Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

New insights for the valorisation of glycerol over MgO catalysts in the gas-phase

Smith, Louise R., Smith, Paul J., Mugford, Karl S., Douthwaite, Mark, Dummer, Nicholas F., Willock, David J., Howard, Mark, Knight, David W., Taylor, Stuart H. and Hutchings, Graham J. 2019. New insights for the valorisation of glycerol over MgO catalysts in the gas-phase. Catalysis Science and Technology 9 , pp. 1464-1475. 10.1039/C8CY02214C

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (0B) | Preview

Abstract

Aqueous glycerol solutions of up to 50 wt% were reacted over magnesium oxide catalysts at temperatures greater than 300 °C, the reactivity of which was compared to catalyst-free reactions. Under catalyst-free conditions, modest levels of dehydration to hydroxyacetone were observed at temperatures >400 °C in a steel reactor tube and >320 °C over silicon carbide. For reactions over MgO, the product distribution becomes more diverse, resulting in the formation of methanol, acetaldehyde, ethylene glycol, 1,2-propanediol and acetic acid. The methanol space–time–yield over MgO catalyst samples (0.5 g) was found to be highest at 400 °C (205 g h−1 kgcat−1) with a 50 wt% solution of glycerol, or with a glycerol concentration of 10 wt%; 255 g h−1 kgcat−1 over 0.1 g of catalyst. Despite the high glycerol conversion achieved, the MgO catalyst was found to be stable over 48 h, following a modest decrease in glycerol conversion during the initial 2 h of reaction. Post-reaction characterisation revealed that the level of coking at high glycerol conversions (>90%) was ≥120 mg gcat−1. The carbon mass balance determined by GC analysis for a typical reaction was 75% and so the carbon lost from catalyst coking only represents a modest quantity of the missing carbon; typically <10%. MgO was also found to promote the formation of high molecular weight products via condensation reactions, which were responsible for the remainder of the missing carbon; ca. 15%. Therefore, the total organic content of the post-reaction mixture and coke was calculated to be 94% of the starting solution. We conclude that the catalyst surface directs the formation of methanol, however, the results indicate that the reaction conditions are crucial to obtain optimum yields.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Chemistry
Cardiff Catalysis Institute (CCI)
Publisher: Royal Society of Chemistry
ISSN: 2044-4753
Funders: EPSRC
Date of First Compliant Deposit: 15 March 2019
Date of Acceptance: 7 February 2019
Last Modified: 17 May 2019 09:22
URI: http://orca.cf.ac.uk/id/eprint/120750

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics