Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Hybrid microaggregation for privacy preserving data mining

Abidi, Balkis, Yahia, Sadok Ben and Perera, Charith 2019. Hybrid microaggregation for privacy preserving data mining. Journal of Ambient Intelligence and Humanized Computing 10.1007/s12652-018-1122-7

[img]
Preview
PDF - Accepted Post-Print Version
Download (189kB) | Preview

Abstract

k-Anonymity by microaggregation is one of the most commonly used anonymization techniques. This success is owe to the achievement of a worth of interest trade-off between information loss and identity disclosure risk. However, this method may have some drawbacks. On the disclosure limitation side, there is a lack of protection against attribute disclosure. On the data utility side, dealing with a real datasets is a challenging task to achieve. Indeed, the latter are characterized by their large number of attributes and the presence of noisy data, such that outliers or, even, data with missing values. Generating an anonymous individual data useful for data mining tasks, while decreasing the influence of noisy data is a compelling task to achieve. In this paper, we introduce a new microaggregation method, called HM-pfsom, based on fuzzy possibilistic clustering. Our proposed method operates through an hybrid manner. This means that the anonymization process is applied per block of similar data. Thus, we can help to decrease the information loss during the anonymization process. The HM-pfsom approach proposes to study the distribution of confidential attributes within each sub-dataset. Then, according to the latter distribution, the privacy parameter k is determined, in such a way to preserve the diversity of confidential attributes within the anonymized microdata. This allows to decrease the disclosure risk of confidential information.

Item Type: Article
Date Type: Publication
Status: In Press
Schools: Computer Science & Informatics
Subjects: Q Science > QA Mathematics > QA76 Computer software
Publisher: Springer Verlag (Germany)
ISSN: 1868-5137
Date of First Compliant Deposit: 24 April 2019
Date of Acceptance: 1 November 2018
Last Modified: 26 Nov 2019 12:27
URI: http://orca.cf.ac.uk/id/eprint/121701

Citation Data

Cited 3 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item