Oxygen Reduction Reaction for Generating H₂O₂ through a Piezo-Catalytic Process over Bismuth Oxychloride

Dengkui Shao,[a, b] Ling Zhang,[a] Songmei Sun,[a] and Wenzhong Wang*[a]

Oxygen reduction reaction (ORR) for generating H₂O₂ through green pathways has gained much attention in recent years. Herein, we introduce a piezo-catalytic approach to obtain H₂O₂ over bismuth oxychloride (BiOCl) through an ORR pathway. The piezoelectric response of BiOCl was directly characterized by piezoresponse force microscopy (PFM). The BiOCl exhibits efficient catalytic performance for generating H₂O₂ (28 mmol h⁻¹) only from O₂ and H₂O, which is above the average level of H₂O₂ produced by solar-to-chemical processes. A piezo-catalytic mechanism was proposed: with ultrasonic waves, an alternating electric field will be generated over BiOCl, which can drive charge carriers (electrons and holes) to interact with O₂ and H₂O, then to form H₂O₂.

H₂O₂ is widely used in pulp bleaching and disinfection,[1] furthermore, it has been explored as a green fuel for fuel cells in recent years.[2] However, the current industrial process of producing H₂O₂ involves anthraquinones in organic solvents and the H₂O₂ extracted from this system may be contaminated by organic impurities: Moreover, the direct synthesis of H₂O₂ from the reaction of H₂ and O₂ catalyzed by Pd or Pd/Au alloy is an alternative with risk of explosion.[3] The sustainable production of H₂O₂ from H₂O and O₂ through a solar-to-chemical process is therefore investigated owing to the sufficient and endless sunlight.[4] Small kinetic energies[5] such as those from sound, water waves, and vibrations are everywhere as well as solar energy, and they may be considered as other appealing driving forces for generating H₂O₂ through the oxygen reduction reaction (ORR).

With the rapid development of piezoelectric materials,[6] growing interest has been devoted to the conversion of mechanical energy into electricity or even chemical energy.[7] Numerous studies about nanogenerators that could harvest mechanical forces for generating H₂O₂ and provides a clean and sustainable strategy for the production of H₂O₂ owing to the inorganic and safe pro-cess, and freely available O₂ and H₂O.

An SEM image of the hydrothermally synthesized BiOCl is shown in Figure 1 a. BiOCl exhibits a square-like morphology. The width of the as-prepared BiOCl is about 2–5 mm and the thickness is about 200–300 nm. Figure 1 b shows the crystal structure of BiOCl. All the peaks of BiOCl could be well indexed to the tetragonal phase of BiOCl with the lattice parameters of a = b = 0.3891 nm and c = 0.7369 nm (JCPDS No. 06-249).[16] These results show that the as-prepared BiOCl is well crystal-lized.

The piezoelectric response of BiOCl was characterized by an atomic force microscope (AFM) with a ferroelectric test system. Figure 2 shows the AFM and PFM images of the BiOCl microplates. The AFM image shows that the width of as-prepared BiOCl is about 3 mm and the thickness is about 200 nm, which is consistent with the result from SEM. Although some studies have reported the internal polar field in BiOCl,[14,15] the piezoelectric response of BiOCl has not been characterized. The PFM

[a] D. Shao, Dr. L. Zhang, Dr. S. Sun, Prof. W. Wang
State Key Laboratory of High Performance Ceramics and Superfine Micro-structure
Shanghai Institute of Ceramics
Chinese Academy of Sciences
1295 Dingxi Road, Shanghai 200050 (P. R. China) E-mail: wzwang@mail.sic.ac.cn
[b] D. Shao
University of Chinese Academy of Sciences Beijing 100049 (P. R. China)
Figure 1. a) SEM image and b) XRD patterns of as-synthesized BiOCl.

Figure 2. a) AFM and b) PFM images of as-synthesized BiOCl.

