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HeteroFusion: Dense Scene Reconstruction
Integrating Multi-sensors

Sheng Yang, Beichen Li, Minghua Liu, Yu-Kun Lai, Leif Kobbelt, Shi-Min Hu

Abstract —We present a novel approach to integrate data from multiple sensor types for dense 3D reconstruction of indoor scenes in
realtime. Existing algorithms are mainly based on a single RGBD camera and thus require continuous scanning of areas with suf�cient
geometric features. Otherwise, tracking may fail due to unreliable frame registration. Inspired by the fact that the fusion of multiple
sensors can combine their strengths towards a more robust and accurate self-localization, we incorporate multiple types of sensors
which are prevalent in modern robot systems, including a 2D range sensor, an inertial measurement unit (IMU), and wheel encoders.
We fuse their measurements to reinforce the tracking process and to eventually obtain better 3D reconstructions. Speci�cally, we
develop a 2D truncated signed distance �eld (TSDF) volume representation for the integration and ray-casting of laser frames, leading
to a uni�ed cost function in the pose estimation stage. For validation of the estimated poses in the loop-closure optimization process,
we train a classi�er for the features extracted from heterogeneous sensors during the registration progress. To evaluate our method on
challenging use case scenarios, we assembled a scanning platform prototype to acquire real-world scans. We further simulated
synthetic scans based on high-�delity synthetic scenes for quantitative evaluation. Extensive experimental evaluation on these two
types of scans demonstrate that our system is capable of robustly acquiring dense 3D reconstructions and outperforms state-of-the-art
RGBD and LiDAR systems.

Index Terms —Reconstruction, Sensor fusion, Robotics.

F

1 INTRODUCTION

T HE continuing development of 3D reconstruction sys-
tems [1], [2], [3], [4] and the growth of available dense

scenes [5], [6] have signi�cantly improved modern scene
understanding and manipulation techniques [7], [8]. How-
ever, the current data acquisition process still heavily relies
on experienced users to hold and smoothly move the RGBD
camera, which involves high labor costs. In order to sup-
port cost-effective mass acquisition of 3D scenes, delegating
scanning missions to robots is highly demanded.

In order to achieve an automatic acquisition and recon-
struction scheme, these modern reconstruction algorithms
are also required to be improved for cooperating with
modern motion planning strategies [9], [10], since their
performance may decline signi�cantly when deployed for
vehicle scanning instead of hand-held scanning. This is
essentially due to a reduced degree-of-freedom for camera
motion that restricts the RGBD sensor from continuously
focusing on regions with suf�cient geometric details, i.e., the
actions of robots are not as �exible as humans for staying at
good shooting views containing suf�cient registration hints
for localization and mapping. For example, when crossing
through different regions of interest in indoor scenes, the
robot may choose a relatively clear path, where currently
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available commodity depth sensors, whose precise scanning
range is short and �eld-of-view is narrow, are not able to
capture suf�cient registration hints for tracking.

In robotics, with an aim to enhance localization, pio-
neering work integrates multiple sensors for a wide range
of diverse robotic perception tasks, as summarized in
[11], which shows a feasible strategy to solve the above-
mentioned challenge. For indoor scenarios, 2D laser scan-
ners are the preferable choice for localizing the chassis of
wheeled robots on account of both cost and effectiveness.
Gmapping [12] and the state-of-the-art Cartographer [13]
are two profound systems coupling laser frames, inertial
measurements, and wheel encoders for reconstructing pla-
nar occupancy maps. Recently, several systems considering
both visual and laser information were also proposed for a
wide variety of scenarios such as Unmanned Aerial Vehicles
(UAVs) [14], autonomous driving vehicles [15], [16], and
indoor positioning tasks [17], [18]. Comparatively, in the
�eld of reconstruction, both an appropriate data structure
for precisely fusing multiple measurements and a higher
accuracy of localization are required for generating high-
�delity dense representations, whereas current multi-sensor
fusion methods [11] have not put these sensors into a uni�ed
optimization process, leading to insuf�cient utilization of
advantages from different types of sensors in both pose
estimation and loop closure handling.

Inspired by the general idea that multi-sensor fusion
is bene�cial for promoting the quality and robustness of
localization and mapping [11], we present a robust real-time
dense reconstruction system coupling information from
an RGBD camera, a horizontally placed 2D laser scanner,
an inertial measurement unit (IMU), and wheel encoders,
which are typically equipped on indoor robots. The main
contributions of this paper are:
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� We present a novel real-time dense scene reconstruc-
tion system for robotic scanning using multimodal
sensors, which outperforms the generic way of multi-
sensor fusion [11], [19]. Speci�cally, we replace the
occupancy grid by the truncated signed distance �eld
(TSDF) representation for 2D laser frames, so as to
reformulate the cost function in the pose estimation
stage for maintaining better accuracy.

� We propose a new pose evaluation classi�er con-
sidering features derived from both sensor readings
and the progress of pose estimation. Such a classi�er
helps to determine correct loop closures used for
reducing the cumulated drifts from the sequential
frame-to-model registration.

� A benchmark for evaluating the quality of mesh
reconstruction is developed, where the robotic scan-
ning process is simulated using synthetic scenes
for quantitative evaluation. The benchmark will be
made publicly available for facilitating future re-
search.

In order to test the performance of our proposed algo-
rithm, we also assembled a simple robot platform (Fig. 7) for
scanning real-world scenes. Extensive evaluations on both
real and simulated scans demonstrate that our proposed
system, which tightly couples laser and RGBD measure-
ments for a uni�ed tracking and loop optimization process,
is capable of maintaining suf�cient accuracy for indoor sce-
narios, outperforming several state-of-the-art reconstruction
methods [2], [3], [13], [20], even when they are enhanced
with initial pose hints directly provided by a classical prob-
abilistic approach [19] for coupling multiple sensors.

2 RELATED WORK

In this section, we �rst review dense reconstruction tech-
niques for indoor scenes, and further discuss relevant multi-
sensor systems in the �eld of simultaneous localization and
mapping (SLAM).

Dense Scene Reconstruction. As a milestone in real-
time dense reconstruction, KinectFusion [1] using consumer
level RGBD cameras has aroused great interests in the
graphics community. This system uses TSDF volumes to
store the reconstructed scenes, achieving real-time tracking
and integration with the help of GPU.

In order to enlarge the size of reconstruction, the original
KinectFusion has to reduce the resolution of the volumes
due to the limited capacity of the graphical memory. Whelan
et al. [21] present a strategy to perform memory swapping
according to the current sensor pose, where distant voxels
are stored on the host and nearby voxels are loaded in GPU.
Such a strategy is further enhanced by a voxel hashing data
structure [22] that signi�cantly improves the utilization of
memory, based on the observation that surface voxels are
sparsely distributed in common scenes.

In another aspect, the accuracy of sequential tracking is
also continually improved. In the �eld of reconstruction,
estimating sensor poses is performed through frame-to-
model registration (actually with ray-casted frames), and
the geometric cost from depth frames for such registration
is enhanced with an additional photometric cost [23] based
on color frames. Image pyramids [24] are also involved to

present coarse-to-�ne registration for faster convergence.
Recently, sparse correspondences of keypoints were also
taken into consideration [3] to avoid falling into erroneous
correspondences.

For these pipelines, the most common way of integrating
heterogeneous sensors is to use them for providing a good
initial estimation of relative transformations. This strategy
has been used in reconstruction with mobile devices [25],
where 3 degree-of-freedom prediction of consecutive rota-
tions inferred via a gyroscope is used to initialize the pose
iteration. However, since they are only used for initializa-
tion, there is no guarantee that such hints will eliminate poor
alignment and tracking loss during the optimization process
(see Sec. 4.2 for a comparison of derived systems utilizing
such a strategy). Therefore, it is necessary to enhance the
prediction in a tightly-coupled manner, which we study
in this paper. This is especially appropriate for deploying
such systems on robots, where the scanning path can easily
contain regions with limited features.

