous expression with \(da:GFP \) but autoregulation did not seem to occur. However, we cannot
rule out the possibility that another bHLH binds to Da to drive \(da \) transcription. This would also imply that Emc would be capable of regulating \(da \) transcription.

As we have observed, the regulation of \(da \) is very important, as low levels cannot maintain the stemness and produces cell differentiation, while high levels cause apoptosis. In the same way, excess of Emc induce differentiation and low levels produce cell death. This Emc regulation of Da to avoid a detrimental effect have also been observed in the eye and wing discs, where clones with high levels of \(da \) or lack of \(emc \) do not survive (Bhattacharya and Baker, 2011). However, in imaginal discs Da:Da drives transcription of \(ex \), which is a regulator of the Hippo pathway. Therefore, the Hippo pathway is hyperactivated and antagonizes Yki, a transcriptional activator, to block growth and proliferation and promote cell death (Wang and Baker, 2015). However, our data shows that cell death occur when monomeric \(da \) is overexpressed, but not when we express the covalent \(da-da \) homodimeric form, indicating that Da might bind a different partner to induce cell death.

As \(da \) is a ubiquitous bHLH factor (Caudy et al., 1988), the extent of its function is normally determined by the expression of the binding partner. Based on our results, we hypothesize that the Da binding partner is already expressed in sufficient amounts to induce apoptosis levels, but it is tightly restricted by Emc either by direct binding, or by titrating the Da monomers. Therefore, when we overexpress UAS-\(da \), the high levels of Da can bind this unknown binding partner (UBP).

However, it is intriguing that cell death seems to occur only when Esg\(^+\) cells are overexpressing UAS-\(da \) (or UAS-\(emc^{RNAi}_{k2} \), as the expression in EBs only did not showed apoptosis. This suggests that the mechanism of cell death involves cellular interactions. It is possible that cell death occurs only if the cell expressing UAS-\(da \) is in contact with another cell expressing UAS-\(da \). There might be a communication mechanism that detects that two cells in contact have high levels of the Da:UBP complex and triggers a cell death mechanism.

One possibility could be that Da:UBP dimers only promote cell death in ISCs. Some studies showed that apoptotic cells produce \(eiger \) (\(egr \)), the \emph{Drosophila} tumor necrosis factor (TNF) homolog and promote the phenomenon called apoptosis-induced apoptosis (AiA) (Pérez-Garijo et al., 2013). Egr is a secretable molecule that can induce cell death.
to neighbouring cells through its unique receptor Grindelwald, activating the JNK pathway (Andersen et al., 2015). With this model, dying ISCs would induce cell death to neighbouring EBs. Therefore, further investigation must be done in this direction, starting by checking if expression of UAS-da only in ISCs produce cell death or if dying cells are activating the JNK pathway.

It could also be possible that a pair of ISC and EB form a niche where cells support each other. Therefore, when one cell receives an insult that would induce cell death, it could signal to the other cell, which would send rescue signals to maintain the homeostasis of the tissue. This is observed after radioimmunotherapy in a mechanism called rescue effect (Chen et al., 2011). Tumorous cells that had been treated with ionizing radiation were partnered with untreated cells. They observed that irradiated cells could signal to the next cell by two different mechanisms: cell to cell contact, with gap junctions and secretable signals through the medium. These signals induced the bystander cell to respond by sending rescue signals that repairs the irradiation damage in the treated cells, and inhibit the apoptosis (Chen et al., 2011; Lam et al., 2015). This mechanism have also been observed when a radiated zebrafish embryo and an untreated zebrafish embryo were together in the same medium (Choi et al., 2012). We propose that this survival feedback loop could also be possible in the niche as a safeguard mechanism, and therefore, only when both cells are over-expressing da, cells die.

1.5.7. Loss of emc in all the tissue as a potential tumor model

Interestingly, knock down of emc expression using Myo1A, esg-Gal4 produced an outgrowth of ISC-like cells and a reduction of the number of ECs through the posterior midgut. This is a surprising result, considering that the equivalent knock-down of emc with esg-Gal4 only leads to the cell death of most ISCs and EBs. The comparison of these phenotypes suggests that cell death induced by loss of Emc or excess of monomeric Da requires cellular interactions (see section 1.4.6).

The replacement of ECs with overproliferating ISCs observed upon depletion of emc in esg⁺ and MyoIA⁺ cells is reminiscent of the response to high cellular density in other tissues. In human colon cells, canine cells and zebrafish epithelia, to maintain the homeostasis of overcrowded tissues, there is a compensatory effect with apoptotic cells
that are extruded from the tissue (Eisenhoffer et al., 2012). Indeed, this effect has been described in the *Drosophila* midgut when ISCs over-proliferate due to Notch loss of function (Patel et al., 2015). ECs that surround large Notch-depleted ISC clusters lose the attachment to the basal membrane and start activating JNK pathway and *yki* expression, which in turn, send mitogenic signals that favours cluster growth (Patel et al., 2015). In our experiments, we can observe that there are only few surviving ECs with very large nucleus and cytoplasm, probably due to endoreplication. ECs can grow and endoreplicate as a compensatory mechanism to maintain the integrity of the tissue after the extrusion of a large proportion of EC population (Jiang et al., 2009). Moreover, Yki promotes cell endoreplication by regulating the expression of cyclin E (Edgar and Orr-Weaver, 2001; Li et al., 2017b; Shu and Deng, 2017), suggesting that when we knock-down the expression of *emc* in all the gut except EE cells, ECs might be expressing *yki* that produce these enlarged cells.

Another important feature in *emc* knocked down ISC-like cells is that they present protrusions, while ISCs in wild type flies do not. In cancer, metastasis depends on the acquisition of a motile and invasive phenotype from cancer cells in the primary tumour. Metastasis is a process in which cells from the tumour can escape the tissue and spread through the organism to form secondary tumours in distant tissues (Fidler, 2003). Therefore, cancer cells present protrusions called invadopodia that permits the metastasis (Yamaguchi et al., 2005). Invadopodia are actin-rich structures that use Rho GTPases to integrate its adhesion with the extracellular membrane and degrade it in response to invasive signals (Condeelis et al., 2005; Schmitz et al., 2000; Yamaguchi et al., 2005). It would be interesting to study if protrusions in ISC-like cells are invadopodia and therefore, if these cells could migrate to other tissues. In a recent study in the *Drosophila* hindgut, it was observed that simultaneous alteration of *ras, pten, p53, apc* could cause tumours with dissemination into the abdominal cavity (Bangi et al., 2016). It would be interesting to see if knocking down the expression of *emc* in the posterior midgut could induce metastasis and induce distant tumours.
Chapter 2 Crp opposes proliferation and differentiation in ISCs

2.1. Introduction

Work of others as well as our own shows that bHLH factors of class I and II are important regulators of intestinal homeostasis. This led us to consider the role of cropped (crp), a class II-like bHLH factor with comparatively high expression levels in the Drosophila gut (fig. 2.1). Crp has not been clearly classified in any bHLH group. In the Ledent et al. bHLH classification, they propose that Crp belongs to the group B, which contains bHLH factors with a leucine zipper domain immediately after the HLH motif in the C terminal end (Ledent et al., 2002). However, it has been suggested that the bHLH/Zip group has polyphyletic origins, and crp bHLH sequence has a higher similarity with the bHLH group A (Atchley and Fitch, 1997). In this group we can find da, sc and emc.

Figure 2.1. crp is highly expressed in the Drosophila midgut compared with other bHLH

Expression levels of all bHLH class I and class II in the different cell types of the adult midgut (data from flygutseq). It can be observed that crp has the highest expression, specially in ISCs.
Interestingly, Crp is the only bHLH factor that contains a second leucine zipper domain and a third domain with unidentified function, called TIV motif (**fig. 2.2**) (King-Jones *et al.*, 1999). The *crp* bHLH/Zip sequence is similar to the human *Activator protein-4 (AP-4)* (69%) (King-Jones *et al.*, 1999). The TIV motif is similarly conserved (65%), while the second leucine Zipper is less conserved (35%).

In *Drosophila*, *crp* is ubiquitously expressed, similarly to Da, and owes the name to its function in tracheal terminal branching (Wong *et al*. 2015). The over-expression of *crp* causes an increase in organ size, affecting salivary glands and central nervous system during larval stages (Wong *et al*. 2015). In this study they observed that proliferation was not affected, and cells were growing by going through endoreplication.

Figure 2.2. cropped locus

The position of different insertions in *crp* mutants are shown in inverted triangles. The nature of the insertions is colour coded. The dark orange boxes indicate the coding region. *crp* has two alternative 3’UTR (arrows). The different domains are indicated on the lower part of the figure, with the bHLH domain at the end of the second exon and beginning of the third, the first leucine zipper immediately after, and the second leucine zipper and TIV motif also in the third exon.

Additional information: scale bar, 1 kb in exons and UTR
In human cells AP-4 is implicated in proliferation, and is a downstream target of c-Myc (reviewed in Jung and Hermeking, 2009; Jung et al., 2008). Importantly, de-regulation of AP-4 has been associated with many cancers, such as lung cancer (Hu et al., 2016) or prostate cancer (Chen et al., 2017), colorectal cancer (Cao et al., 2009; Jackstadt et al., 2013; Ma et al., 2018; Xi et al., 2017), where high expression of AP-4 is a marker for poor prognosis (Xinghua et al., 2012; Yang et al., 2018). Although its function is not fully elucidated, AP-4 promotes cell cycle progression, proliferation, epithelial-mesenchymal transition and inhibits apoptosis. Moreover, it is also involved in cisplatin resistance (Wang et al., 2018).

Therefore, although Crp does not affect proliferation in the tissues that have been studied so far, the functions of hAP4 suggest that Crp might promote stemness in the adult midgut. In fact, it is known that E12 and AP4 cannot form heterodimers through the HLH domain (Hu et al., 1990), but in Drosophila Da and Crp have been described to bind to the same E-boxes, although forming distinct complexes (King-Jones et al., 1999), which suggests that Crp could regulate the transcription of some Da targets.

2.2. Aims

We wanted to determine the expression pattern of Crp and its function in the different cell types of the gut.

2.3. Results

2.3.1. Crp is expressed in all cell types of the adult posterior midgut

High-throughput approaches identify crp as a gene expressed in the adult Drosophila intestine of Drosophila (flyatlas.org, flygutseq.buchonlab.com; Dutta et al. 2015) (fig. 2.3. A-B). However, to obtain more information about the cell type specificity, we turned to immunohistofluorescence, and to this aim we used a CPTI protein trap line (crp^{CPT100416}) combined with esg-lacZ, GBE-Su(H)-RFP, anti-Pros staining to identify the different cell types of the gut. We observed that Crp-YFP is expressed in all cell types. However, its expression was high in ISCs, EBs and EE cells, and lower in ECs (fig. 2.3. C), which shows that protein abundance does not entirely correlate with mRNA, at least in EBs (fig 2.3. C, compare with B).
Figure 2.3. *crp* is expressed in the *Drosophila* midgut

A. Expression levels of *crp* in the different tissues of an adult fly (data from flyatlas). It can be observed that the midgut express *crp*.

B. Expression levels of *crp* in the different cell types of the adult midgut (data from flygutseq). *crp* is highly expressed in all cell types, specially in ISCs and EE cells.

C. *esg-lacZ/NRE-RFP, emc^{CPTI002740}* flies were stained for β-gal and Pros. ISC (esg^{+} RFP^{−}), EB (esg^{+} RFP^{+}), EE cell (Pros^{−}), EC (Not labelled specifically, polyploid). *crp^{+/−}* (green) is being expressed in all cells, although in ECs at lower levels.

Data information: scale bars, 20µm
2.3.2. Generation of a new \textit{crp} mutant allele

Then, we wanted to investigate the role of Crp in ISCs. However, the two available \textit{crp} mutant lines to generate MARCM clones, \textit{crp}^{\text{KG00953}} and \textit{crp}^{\text{k00809}} (fig. 2.2), still showed protein in homozygous clones (see section 2.3.3). Therefore, we decided to generate null mutants using the CRISPR/Cas9 gene-editing technique. We used the pCDF4 plasmid, which has two different RNA polymerase III promoters to induce expression of two gRNAs and obtain cleavage in two genomic sites at the same time to produce a deletion.

We designed one sgRNA at the 5’ end of the second exon and one at the 3’ end of the second exon. We decided to target these two sequences because the bHLH domain is found in the 3’ end of the second exon and 5’ end of the third exon (fig. 2.4). Both leucine zipper domains are in the third exon. With this approach, then, there could be different results, but we were mostly interested in two:

- Either of the sgRNAs creating a frameshift mutation that led to an early STOP codon disrupting the bHLH domain.
- Deletion of the whole second exon, resulting in a frameshift and an early STOP codon, or an in-frame deletion of most of the bHLH domain. With this outcome and without a frameshift or an early STOP codon, both leucine zipper domains would be intact.

We recovered two mutants that did not complement the lethality of two large deficiencies known to uncover the \textit{crp} locus, \textit{Df(2L)BSC278} and \textit{Df(2L)r10}, as well as the recessive lethal alleles \textit{crp}^{\text{KG00953}} and \textit{crp}^{\text{k00809}} (P. Lall, M. Iztueta-Inchausti and J. de Navascués, unpublished). One of them, \textit{crp}^{\text{pl214}}, was found to have a small indel at the cleavage site close to the 3’ end of the second exon, with no alteration at the cleavage site defined by the gRNA binding to the 5’ end of the exon (P Lall and J de Navascués, unpublished). Indeed, it has already been reported that using this double target method could lead to a higher expression of one of the sgRNA, as the U6:3 promoter (used for the 3’ sgRNA) has higher rates of mutagenesis than the U6:1 promoter (used for the 5’ sgRNA) (Port and Bullock, 2016; Port \textit{et al.}, 2014). However, in our case. The mutation in \textit{crp}^{\text{pl214}} caused a frameshift that created an early STOP codon in the ORF of Crp in the middle of the bHLH
domains and before the leucine zippers domains, which suggests that this allele is likely a molecular null.

![Figure 2.4. Double crp mutagenesis experimental design](image)

Figure 2.4. Double crp mutagenesis experimental design

Approximate position of the two targeted sequences for CRIPSR mutagenesis. In cyan is indicated the bHLH domain of *crp*. One sgRNA was design at the 5' end of the second exon in sense with the transcription direction. The aminoacids encoded are found below each triplet. A second sgRNA was designed close to the 3’ end of the second exon in the middle of the bHLH domain. The sgRNA was designed anti-sense with the transcription direction. Below it is found in red the aminoacids encoded by complementary (in sense) strand. The arrow heads indicate the Cas9 cleavage site.

2.3.3. crp expression arrests proliferation and differentiation

When we wanted to induce *crp* mutant MARCM clones with two null mutants, *crp*^{KG00953} and *crp*^{k00809}, we realized that while in the larval wing disc, Crp was not detected (fig. 2.5A,B), in the adult midgut some cells still expressed *crp* (fig. 2.5C,D), meaning that they are not null mutants as described previously (Wong et al., 2015). As these *crp* alleles are insertional, it is possible that they interfere with communication between the *crp* promoter and its wing disc enhancers, but not with enhancers of the intestine, making them organ-specific mutants, rather than bona fide nulls. Therefore, as explained in section 2.3.2, we generated a new mutant, *crp*^{p1214}. The clone induction using this mutant showed that cells were not expressing crp anymore (fig. 2.5E). However, the differentiation in the clones was not affected compared to WT clones (fig 2.5 F,G, quantification in 2.5H).
Figure 2.5. crp loss of function guts can differentiate normally

A, B. Induction of (A) crp^{ko0809} and (B) crp^{ko0953} MARCM clones in the wing disk. All cells in the clone do not express crp.

C-D. Cells in (C) crp^{ko0809} and (D) crp^{ko0953} MARCM clones still show signal (arrows) using Crp antibody in the adult midgut.

E. crp^{ko214} MARCM clones did not express crp in the clonal in homozygous cells.

F-G. ISCs in FRT40A crp^{ko214} mutant clones can proliferate and differentiate into all cell types, similar as (F) FRT40A control ISCs.

H. Quantification of the different cell types in the clonal area of crp^{ko214} clones. This quantification corresponds to preliminary data and the control FRT40A flies were from a different batch than the mutant FRT40A crp^{ko214} flies.

N = 1153 cells/86 clones for FRT40A clones, N = 306 cells/130 clones for FRT40A crp^{ko214}.

Data information: scale bars, 20µm
We also knocked-down crp expressing $UAS-crp^{RNAi_{KK108184}}$ with the $esg-FO$ system for 10 days (fig. 2.6A). We could not observe any difference in the cells labelled with GFP compared with control flies, as the ISC/EB compartment seemed to generate new cells at normal rates and proportions. We then tested the efficiency of the crp RNAi line with a Crp antibody, and we could clearly see that there was not any signal in the GFP$^+$ area, while there was expression in the rest of the tissue (fig. 2.6B). This result suggests that Crp is dispensable for the maintenance of the tissue homeostasis.

It has been previously described that Crp and Da compete for binding to the same E-boxes, and it was suggested that Da was preferentially bound to the DNA (King-Jones et al., 1999). In this situation, only high levels of crp would have a function, and we might not find these levels of expression in homeostatic tissue. To check this, we over-expressed $UAS-crp$ with the $esg-FO$ system. Interestingly, when $UAS-crp$ was expressed in the gut for 7 days, we could not observe any kind of differentiation (fig. 2.6C). More important, progenitor cells remain as single cells or in pairs. This suggests that crp over-expression arrested both differentiation and proliferation of ISCs. After one week, there was no differentiation in the whole gut. GFP$^+$ cells remained alone or in pairs, indicating that there had been no cell division. This suggests that Crp is not needed for differentiation nor maintenance of the stem cells.

Figure 2.6. crp over-expression impedes proliferation and differentiation

A-B. $esg-FO>crp^{RNAi_{KK}}$ does not have effects in differentiation. (A) Clusters contain DI$^+$ cells (arrows) and Pros$^+$ cells (arrow heads) and polyploid cells. (B) crp is not expressed in the clusters.

