Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of genes

Morgan, Sarah, Seidlitza, Jakob, Whitakera, Kirstie, Clifton, Nicolas, Romero-Garcia, Rafael, Van Amelsvoort, Therese, Marcelis, Machteld, Van Os, Jim, Donohoe, Gary, Mothersill, David, Corving, Aiden, Pocklington, Andrew, Raznahan, Armin, Vértesa, Petra and Bullmore, Edward 2019. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of genes. Proceedings of the National Academy of Sciences 116 (19) , pp. 9604-9609. 10.1073/pnas.1820754116

PDF - Accepted Post-Print Version
Download (831kB) | Preview


Schizophrenia has been conceived as a disorder of brain connectivity, but it is unclear how this network phenotype is related to the underlying genetics. We used morphometric similarity analysis of MRI data as a marker of interareal cortical connectivity in three prior case–control studies of psychosis: in total, n = 185 cases and n = 227 controls. Psychosis was associated with globally reduced morphometric similarity in all three studies. There was also a replicable pattern of case–control differences in regional morphometric similarity, which was significantly reduced in patients in frontal and temporal cortical areas but increased in parietal cortex. Using prior brain-wide gene expression data, we found that the cortical map of case–control differences in morphometric similarity was spatially correlated with cortical expression of a weighted combination of genes enriched for neurobiologically relevant ontology terms and pathways. In addition, genes that were normally overexpressed in cortical areas with reduced morphometric similarity were significantly up-regulated in three prior post mortem studies of schizophrenia. We propose that this combined analysis of neuroimaging and transcriptional data provides insight into how previously implicated genes and proteins as well as a number of unreported genes in their topological vicinity on the protein interaction network may drive structural brain network changes mediating the genetic risk of schizophrenia.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Medicine
Publisher: National Academy of Sciences
ISSN: 0027-8424
Date of First Compliant Deposit: 20 June 2019
Date of Acceptance: 21 March 2019
Last Modified: 27 Jun 2019 21:28

Actions (repository staff only)

Edit Item Edit Item


Downloads per month over past year

View more statistics