Another crucial feature for maintaining global consis-
tency of the reconstruction is the loop closure handling,
which involves loop detection and optimization. In the de-
tection stage, two methods are commonly used for detecting
loops with RGBD sensors, namely bag-of-words [26] and
Randomized Ferns [27]. Regarding optimization strategies,
Whelan et al. [2] propose to use scene deformation of surfels
according to both temporal and fern constraints, while Dai
et al. [3] perform factor graph optimization among submaps
and implement scene re-integration for updating scenes.
From another point of view, K ähler et al. [20] simultaneously
track a single frame on all its related submaps to construct
constraints for pose graph factors.

In fact, the robustness of back-end optimization relies
heavily on the correctness of these constraints. Simply
thresholding the percentage of inliers and the RMSE (root-
mean-square error) of a registration attempt [2] does not
generalize well for repetitive structures in a scene. K ähler
et al. [20] address this problem via training a classi�er
considering features among the registration process. We
propose to enhance this by further considering features from
heterogeneous sensors. Moreover, additional information
provided by these sensors is also able to �lter out erro-
neously detected loops with reliable, despite coarse, global
positioning hints.

Multi-sensor SLAM Systems. In the �elds of robotics
and computer vision, reconstructing maps under pose un-
certainty is often addressed as a Simultaneous Localization
and Mapping (SLAM) problem. We kindly refer readers to
an insightful survey [11], which divides those available sys-
tems into several categories, where the two most prevalent
categories are probabilistic approaches such as extended
Kalman �lter (EKF) [19], and maximum-a-posteriori (MAP)
estimation such as factor graph formulation [28], [29].

The classical probabilistic approaches are still popular
for multi-sensor fusion, such as visual-inertial systems [30]
for indoor scenes and integrated navigation systems (INS,
mostly consisting of GPS/RTK and inertial sensors) [31]
for outdoor scenarios. These systems incorporate inertial
measurements into the ego-motion estimation with pre-
calibrated extrinsics or online calibration [32], and the un-
certainty of sensor measurements quanti�ed as covariances
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is also involved in con�dence-based pose prediction. For
example, Chow et al. [33] propose to use implicit iterative
extended Kalman �lter (IEKF) for coupling sensor states
from a 2D laser scanner, an IMU, and two RGBD cameras.
Deilamsalehy et al. [14] assemble a 2D laser scanner, an
IMU, and a camera on a UAV and use the EKF for robust in-
door navigation. However, these approaches fuse available
sensors by concluding their motion state based on multiple
individually estimated odometry, while our method chooses
to simultaneously and densely track RGBD and laser frames
(see Sec. 3.2).

From the perspective of the MAP estimation, variables
are estimated by computing the assignment of variables
that attains the maximum of the posterior. In this method,
odometry estimation is solved through a cost function in-
tegrating information from multiple sensors [34], where
measurements are regarded as priors and camera as well
as laser frames are used for scan-matching based on ICP
(iterative closest point) algorithms [35]. For instance, Wen
et al. [17] perform a cascaded ICP based on sparse and
dense visual correspondences, where laser scans are fed into
Gmapping [12] for a 2D initial guess. Another capability
of the MAP estimation is that such methods are capable of
alleviating accumulated drifts through detected loops: In the
factor graph approaches, sensor poses as well as landmark
positions, and even calibration parameters, are continu-
ously optimized under the constraints of odometry, frame
registration, and landmark/loop-closure observations [11].
But factor graph approaches are not suitable for real-time
dense reconstruction systems, since they are hard to be
parallelized. Based on the 2D TSDF structure for organizing
laser measurements, we can use the MAP strategy in our
tracking process by considering both dense visual and laser
correspondences.