C. Expression of $UAS-crp$ halts proliferation and differentiation in progenitor cells.

Data information: scale bars, A and C 20µm, B 10µm
2.3.4. Overexpression of crp promotes EE cell death/elimination

Since the over-expression of crp in progenitor cells produced a complete arrest of proliferation and differentiation, we thought that this could be a mechanism to keep cells quiescent without interfering with their identity. Therefore, we decided to explore the effect of Crp in EE cells, as this is a quiescent population that expresses crp. To this end we used the EE-specific driver Rab3-Gal4. Rab3 is a small GTPase which is necessary for the vesicle fusion with its target (Bhuin and Roy, 2014; Fischer von Mollard et al., 1990) and therefore, required in all secretory cells, including EE cells. Using this driver, we overexpressed UAS-crp and UAS-GFP and stained for Pros. Interestingly, the result was a complete loss of EEs (scored as Pros+ and GFP+ cells; fig. 2.7A-B). This could indicate that EE cells were de-differentiating. To check this possibility, we performed a lineage tracing experiment combining the Rab3-Gal4 driver with the flipOut system (Rab3-FO). After 7 days of UAS-crp expression in the pool of secretory cells, almost no cells were labelled with GFP in the posterior midgut (fig. 2.7C-D), indicating that EE cells are dying rather than changing their fate. However, in the gastric region we could observe some Pros+ and even some Hdc+ cells labelled with GFP, indicating that some de-differentiation might be possible (fig. 2.7E).

Interestingly, in control Rab3-F/O flies we could observe GFP+ cells that were Pros−. Moreover, we also observed large areas of tissue that were completely replaced with GFP+ cells (fig. 2.7F). This indicates that the Rab3-Gal4 lineage tracing targeted cells with stem properties. While it is possible that either the UAS-flp or the Rab3-Gal4 had leaky expression in ISCs, we cannot rule out the possibility that EE cells are reverting to ISCs, and this might be a mechanism to have a reservoir of cells in case ISCs are compromised.
Figure 2.7. Crp induces cell death in EE cells

A. Rab3> UAS-GFP drives GFP expression in EE cells (Pros⁺).
B. Rab3> UAS-crp shows a total absence of GFP⁺ or Pros⁺ cells.
C. Rab3-FO> UAS-GFP shows that the majority of EE cells remain as differentiated secretory cells.
D-E. Rab3-FO> UAS-crp induce cell death in the majority of the secretory cells. (E) However, in the gastric area, cell death is less penetrant.
F. Lineage tracing from EE cells can produce large areas of GFP⁺ cells.

Data information: scale bars, 20µm
2.4. Discussion

Herein, we have observed that the bHLH/Zip factor crp is expressed ubiquitously in the gut, although ECs express it at lower levels than all other cell types (Fig. 2.3C). We have found that loss of crp has no obvious effect on ISCs, while gain of function has different effects depending on cell type. In progenitor cells, there is an apparent arrest of proliferation and differentiation. However, the death of EE cells produced by crp over-expression opens up the possibility that cells are proliferating and differentiating normally, but differentiated cells immediately die. Nonetheless, we did not explore further this possibility as we could not see any sign of cell death or alteration in the tissue.

According to our observations, Crp and Da have no functional relationship. Previous studies reported that full-length human AP4 could not bind Da homologs E12, as the leucine zipper domain impedes HLH dimerization, and most likely cannot form dimers with any other bHLH though the HLH domain (Hu et al., 1990). Moreover, Id1 and Id2 cannot bind with AP4 either (Sun et al., 1991). Thus, the function of Crp is not regulated by Emc. However, Crp and Da has been both implicated in the regulation of the expression of the salivary gland secretion protein genes (sgs), but forming distinct complexes with unknown partners that bind the same E boxes (King-Jones et al., 1999), although it has not been investigated if Da and Crp have redundant or antagonistic functions. In fact, it was found that Da complexes were preferentially bound to sgs promoter region. As hP4 can be both and activator or an inhibitor of gene expression (Kim et al., 2006; Mermod et al., 1988), it would be plausible that Da (and its bHLH partner) and Crp competes for DNA binding with opposing effects. This competition might also be found in our system, where in wild type, unchallenged conditions, Crp is not in sufficient amounts to compete with Da dimers, but when it is highly expressed, it can displace some Da:bHLH dimers. Moreover, Crp is unable to dimerize with other bHLH factors, but it homodimerizes with its leucine zipper domains (Hu et al., 1990), and the homodimers bind the same sequences as Da (King-Jones et al., 1999). However, opposing completely the function of Da would result in EC differentiation and we have not observed anything like that. We surmise that Crp homodimers could bind only to specific E-boxes depending on their sequence. Therefore, Crp:Crp dimers could be binding to Da:Sc E-boxes that regulate cell cycle or secretory differentiation genes,
arresting proliferation in the gut and EE differentiation, but not with Da:Da target sequences.

Our loss of function analysis and knock down experiments indicate that in homeostatic conditions, Crp function is dispensable, and only when it is highly expressed, it drives progenitor cells into a quiescent state. It is possible that Crp is only required in conditions of acute injury or infection, or in aged flies, which we have not explored.

It is interesting that the expression of crp in EE cells produce the death of this cells, since AP4 has been shown to silence the expression of caspases in mammals (Tsujimoto et al., 2005). Nevertheless, our observations suggest that Crp has, if anything, the opposite effect, stimulating cell death.

By contrast with the effects of its Drosophila homolog, hAP4 is a downstream target of cMyc (Jung et al., 2008), which in turn is positively regulated by the Wnt pathway (He et al., 1998). In the Apcmin model of colorectal cancer, AP4 knockout mice have increased average survival (Jaeckel et al., 2018). Moreover, Jaeckel et al. showed that these mice also manifest a reduced formation of adenomas, less cancer stem cells and a down-regulation of Notch and Wnt signalling pathways, indicating that AP4 promotes stemness and proliferation in the mammalian gut. However, in Drosophila, Crp seems to have the opposite effect to dMyc, as dMyc induces proliferation downstream of Wg signalling during midgut regeneration (Cordero et al., 2012b; Ren et al., 2013), while Crp inhibits proliferation. Therefore, it could be possible that in this context crp expression is not downstream of dMyc.

It is also interesting to note that in wild type flies, lineage tracing on differentiated EE cells suggested that secretory cells could de-differentiate into ISCs that could proliferate and differentiate as normal (Fig. 2.7F). This result opens the possibility that in very specific moments, where the integrity of the stem pool is at risk, EE cells could act as a reservoir for ISCs. This finding has not been reported before in Drosophila, although a study tried to force EE de-differentiation by ablating all progenitor cells through the knock-down of prickle in progenitor cells (Lu and Li, 2015). However, these authors could not see any progenitor cell after 60 days. Another possibility could be that Rab3 is
expressed in rare occasions in ISCs, although then we would expect to find a larger number of ISCs expressing GFP.