The X-ray diffraction (XRD) and UV/Vis diffuse reflectance spectra of BiOCl image of BiOCl revealed the piezoelectric response was indeed created from BiOCl microplates at an external load.

On the basis of the piezoelectric response of BiOCl microplates, we performed the experiment of generating H₂O₂ over BiOCl with ultrasonic waves. Without any scavengers, the ultrasonic energy-driven generation of H₂O₂ in the presence of BiOCl was realized. As shown in Figure 3, the generation rate of H₂O₂ could reach 28 mmol h⁻¹, which is above the average level achieved by powdered water splitting photocatalysts (summary of representative experiments for generating H₂O₂ through a solar-to-chemical process is shown in the Supporting Information, Table S1). The amount of H₂O₂ continuously increased with time without a noticeable decay. The X-ray diffraction (XRD) and UV/Vis diffuse reflectance spectra of BiOCl before and after use remain unchanged, indicating the stability of BiOCl (as shown in the Supporting Information, Figure S1). It was found that the generation rate of H₂O₂ was negligible (0.5 mmol h⁻¹) in the absence of BiOCl. Such phenomena indicated that BiOCl was necessary for generating H₂O₂. When the power of ultrasonic waves was adjusted to 50 % of the full power, the generation rate of H₂O₂ decreased to 3 mmol h⁻¹ except for the initial 30 min. The lower power contributed to much lower generation rate of H₂O₂, indicating that the amplitude of ultrasonic waves was a key factor for the generation of H₂O₂, because for piezoelectric materials the voltage output is proportional to the amplitude of external ultrasonic waves.¹⁷

We obtained H₂O₂ from the suspension of BiOCl with ultrasonic waves, but the mechanism is not clear. There are two possible reactions for generating H₂O₂. One consists of O₂ reacting with H₂O and finally transforming into H₂O₂ [Eq. (1)] and the other consists of H₂O decomposing into H₂ and H₂O₂ [Eq. (2)].

\[
\begin{align*}
2H_2O + O_2 & \rightarrow 2H_2O_2 \\
2H_2 + H_2O_2 & \rightarrow 2H_2O
\end{align*}
\]

To ascertain the role of O₂ for generating H₂O₂, we performed an experiment of controlling the atmosphere in a sealed double-deck glass vessel with ultrasonic waves for 5 h. The results are shown in Figure 4: when the atmosphere was high-purity N₂, a small amount of H₂ showing a linear relationship with time could be detected and the amount of H₂O₂ was 1.68 mmol; when the atmosphere was high-purity O₂, H₂ could not be detected and the amount of H₂O₂ was 28.5 mmol. When BiOCl was absent, H₂ and H₂O₂ could not be detected in any atmosphere. In view of the amount of H₂O₂ produced with BiOCl in the atmospheres of high-purity N₂ and O₂, it could be concluded that the O element of the obtained H₂O₂ was mainly from O₂. The competition of generation of H₂O₂ and H₂ may be attributed to the different reduction potentials, because the redox potential of H₂O₂/O₂ (0.68 V, pH 0) is more positive than that of H₂/H⁺ (0.00 V, pH 0) and electrons.
prefer to reduce O$_2$. An experiment to determine the generation and diffusion of electrons was therefore needed.

To verify that the electrons induced by the piezoelectric effect over BiOCl with ultrasonic waves can transfer to the surface and participate in chemical reactions, a Au-deposition experiment was performed. In general, the deposition of noble metals is realized by the reduction reaction induced by photo-generated electrons or reducing agents. From a thermodynamics point of view, the potentials of ORR and the hydrogen evolution reaction are far more negative than the reduction potential of HAuCl$_4$, therefore, depositing Au on BiOCl in the suspension of BiOCl and HAuCl$_4$ through the piezocatalytic effect should be feasible. With ultrasonic waves, the suspension of BiOCl and HAuCl$_4$ gradually turned to purple and finally to black, which was an indication of the presence of metallic Au. The UV/Vis diffraction spectrum showed the extended absorption edge of Au@BiOCl. An extra absorption peak at 550 nm in contrast to pure BiOCl was ascribed to the deposition of Au nanoparticles (Figure 5 b). An SEM image of Au@BiOCl is shown in Figure 5 a. It clearly shows that Au nanoparticles were randomly deposited on the surface of BiOCl, and the size of Au nanoparticles ranges from 20 to 100 nm.