Once sensor poses are solved for and optimized, the �nal
map can be constructed according to geometric transforma-
tions. Both depth maps and laser scans are typical choices
for stitching dense point clouds to acquire a full representa-
tion of scenes. Although laser scanners have better accuracy
in comparison to commodity depth sensors, covering the
whole surface with 2D laser frames is extremely tedious,
regardless of how they are placed (vertically [36] or through
a �exible spring [37]). In fact, the most common way of
assembling such a scanner on a wheeled robot is to secure
it with the chassis horizontally, which is able to provide
registration hints that largely bene�t 2D localization accu-
racy. Unlike traditional SLAM techniques where the focus
is sparse reconstruction and localization, our system aims
to produce robust real-time dense reconstruction. Therefore,
utilizing information from the RGBD camera for dense 3D
reconstruction is the most suitable way for indoor scenes.
Moreover, although depth sensors produce noisy data, such
noise can be statistically diminished in real-time during the
integration of TSDF volumes.

3 METHOD

The data �ow of our framework is shown in Fig. 1 with
the backbone colored in blue and green. We choose to use
the TSDF volumetric representation for representing both
2D and 3D scenes reconstructed through laser and RGBD

RGBD

Laser
Tracking Classify

3D TSDF

2D TSDF

Keyframes Submaps

IMU/Wheel
PoseGraph & Mesh

Primary ActiveInput Submap Switching

Figure 1. Overview of our proposed system. The backbone of our
pipeline is colored in blue and green, while the rest are added for
handling cumulative drifts through loop-closures.

frames, respectively (see Sec. 3.1 for the data structure of
2D volumes). For input messages captured by different
sensors, we synchronize color (C), depth (D), and laser
(L ) frames as batches for tracking through an Approxi-
mate Timestrategy [38]. These three types of frames are
simultaneously registered to their corresponding ray-casted
frames generated through these volumetric representations
(Sec. 3.2), where possible additional hints from the IMU
and wheel encoders can contribute to a better initial status
for subsequent iterations. After such an estimated pose is
acquired, the system uses an evaluation module (Sec. 3.3)
to judge its reliability and decide to either fuse the current
batch of frames into these maps or report a tracking failure
event. Since such a sequential tracking scheme may suffer
from cumulative drifts, we follow the strategy proposed by
Kähler et al. [20] to enhance the backbone, which uses the
pose graph optimization to handle it through loop-closures.

Loop Closure Optimization Through Submaps. In or-
der to handle cumulative drifts and maintain the global
consistency of reconstruction, we choose to use mutliple
volumetric representations to fuse both 2D and 3D measure-
ments (Fig. 1-Right). Overall, these synchronized batches of
frames are split into multiple groups, where each group has
a pair of 3D and 2D TSDF volumes for integrating RGBD
and laser frames, respectively. We denote such a pair of vol-
umes as asubmap, and these submaps are regarded as rigid
parts in the global deformation for reducing cumulative
drifts during reconstruction. For determining the partition
of frames, these submaps are divided into three categories,
namely primary (green), active(orange), and inactive (gray),
and their states are continuously updated during scanning:
The current batch of frames will be simultaneously regis-
tered to all submaps that are currently primary or active, and
multiple successful registrations among different submaps
will update the constraints of their relative poses in the pose
graph [29] for performing non-rigid global deformation and
�nal integration. At any time during reconstruction, there
exists at most one primary submap which integrates the
current batch of frames. Once such a primary submap has
fused a certain amount of frames (whose accumulated trans-
lation/rotation exceeds 0.3m/30 � in our implementation),
its status will be switched into active, and another new
primary map will be created to continue the integration. A
detected tracking failure event from those active submaps
will turn them into inactive. Besides, the system records
a set of keyframes during the scanning process through
Randomized Ferns [27], and successful retrieval of frames
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with similar appearance as the current frames is regarded
as a loop event, i.e., a revisit of a scanned place, which
will reactivatethe submap it belongs to. We add additional
constraints as discussed in Sec. 3.4 in such a multi-sensor
scenario for better reactivationperformance.