In mammals, it has been described that some secretory progenitors could reverse into a stem state in stress conditions (Buczacki et al., 2013). Moreover, recent reports show that small populations of completely differentiated EE cells can de-differentiate into ISCs and maintain the tissue homeostasis (Gross et al., 2015; Yan et al., 2017). Although we need additional controls to rule out that the reversion is an artefact, our results come to confirm that the EE fate is surprisingly close to that of the ISCs, and we propose that Drosophila could be a good model organism to study the de-differentiation of EE cells as a reservoir for ISCs.
Conclusions

1. Da homodimers prevent differentiation in the adult fly intestine.
2. Emc promotes absorptive differentiation, probably through sequestration of Da.
3. Persistent expression of Sc prolongs the life of the transient pre-EE cells and increases their proliferation.
4. Sc is active in ISCs, increasing Dl expression.
5. Sc can induce de-differentiation of EBs.
6. The committed state of EBs needs to be actively maintained, and at least part of this maintenance is performed by Emc, perhaps inhibiting basal levels of Sc.
7. Excess of Da in progenitor cells induces cell death. This function of Da is independent of Da homodimerisation.
8. crp is not required for the regulation of self-renewal nor differentiation in the adult fly midgut.
9. The expression of crp must be regulated, as its excess interferes with ISC proliferation and differentiation and survival of EE cells.
Appendix 1: Cell counter

```python
1. import sys
2. import xlrd
3. import os
4. import csv
5. import numpy as np
6. from scipy.stats import chisquare
7. from pandas.tools import plotting
8. from networkx.algorithms.components.connected import connected_components
9. from pyface.api import DirectoryDialog, OK
10. os.chdir('/Users/aleix/Documents/Python/Fastidious_libraries/)
11. import pointpicker_to_dist as ppd
12. import tifffile as tf
13. import pandas as pd
14. os.chdir('/Users/aleix/Desktop/Counting/)
15. #
16. #------------------------------------------------------------------------------
17. #
18. pixel_size = 1
19. pixels = 20
20. THR = 1
21. #
22. #------------------------------------------------------------------------------
23. def getFolder():
24.     '''GETFOLDER creates a GUI to obtain the path of the selected folder'''
25.     #
26.     # GUI for getting a sample filepath
27.     dialog = DirectoryDialog(action="open", default_path="/Volumes/jd467/DATA/COLFAC/ZEISS 700")
28.     dialog.open()
29.     if dialog.return_code == OK:
30.         folderpath=dialog.path
31.     #
32.     return folderpath
33. #
34. # I first ask the number of conditions I am processing and then create a loop
to create a variable
35. num_samples = input("How many samples to analyse?
"
36. os.chdir("/Users/aleix/Desktop/Counting")
37. samples = list()
38. folderpath = list()
39. #
40. for f in range(0, int(num_samples)):
41.     samples.append(input("Sample name: ')
42.     folderpath.append(getFolder())
43. #
44. for f in range(0, int(num_samples)):
45.     exec("file_list%s = os.listdir(folderpath[f])" % (f))
46.     exec("file_list%s = [x for x in file_list%s if x.endswith('.txt')]" % (f,f)) # keep only files ending with .txt
47. #
48. ```
```python
fpath = '/Users/aleix/Documents/Python/Analysis/
Everytime I run the program for a different batch it need to be copy here
batch = 'trials'
click = os.path.join(fpath,batch,'Clicking_images')
click_tail = '_click.tif'
pp_path = os.path.join(fpath,batch,'pointpicker')
pp_tail = '_pp.txt'

```
Vsorted = []
A = V[:, 0]
B = V[:, 1]
C = V[:, 2]
Vsorted.extend(zip(A, B))
Vsorted.extend(zip(B, C))
Vsorted.extend(zip(C, A))
Vsorted = np.sort(Vsorted, axis=1)

# uniquify sides
unique_idc = Vsorted.view(np.dtype((np.void, Vsorted.dtype.itemsize * Vsorted.shape[1])))
_, idx = np.unique(unique_idc, return_index=True)
V_NR = Vsorted[idx]

# remove sides too close to opposing vertex (convex hull)
excluded = []
for side in D.convex_hull:
    for vertex in D.vertices:
        if len(np.setdiff1d(vertex, side)) == 1:
            A = np.vstack([D.points[numpy.setdiff1d(vertex, side)], ppd.side_centr(D.points[side])])
            dist_vtx2hull = ppd.dist_2p(A)
            if dist_vtx2hull < ppd.dist_2p(D.points[side]) / THR:
                excluded.append(side)

relevant_sides = ppd.setdiff_rows(V_NR, np.sort(np.array(excluded), axis=1))

# get distances
coord = D.points[relevant_sides]
distances = [ppd.dist_2p(x) for x in coord] * pixel_size
relevant_sides = relevant_sides[(numpy.asarray(distances) < 33), :]

...#

# export to csv files
import csv
fl = open(filename.replace(".txt", ".csv"), 'w')
writer = csv.writer(fl)
for value in distances:
    writer.writerow([value])
fl.close()

return XYdata, relevant_sides

def connected_comp(l):
    # Algorithm to find connected components:
    # 1. take first set A from list
    # 2. for each other set B in the list do if B has common element(s)
    #    with A join B into A; remove B from list
    # 3. repeat 2. until no more overlap with A
    # 4. put A into output
    # 5. repeat 1. with rest of list
    out = []
    while len(l) > 0:
        first, rest = l[0], l[1:]
        first = set(first)
        if -1:
            while len(first) > 1:
                if = len(first)
                rest2 = []
                for r in rest:
if len(first.intersection(set(r)))>0:
    first |= set(r)
else:
    rest2.append(r)
rest = rest2
out.append(first)
l = rest
return out

def clone_population(TXYdata, single, multiple, sample):
    # identifies the size cluster and its composition
    type_clones = [TXYdata[multiple[x],0] for x in range(len(multiple))]
    if single.any():
        sin_type_clones = TXYdata[single,0]
        single_arrays = np.split(sin_type_clones, len(sin_type_clones))
        complete_types = single_arrays + type_clones
    else:
        complete_types = type_clones
    complete_types = [list(complete_types[x]) for x in range(len(complete_types))]
    cols = ['Size', 'ISC_GFP', 'EB_GFP', 'EE_GFP', 'EC_GFP']
    clone_composition = pd.DataFrame(columns=cols, dtype=float)
    for f in range(len(complete_types)):
        size = len(complete_types[f])
        isc = complete_types[f].count(1) | complete_types[f].count(1)
        eb = complete_types[f].count(2) | complete_types[f].count(2)
        ee = complete_types[f].count(5) | complete_types[f].count(5)
        ec = complete_types[f].count(6) | complete_types[f].count(6)
        data = np.hstack([size,isc,eb,ee,ec])
        data = pd.DataFrame([data], columns=list(cols))
        clone_composition = clone_composition.append(data, ignore_index=True)
    return clone_composition

def visualize_delaunay(XYdata, relevant_sides, clone_sides, complete_vert, image_name):
    import matplotlib
    import matplotlib.pyplot as plt
    P = XYdata
    X,Y = P[:,0],P[:,1]
    fig = plt.figure(figsize=(20,20))
    axes = plt.subplot(1,1,1)
    plt.axis('off')
    im = plt.imread(image_name)
    plt.imshow(im)
    plt.scatter(X, Y, marker='o', color='c')
    plt.scatter(X[complete_vert], Y[complete_vert], marker='o', color='r')
    plt.axis([0,512,0,512])
lines = matplotlib.collections.LineCollection(P[relevant_sides], color='c')
plt.gca().add_collection(lines)
gfp_lines = matplotlib.collections.LineCollection(P[clone_sides], color='r')
plt.gca().add_collection(gfp_lines)
plt.axis([0,512,0,512])
plt.show()
# plt.savefig(image_name + '.png', dpi=144, format='png')

def GFP_cells(filename, sample, THR, image_name):
    # It finds all GFP vertices and will find if they are connected with other GFP vertices
    import collections

    # ISC-GFP are 1, EB-GFP are 2, EE-GFP are 5 and EC-GFP are 6
    XYdata, relevant_sides = delaunay_distances(filename, pixel_size, THR)
    TXYdata = np.loadtxt(filename, skiprows=1, usecols=(0, 2, 3))
    prg_GFP_A = TXYdata[relevant_sides[:, 0], 0] < 3
    prg_GFP_B = TXYdata[relevant_sides[:, 1], 0] < 3
    EE_GFP_A = TXYdata[relevant_sides[:, 0], 0] == 5
    EE_GFP_B = TXYdata[relevant_sides[:, 1], 0] == 5
    EC_GFP_A = TXYdata[relevant_sides[:, 0], 0] == 6
    EC_GFP_B = TXYdata[relevant_sides[:, 1], 0] == 6

    # Generate boolean arrays with all GFP vertices
    GFP_A = prg_GFP_A | EE_GFP_A | EC_GFP_A
    GFP_B = prg_GFP_B | EE_GFP_B | EC_GFP_B

    # finding vertices that connect two GFP cells
    GFP_sides = np.bitwise_and(GFP_A, GFP_B)
    GFP_sides = np.resize(GFP_sides, [GFP_sides.shape[0], 1])
    np.hstack([relevant_sides, GFP_sides])
    clone_sides = relevant_sides[:, :, 0]

    # Obtaining single cell clones.
    mult_GFP = np.unique(clone_sides)
    GFP_singA = np.resize(GFP_A, [GFP_A.shape[0], 1])
    GFP_singB = np.resize(GFP_B, [GFP_B.shape[0], 1])

    # Generating unique GFP vertices
    GFP_vertA = np.unique(relevant_sides[clone_sides[:, :, 0]])
    GFP_vertB = np.unique(relevant_sides[clone_sides[:, :, 1]])

    # Generating all possible vertices
    all_vert = [mult_GFP, GFP_vertA, GFP_vertB]
    complete_vert = np.array(list(set(x for l in all_vert for x in l)))
    result = np.array(list(set(x for l in all_vert for x in l) - set(mult_GFP)))

    sin_list = [1 if x>=0 else x for x in result]
    clones = connected_comp(clone_sides.tolist())
    clones = [list(clones[x]) for x in range(len(clones))]
    clone_numbers = [len(x) for x in clones]
    clone_numbers = sin_list + clone_numbers

    clone_composition = clone_population(TXYdata, result, clones, sample)
#visualize_delaunay(XYdata, relevant_sides, clone_sides, complete_vertex, image_name)