The suspension only contains BiOCl, H$_2$O, and O$_2$. Therefore, there are two possible pathways of consuming holes (charge carriers) induced by the piezoelectric effect: one is the oxidation of BiOCl and the other is the oxidation of H$_2$O. If the holes are consumed by decomposing BiOCl, the whole reaction formula should be as shown in Equation (3). However, producing 70 mmol H$_2$O$_2$ (as shown in Figure 3) will consume 280 mmol BiOCl, which is contradictory with the practical usage of BiOCl (50 mg, 191 mmol). The characterization of BiOCl before and after use also verified that BiOCl had good stability under ultrasonic waves (as shown in the Supporting Information, Figure S1). In view of the thermodynamics, H$_2$O has a more negative oxidation potential (1.23 V, pH 0) than Cl$_2$ (1.36 V, pH 0), so the holes prefer to oxidize H$_2$O. As a result, the induced holes were consumed by oxidizing H$_2$O.

$$4\text{BiOCl} \ + \ 4\text{H}^+ \ + \ 4\text{e}^- \ + \ \text{O}_2 \rightarrow 2\text{Bi}_2\text{O}_3 + 4\text{HClO} \ + \ 4\text{H}_2\text{O}$$

The mechanical-energy-driven generation of H$_2$O$_2$ may be derived from two pathways: one is the ORR [Eq. (4), Eq. (5)] and the other is both of ORR and the oxidation of H$_2$O [Eq. (6)].

$$\text{e}^- \ + \ \text{O}_2 \rightarrow \text{O}_2\text{C} \ + \ \text{H}_2\text{O}$$
$$\text{O}_2\text{C} \ + \ \text{e}^- \ + \ \text{H}^+ \rightarrow \text{H}_2\text{O}_2$$
$$2\text{H}_2\text{O} \ + \ 2\text{H}^+ \ + \ 2\text{e}^- \rightarrow 2\text{H}_2\text{O}_2 \ + \ 2\text{H}^+$$

To confirm the intermediate products in the H$_2$O$_2$ generation, experiments of addition of scavengers were performed (Figure 6). Isopropanol (IPA) is a common OH$^-$ scavenger and benzoquinone (BQ) is a common O$_2$C$^\cdot$ scavenger.$^{[18]}$ With the addition of IPA, the amount of H$_2$O$_2$ increased about three
In a typical procedure, Bi(NO$_3$)$_3$ was scanned using CuK$_\alpha$ radiation with an operating voltage of 30 kV and operating current of 100 mA. The scan rate of 48 min$^{-1}$ was employed to record the patterns in the range of 10–708. UV/Vis diffuse reflectance spectra were recorded on an UV/Vis spectrophotometer (Hitachi 3010) equipped with an integrating sphere. The morphological characterization of the as-prepared samples was investigated by SEM (Hitachi S4800). The piezoelectric response of as-prepared sample was characterized by AFM (SPA-300HV) equipped with a ferroelectric test system. In a typical procedure of sample preparation, for the experiments, BiOCl samples were fabricated by sonochemical method. Figure 6. H$_2$O$_2$ generation over BiOCl with addition of different scavengers.

Figure 6. H$_2$O$_2$ generation over BiOCl with addition of different scavengers.