De�nitions and Coordinates. During reconstruction, we
have several sensors and submaps as well as their local co-
ordinates, as shown in Fig. 2. On the robot (Fig. 2-left), Raw
sensor readings (green circles) including registered RGBD
frames (D), laser scans (L), and inertial measurements (I )
are represented in their device coordinate systems. For each
submap (Fig. 2-right), two coordinate systems (red circles)
are used to represent the volume, namely in 3D for RGBD
(W) and 2D for laser scans (P). During the initialization
of each submap i , W i is assigned the same as the current
D, while Pi is assigned the same as a recti�ed coordinate
system G (the yellow circle), which is obtained by repro-
jecting L based on the estimated gravity direction. Such
recti�cation is helpful for registering laser frames based on
the Manhattan assumption [39], i.e., indoor scenes consist
of dominantly surfaces with orthogonal normal directions.
To acquire the gravity orientation, we calculate the average
of recent acceleration readings [13], where the result is for-
mulated as a transformation T IG

i 2 SO(3). For convenience,
we denote by TXY the transformation that converts points
represented in the coordinate system X to Y.

SO(3)

Submap-staticStatic Dynamic

Robot Submap i

SE(2)

Figure 2. Coordinate systems involved in our pipeline, where x , y and
z axes are colored in red, green and blue, respectively. We use such a
recti�ed coordinate system G for better establishing 2D volumes.

Hence, from these established coordinates, we can divide
all transformations into three types, namely static (green),
submap-static(red), and dynamic(yellow): Static transforma-
tions, including extrinsic transformations between different
sensors, are pre-calibrated before scanning. Submap-static
transformations for each pair of 3D and 2D volumes TWP

i
can be calculated using the estimated orientation of gravity
during its initialization, as:

TWP
i = T DI � T IG

i ; (1)

where � denotes the motion composition operator [40].
Dynamic transformations include the two which are most
concerned: TDW

i;t and TLP
i;t , i.e., the poses between sensors

and their corresponding maps, where t is the timestamp.

-1

1

Figure 3. Comparisons between two candidate data structures for stor-
ing laser measurements. In each cell, the occupancy grid (left) stores
the possibility of having an obstacle, whereas the TSDF volume (right)
stores the signed distance to the scanned surface. Both maps are fused
through the same inputs and trajectory at the same resolution.

We optimize TDW
i;t with multi-sensor tracking (see Sec. 3.2

for details). Once this is solved, TLP
i;t can be calculated using:

TLP
i;t = T LI � T IG

t � � (T GI
t � T ID � TDW

i;t � TWP
i ); (2)

where the transformation chain in � (�) is the actual 3D
transformation from G to Pi , and � (�) is a projection opera-
tion for a 3D transformation, which only keeps the original
(x; y; � ) as the position and yaw for generating a planar
transformation. Such an approximation TGP

i;t 2 SE(2) is
made because the horizontally placed laser scanner can only
be used to reveal the planar motion of the robot chassis.

3.1 2D volume representation for laser scans

There are several strategies for integrating planar laser
scans. The most prevalent choice is the occupancy grid [12],
[13], which has proven its strength for localization and navi-
gation purposes. However, in the 3D reconstruction scenario
which requires higher accuracy, this kind of representation
is not capable of conveying the exact location of scanned
surfaces. An illustrative �gure (Fig. 3) for comparing the
data structures of the occupancy grid (left) and the TSDF
volume (right) shows their difference: The occupancy grid
stores the probability of the existence of an obstacle in each
cell, with a binary Bayes �lter to update its value through
multiple measurements. Hence, such a data structure limits
the accuracy of the precision of surfaces to the grid level,
and it is also unable to model relations between neighboring
cells, i.e., noisy measurements that have been mistakenly
categorized into erroneous cells cannot correctly contribute
to the reconstruction statistically. In comparison, the TSDF
volume we choose to use stores the truncated signed dis-
tance to the surface in each cell, which helps us �nd the
actual location of the surface (as the zero level line).