```
return result, clone_numbers, clones, clone_composition
```

# Prepare the dataframes to fill

cols_t = ['Sample', 'ISC_GFP', 'EB_GFP', 'EE_GFP', 'EC_GFP', 'ISC', 'EB', 'EE', 'EC']
cols_cluster = ['Sample', 'ISC_GFP', 'EB_GFP', 'EE_GFP', 'EC_GFP']
cols_composition = ['Size', 'ISC_GFP', 'EB_GFP', 'EE_GFP', 'EC_GFP']
cols_clones = ['clone_size', 'number_clones', 'Fraction', 'inv_cumulative', 'Samples']
data_accum = pd.DataFrame(columns=cols_t, dtype=float)
GFP_data_accum = pd.DataFrame(columns=cols_cluster, dtype=float)
clone_composition_sum = pd.DataFrame(columns=cols_composition, dtype=float)
cl_df_global = pd.DataFrame(columns=cols_clones, dtype=float)
cl_ISC = pd.DataFrame(columns=cols_clones, dtype=float)
cl_EB = pd.DataFrame(columns=cols_clones, dtype=float)

# Create lists with the multiple data frames created for each condition

```
for k in range(0, int(num_samples)):
 exec("c%s_clone_composition_append = pd.DataFrame(columns=cols_composition, dtype=float)" % (k))
```