In summary, the oxygen reduction reaction (ORR) for generating H$_2$O$_2$ through the piezo-catalytic effect was realized over BiOCl with ultrasonic waves. The piezoelectric response of BiOCl was first characterized by piezoelectric force microscopy (PFM). Under air atmosphere, the generation of H$_2$O$_2$ can reach 28 mmol h$^{-1}$. The experiment of controlling the atmosphere indicated that H$_2$O$_2$ was mainly formed from O$_2$ and H$_2$O. Experiments of Au deposition and addition of scavengers confirm that the formed H$_2$O$_2$ was derived from ORR by the electrons induced by the piezoelectric effect. Based on these results and previous reports, a mechanism was proposed, with ultrasonic waves over BiOCl driving the electrons interact with H$_2$O and O$_2$ to generate H$_2$O$_2$. This research provides a safe and green method of generating H$_2$O$_2$ by harvesting ultrasonic energy and may facilitate the energy and avoid environmental issues.

Experimental Section

Materials: All chemicals were of analytical grade purity obtained from Sinopharm Chemical Reagent Co. Ltd and used as received without further purification.

Synthesis of BiOCl: In a typical procedure, Bi(NO$_3$)$_3$·5 H$_2$O (2 mmol) and KCl (2 mmol) were added in distilled water (30 mL) at room temperature with continuous stirring. The suspension was stirred for 1 h and then poured into a 50 mL Teflon-lined stainless steel autoclave. The autoclave was allowed to be heated at 160 °C for 24 h, and then air-cooled to room temperature. The resulting precipitates were collected and washed with ethanol and deionized water for several times to remove residual ions.

Au@BiOCl: The BiOCl (50 mg) and HAuCl$_4$ (1 mg) were added to pure water (100 mL) in a Pyrex glass of 500 mL and thoroughly mixed by stirring. After 10 min, the glass was placed in an ultrasonic cleaner (SK2200HP). With stirring, the suspension was treated by ultrasonic waves for 60 min. The purple-black resulting products were centrifuged and washed with pure water. The above sample was then dried at 60 °C for 6 h for further characterization.

Piezoelectric catalytic performance measurement: Normally, BiOCl (0.05 g) was dispersed in pure water (100 mL). The generation of H$_2$O$_2$ in air was done in a Pyrex glass of 500 mL in an ultrasonic cleaner (SK3200HP) with stirring by a power-driven stirrer of D2004W. The power of ultrasonic cleaner was 150 W and the frequency was 53 KHz. The experiment in high-purity N$_2$ and high-purity O$_2$ atmosphere was performed, respectively, in a sealed double-decker Pyrex glass of 600 mL in the ultrasonic cleaner. The amount of H$_2$O$_2$ in solution was determined by the titanium sulfate spectrophotometric method using a UV/Vis spectrophotometer (Hitachi ‘3010) equipped with an integrating sphere. Generated H$_2$O$_2$ was de-tected by an online gas chromatograph (Tianmee, GC-7890, TCD, Ar carrier). For the experiment with addition of scavengers, IPA (10 mm) was selected as O$_2$ scavenger. BQ (0.1 g) was selected as O$_2$ scavengers. RhB was selected as a model pollutant. The concentration of RhB was 10 mg L$^{-1}$.

Characterization methods: The samples were characterized by XRD on a Rigaku powder diffractometer. The samples were scanned using CuKa radiation with an operating voltage of 30 kV and operating current of 100 mA. The scan rate of 48 min$^{-1}$ was employed to record the patterns in the range of 10–708. UV/Vis diffuse reflectance spectra were recorded on an UV/Vis spectrophotometer (Hitachi 3010) equipped with an integrating sphere. The morphological characterization of the as-prepared samples was investigated by SEM (Hitachi S4800). The piezoelectric response of as-prepared sample was characterized by AFM (SPA-300HV) equipped with a ferroelectric test system.
reduction reaction

Keywords: bismuth oxychloride · hydrogen peroxide · oxygen reduction reaction · piezo-catalytic effect · piezoelectric response