Therefore, we replace the occupancy grid by the 2D
TSDF volume representation derived from its 3D version [1]
along with a voxel hashing strategy [22]. Similar to 3D
representations for depth information, this TSDF volume
stores the exact location of obstacles and is able to integrate
and ray-cast laser frames. In our implementation, each voxel
block is composed of 256 voxels and mapped to the hash
table with its size set as 2048. Such a con�guration is
suf�cient in most cases for managing stored measurements.
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Frame Integration. Given a laser scan L t and a pose
prediction TDW

i;t after tracking and evaluation, those hit
points are transformed into Pi using Equ. 2, where their
z values are dropped in the integration process. For each
hit point, it will affect a certain range of cells. We set the
band of its in�uence as � u = 8 cm and the grid resolution
as � r = 2 cm according to the distribution of noise and the
density of hit points, respectively. For updating the status of
each cell, it is assigned the average TSDF value computed
using all its corresponding measurements.

Ray Casting. In the ray-casting stage, corresponding
voxels under a given pose are retrieved for constructing the
ray-casted laser frame in L. Here, recti�cation is required to
recover those abandonedz values, which is achieved via the
following relation:

lL = ( lP + � l � z) � TPL
i;t ; (3)

where z = (0 ; 0; 1; 0)> in homogeneous coordinates is
added for such compensation, and � l can be solved using
the constraint that lL

z = 0 . During the scanning process, the
horizontally placed laser sensor only touches a narrow slice
of the indoor scene at its height. Similarly, recti�cation of its
corresponding normal nL is performed by assuming nL

z = 0 .
Fig. 4 illustrates the recti�cation process of points (left) and
their normals (right). Such recti�cation can be considered
valid under the Manhattan assumption [39] as discussed
before.

Figure 4. Recovery of the location (left) and normal (right) of a laser hit
point through the Manhattan assumption [39].

3.2 Pose estimation with multimodal sensors

In our scenario, we have two types of sensors: (1) perceptual
sensors such as the laser scanner and the RGBD camera
whose ego-motion estimation is calculated through scanned
scene components, and (2) motion sensors such as the
IMU and the wheel encoders that provide distance, speed,
and acceleration measurements. A common approach for
tracking is to compute the odometry from each perceptual
sensor individually, and fuse their output through EKF [17],
[19], [41]. However, such a strategy cannot fully utilize
the characteristics of each sensor: Horizontally placed laser
sensors with a wide �eld-of-view can produce high-quality
range information for robust 2D localization, whereas RGBD
sensors, on the other hand, produce precise 3D localization
when both a good initial solution is given and suf�cient sur-
face details are captured. Based on the 2D TSDF volumetric
representation (Sec. 3.1), we are able to combine the laser
and RGBD measurements in a uni�ed registration process
and achieve reciprocity. Fig. 5 presents a visual comparison
between different sensor fusion strategies.

Our tracking process is applied to all active submaps
for each group of synchronized messages. In most cases,
it contains two stages, i.e., initial prediction and iterative

Figure 5. Comparisons of candidate sensor fusion strategies. Left: a
generic way that fuses all the sensors by EKF [17], [19], [41]. Middle:
fusing the laser, IMU, and wheel encoders by EKF, and then using its
output as an initial guess for dense RGBD tracking. `IO' stands for the
IMU and wheel encoders together. Right: our method. Details such as
the wall picture in SA and the bottle in SC can be successfully recovered
during our reconstruction. Performance of those loosely-coupled strate-
gies becomes worse when visual odometry provides erroneous results
(Bottom-Left), whereas an initial guess (Bottom-Middle) cannot fully
recover the problem. Tab. 2 further presents a quantitative comparison
of different publicly available reconstruction algorithms, those methods
combined with the fusion strategy in the middle column and our method.

re�nement, except when a submap is just reactivated by
loop closure events: In such a case since the last activity of
the submap is temporally distant, neither inertial nor wheel
encoder measurements can be taken into consideration.
Hence, the tracker will directly start with the latter stage.
For simplicity, we ignore the notation of submap index i
here in the equations below.