```
file_list = os.listdir(folderpath[k])
file_list = [x for x in file_list if x.endswith('.txt')]
c_clone_composition_append = pd.DataFrame(columns=cols_composition, dtype=float)
acum_clone_numbers = []
for f in range(0, len(file_list)):
 print("processing image %d")%(f))
data, GFPdata = pp_numbers(os.path.join(folderpath[k], file_list[f]), samples[k])
data = pd.DataFrame([data,], columns=list(cols_t))
GFPdata = pd.DataFrame([GFPdata,], columns=list(cols_cluster))

```
data_accu = data_accu.append(data, ignore_index=True)
GFP_data_accu = GFP_data_accu.append(GFPdata, ignore_index=True)
```

```
sin_cl, clone_numbers, clones, clone_composition = GFP_cells(os.path.join(folderpath[k], file_list[f]), samples[k], THR, os.path.join(folderpath[k], file_list[f]))
acum_clone_numbers = acum_clone_numbers + clone_numbers
```

```
c_clone_composition_append = c_clone_composition_append.append(clone_composition, ignore_index=True)
```

```
cols = ['clone_size', 'number_clones']
counter = collections.Counter(acum_clone_numbers)
cl_df = pd.DataFrame.from_dict(counter, orient='index').reset_index() 
cl_df.columns = cols
cl_df = cl_df.append(initial_cumulative)```
cl_df['Fraction'] = cl_df.number_clones/sum(cl_df.number_clones)
cl_df = cl_df.sort_values('clone_size')
cl_df['inv_cumulative'] = 1-cl_df.Fraction.cumsum()
cl_df['Samples'] = samples[k]

c_clone_composition_append[['Size', 'ISC_GFP', 'EB_GFP', 'EE_GFP', 'EC_GFP']] = c_clone_composition_append[['Size', 'ISC_GFP', 'EB_GFP', 'EE_GFP', 'EC_GFP']].astype(float)
c_clone_composition_sum = pd.DataFrame([c_clone_composition_append.sum()], dtype=float)
c_clone_composition_sum['Condition'] = samples[k]

cl_df_global = cl_df_global.append(cl_df, ignore_index=True)
clone_composition_sum = clone_composition_sum.append(c_clone_composition_sum, ignore_index=True)

# Counting quantity of ISC and EBs in clones
cl_ISC_counter = collections.Counter(c_clone_composition_append.ISC_GFP)
cl_ISC1 = pd.DataFrame.from_dict(cl_ISC_counter, orient='index').reset_index()
cl_ISC1.columns = cols
cl_ISC1['Fraction'] = cl_ISC1.number_clones/sum(cl_ISC1.number_clones)
cl_ISC1['inv_cumulative'] = 1-cl_ISC1.Fraction.cumsum()
cl_ISC1['Samples'] = samples[k]
cl_ISC = cl_ISC.append(cl_ISC1, ignore_index=True)

cl_EB_counter = collections.Counter(c_clone_composition_append.EB_GFP)
cl_EB1 = pd.DataFrame.from_dict(cl_EB_counter, orient='index').reset_index()
cl_EB1.columns = cols
cl_EB1['Fraction'] = cl_EB1.number_clones/sum(cl_EB1.number_clones)
cl_EB1['inv_cumulative'] = 1-cl_EB1.Fraction.cumsum()
cl_EB1['Samples'] = samples[k]
cl_EB = cl_EB.append(cl_EB1, ignore_index=True)

# data_accum: Composition in % per stack of all cells
# groupby_type: When both loops are in use, groupby_type groups the data_accum
GFP_data_accum[['ISC_GFP', 'EB_GFP', 'EE_GFP', 'EC_GFP']] = GFP_data_accum[['ISC_GFP', 'EB_GFP', 'EE_GFP', 'EC_GFP']].astype(float)
groupby_type = data_accum.groupby('Sample')

# Total count of number clones/clone seize
clone_composition_sum = sorted(acum_clone_numbers, key=int)
counter = collections.Counter(acum_clone_numbers)

# OUTPUT
# data_accum: Composition in % per stack of all cells
# groupby_type: When both loops are in use, groupby_type groups the data_accum
# GFP_data_accum: Composition in % per stack of only GFP cells
# cl_df_global: is a counter of how many clusters are for each size
# clone_composition_sum: raw data of the composition of each cluster
Appendix 2: Dl signal quantification

```python
-*- coding: utf-8 -*-
import os
import numpy as np
import cv2
from matplotlib import pyplot as plt
from scipy import ndimage
import skimage
import skimage.filters as skifi
import skimage.morphology as skimo
os.chdir('/Users/aleix/Documents/Python/Fastidious_libraries/
import jqtricks as jq
import tifffile as tf
import pandas as pd
from skimage.feature import peak_local_max
from scipy import ndimage
os.chdir('/Users/aleix/Documents/Python/jq
scripts'

December/20171213_MARCM_emc
NIG_aDl_aPros_7-7+7_MF'
p
November/20171110_MARCM_scB
57_emcRNAi_aDl_aPros_4-7+7_MF'
p
pp_path = [pp_path1, pp_path2]
pp_tail = '.txt'

countings = np.read_table(os.path.join(folderpath,fn),
usecols=['Type', 'X', 'Y'])
#X,Y = np.loadtxt(os.path.join(folderpath,fn), skiprows=1,
usecols=(1, 2),
unpack=True, dtype='uint16') # Separate columns
#XYdata = np.loadtxt(os.path.join(folderpath,fn), skiprows=1,
usecols=(1, 2)) #All together
ppImage = np.zeros(im_proj[:,:,0].shape,dtype='float'
p
return countings, ppImage

def DAPI(ch0, ch2, ISC_pos, ppImage):
 #This function will generate a mask for channel 0 lacking the eroded
nuclu
s (channel 2), as Dl intensity is weaker in the nucleus.
 #Filters
 median2 = ndimage.filters.median_filter(ch2, size=(2,2))
 val2 = skifi.threshold_otsu(median2)
 mask2 = (median2 > val2).astype(np.uint8)
```

132
Now we want to add the cells that have been lost during the binarisation using the pointpicker. What we will do is first merge both boolean arrays, then take out the mask with cells, and produce and imdilate for the small dots. Then merge again with the rest of the cells.