Initial estimation. The initial pose bTDW
t for the frame

at time t is estimated using inertial and wheel encoder
measurements. We use extended Kalman �lter (EKF) [19]
with a 6D model (3D position and 3D orientation) for
discrete-time prediction in the primary submap, and then
the predicted relative transformation is propagated to other
active submaps. Such integration bene�ts the subsequent
optimization with a better initial guess.

Iterative re�nement. Starting from the initial guess, we
retrieve the ray-casted depth (D0

t � 1) and color (C0
t � 1) images

from the 3D volume as well as the laser scan (L 0
t � 1) from the

2D volume for each submap. We then iteratively re�ne the
�nal prediction of the current pose TDW

t via the following
optimization:

arg min
T DW

t

E(T DW
t ) = ED (T DW

t ) + wcEC(T DW
t ) + wl EL (T LP

t );

(4)
where the balancing weight between color and depth frames
wc is set to 0:1 as previous works [2], [24], and wl is continu-
ously adjusted over iterations which will be discussed later.
Each EX (X 2 fC ; D; Lg) takes its corresponding input Xt
and the ray-casted frame X 0

t � 1 into consideration. EC and
ED are the traditional costs for registering RGBD frames,
while EL is introduced for measuring planar point-to-model
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geometric error utilizing laser scans in robotic scenarios.
Laser scan costEL . Previous 2D LiDAR SLAM methods

use the occupancy grid representation [12], [13], so the laser
scan cost is measured by the overlap of hit points with
the occupancy map. As a consequence of using this data
structure, the resolution of such grids will affect the surface
matching progress in frame registration. Our approach in-
stead uses the 2D TSDF representation, so each hit point
can �nd the exact position of its corresponding surface
point, achieving registration at the sub-grid level. The cost
is de�ned as:

EL (T LP
t ) =

X

( l P
p ;l L

q )2K L


 (lP

p � lL
q � TLP

t ) � nP
p


 2

; (5)

where KL is the set of laser correspondences betweenL 0
t � 1

and L t obtained by projective data association [1]. lP
p 2 L 0

t � 1
and lL

q 2 L t are a pair of corresponding points, and nP
p is the

planar surface normal retrieved at lP
p .

This cost is optimized along with RGBD costs in the
same iteration step, where it simply contributes a 3 degree-
of-freedom planar motion to the re�nement, which is or-
thogonal to the current gravity orientation.

RGBD costs ED and EC. We refer to the state-of-the-
art dense correspondence error function as [24] to calculate
geometric and photometric errors from RGBD images. The
geometric error is calculated as:

ED (T DW
t ) =

X

(dW
p ;dD

q )2K D


 (dW

p � dD
q � TDW

t ) � nW
p


 2

; (6)

where KD is the set of corresponding depth pixels dW
p 2

D0
t � 1 and dD

q 2 D t . nW
p is the 3D surface normal retrieved at

dD
p . Similarly, the photometric error is calculated as:

EC(T DW
t ) =

X

x 2C 0
t � 1


 C0

t � 1(x) � C t (� (x; T DW
t ))


 2

; (7)

where x 2 C0
t � 1 iterates over pixels searching for their

correspondences � (x; T DW
t ) 2 Ct by reprojection through

intrinsics, depth information and T DW
t .