```python
merge = (skimo.binary_dilation((mask2 | (ppImage > 0)) - mask2, skimo.disk(3)).astype(np.uint8)) | mask2
```

# apply the Watershed algorithm
```python
labels = skimo.watershed((merge - ppImage), skimage.measure.label(ppImage), mask=merge)
```

```python
def Pros(ppImage, ch0):
 # Image processing Prospero
 # Apply a median filter and then an otsu thresholding
 median0 = ndimage.filters.median_filter(ch0, size=(3,3))
 val0 = skifi.threshold_otsu(median0)
 mask0 = (median0 > val0).astype(np.uint8)
 # The dilation has to be in function of the pixel size / nuclear radius
 dist = ndimage.distance_transform_edt(merge)
 # apply the Watershed algorithm
 labels = skimo.watershed(-dist, skimage.measure.label(ppImage), mask=merge)
 print("[INFO] {} unique segments found".format(len(np.unique(labels)) - 1))
 return labels
```

```python
def GFP(ppGFP, ch1):
 # Image processing GFP
 # Apply Li’s Minimum Cross Entropy thresholding
 val1 = skifi.threshold_li(ch1)
 mask1 = ch1 > val1
 mask1_fill = ndimage.morphology.binary_fill_holes(mask1).astype(np.uint8)
 labeled_mask1 = skimo.label(mask1_fill)
 return labeled_mask1
```
mask1_removed = skimo.remove_small_objects(labeled_mask1, min_size=5)

second_mask = (mask1_removed > 0).astype(np.uint8)

add_ppGFP = (skimo.binary_dilation(second_mask | (ppGFP > 0)), second_mask, skimo.square(2)).astype(np.uint8) | second_mask

close_mask1 = skimo.closing(add_ppGFP, skimo.square(3))

# The dilation has to be in function of the pixel size / nuclear radius

# compute the exact Euclidean distance from every binary pixel to the nearest zero pixel, then find peaks in this distance map

dist = ndimage.distance_transform_edt(close_mask1)

# apply the Watershed algorithm

labels = skimo.watershed((close_mask1 - ppGFP), skimage.measure.label(ppGFP), mask=close_mask1)

return labels

cols_tidy = ['Cell_ID', 'Mean_Int_Cell', 'File_name', 'Genotype', 'Marker']
tidy_data = pd.DataFrame(columns=cols_tidy, dtype=float)

for t in range(0, len(folderpath)):
    file_list = os.listdir(folderpath[t])  #-> ndimage with I.shape - > [time, plane, channel, y, x]
    file_list = [x for x in file_list if x.endswith('.tif')]  # keep only files ending with.tif

    for f in range(0, len(file_list)):
        im = tf.imread(os.path.join(folderpath[t], file_list[f]))

        im_col = np.zeros([int(im.shape[0]/3), im.shape[1], im.shape[2], 3], dtype='uint8')

        for x in range(int(im.shape[0]/3)):
            im_col[x,:,:,:] = im[x*3,:,:]
            im_col[x,:,:+1] = im[x*3+1,:,:]
            im_col[x,:,:+2] = im[x*3+2,:,:]

        im_col = np.transpose(im_col, [1,2,0,3], dtype='uint8')

        im_proj = np.zeros([im_col.shape[0], im_col.shape[1], im_col.shape[3]], dtype='uint8')

        for c in range(im_col.shape[3]):
            im_proj[:,:,c] = np.max(im_col[:,:,c], axis=2)

        ch0 = im_proj[:,:,0]
        ch1 = im_proj[:,:,1]
        ch2 = im_proj[:,:,2]

        countings, ppImage = pp_analysis(pp_path[t], file_list[f].replace('.tif', '')+pp_tail)

        EE_pos = countings.loc[countings['Type'] == 3]
labels_pros = Pros(ppImage, ch0)

mask = np.zeros(ppImage.shape, dtype="uint8")
data = pd.DataFrame(columns=cols_tidy, dtype=float)
data_pros = data
pixel_int_list = []

# loop over the unique components for prospero cells
for label in labels_pros[EE_pos.Y, EE_pos.X]:
    # construct the label mask
    labelMask = np.zeros(ppImage.shape, dtype="uint8")
    labelMask[labels_pros == label] = 255
    numPixels = cv2.countNonZero(labelMask)
    mask_pros = cv2.add(mask, labelMask)
    rows = [label, np.mean(ch0[labels_pros == label]), file_list[f], genotype[t], 'Pros']
    data_pros = data_pros.append([rows,], ignore_index=True)
    pix_int = list(ch0[labels_pros == label])
pixel_int_list = pixel_int_list + pix_int

data_pros.insert(loc=2, column='Mean_Int_Image', value=np.mean(pixel_int_list))

GFP_pos = countings.loc[countings['Type'].isin([1, 2, 5, 6])]
ppGFP = np.zeros(im_proj[:,:,0].shape, dtype='float')
ppGFP[GFP_pos.Y, GFP_pos.X] = 255
labels_GFP = GFP(ppGFP, ch1)

ISC_pos = countings.loc[countings['Type'] == 1]
ch0_noNucleus = DAPI(ch0, ch2, ISC_pos, ppImage)
mask = np.zeros(ppImage.shape, dtype="uint8")
data_Dl = data
pixel_int_list = []

# loop over the unique components for Delta cells
for label in labels_GFP[ISC_pos.Y, ISC_pos.X]:
    # construct the label mask
    labelMask = np.zeros(ppImage.shape, dtype="uint8")
    labelMask[labels_GFP == label] = 255
    numPixels = cv2.countNonZero(labelMask)
    mask_Dl = cv2.add(mask, labelMask)
    rows = [label, np.nanmean(ch0_noNucleus[labels_GFP == label]), file_list[f], genotype[t], 'Dl']
    data_Dl = data_Dl.append([rows,], ignore_index=True)
    pix_int = list(ch0_noNucleus[labels_GFP == label])
pixel_int_list = pixel_int_list + pix_int

rows = pd.DataFrame([rows,], columns=list(cols_tidy))
data_pros = data_pros.append([rows,], ignore_index=True)
# Calculate mean intensities per image and merge all the data (np.nanmean as there are nan values)

data_Dl.insert(loc=2, column='Mean_Int_Image', value=np.nanmean(pixel_int_list))

data = data_pros.append(data_Dl, ignore_index=True)

data.insert(loc=6, column='SinCellvsProsMean', value=((data.Mean_Int_Cell)/(data.Mean_Int_Image[0])))
data.insert(loc=7, column='SignalMeanvsProsMean', value=((data.Mean_Int_Image)/(data.Mean_Int_Image[0])))
tidy_data = tidy_data.append([data], ignore_index=True)


Banezra, R., Davis, R. L., Lassar, A., Tapscott, S., Thayer, M., Lockshon, D. and