Iteration strategy. Image pyramids were �rst brought to
use for reconstruction by [24], [25] for faster convergence.
In our method, a similar coarse-to-�ne strategy is used for
adaptively incorporating laser scan information, which is
crucial for avoiding poor local optimum and thus ensuring
robustness. Since a laser frame contains relatively fewer
pixels, establishing a pyramid for these sensors does not
signi�cantly increase the ef�ciency, so we only build image
pyramids for RGBD images. Moreover, during our iterative
process, the optimization of EL in the earlier iterations helps
robustly locate the approximate sensor poses thanks to its
wide �eld-of-view. Hence, to obtain precise �nal results, the
importance of RGBD is progressively increased for detailed
registration relying on local surfaces. In detail, for an in-
creasing pyramid level j , we set the weight of the laser loss
term as:

wl;j = � b � � j
d; (8)

where � b = 5 :0 and � d = 0 :5 in our implementation for
reducing the weight of laser cost over iterations, and 3 levels
of pyramids are established for the strategy. Both � b and � d
remain unchanged for all test cases including various types

of common room layouts in our experiments. We further
evaluate the impact of each term (Equs. 5-7) in Sec. 4.4, and
the in�uence of adjusting such parameters in Sec. 4.5.

3.3 Pose evaluation

In our system, the integration of different types of sensors is
capable of presenting additional features for evaluating the
correctness of a tracking attempt. Speci�cally, both RGBD
and laser frames contribute to the frame registration process.
Therefore, those indicators in the process can effectively
measure the quality of surface matching. As another feature
component, information from wheel encoders and IMU can
be regarded as coarse but reliable measurements for short-
term robot motions. In summary, we extract the features
listed in Tab. 1 for considering whether a tracking attempt
is successful.

Feature Description Dim.
F1 The determinant of the Hessian in ED 2
F2 The �nal residual of ED 1
F3 The percentage of inlier pixels in ED 1
F4 The determinant of the Hessian in EL 2
F5 The �nal residual of EL 1
F6 The percentage of inlier pixels in EL 1
F7 The diff. of trans. and rot. between bT DW

t and T DW
t 2

F 10
Table 1

Extracted features for pose evaluation, including their dimensions.

We next expand such 10-dimensional vectors into 50-
dimensions using a � 2 kernel map [42], and use an SVM
classi�er to separate success and failure tracking. The clas-
si�er is trained on our simulation dataset, including 9,348
registration attempts from 9 scenes and 35 scans simulated
with data from SceneNet [43]. Those registration attempts
are performed by registering frames to models integrated
through the ground-truth trajectories, and these scans used
in the training stage are different from those chosen for the
�nal evaluation.

If an attempt has translational tracking error less than
2mm and rotational tracking error less than 2� , we consider
such an attempt as correct. We take 75% of the set for
training and the rest for testing, and obtain a classi�cation
accuracy of 99.34% on the test set. Further experiments
on the pose evaluation are summarized in Sec. 4.6 with
our evaluation data, illustrating the effectiveness of judging
tracking states using multiple sensors.

3.4 Relocalization and loop detection

There are two aspects in the loop closure optimization that
affect the �nal reconstruction quality of the whole scene,
namely the performance of loop detection and loop re�ne-
ment. While the loop re�nement in our algorithm [20] uses
a pose graph to perform global deformations and maintain
consistency, loop detection provides relations between these
submaps for constructing optimization constraints. In com-
mon reconstruction approaches [2], [20], loops are detected
through the Randomized Ferns method [27], which ran-
domly generates multiple pixel locations, applies 4-channel
(i.e., RGBD) thresholds on these pixels to get a code, and
uses Hamming distance for quickly measuring the similarity
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between frames. Since such a method is purely based on
visual similarities, misjudgments occasionally happen in
scenes with repetitive structures.

Since our multi-sensor pose estimation and evaluation
module is more reliable than RGBD based methods, the
accumulation of errors is slower and tracking loss is less
likely to occur. Hence, we choose to trust the mid-term track-
ing process and use its result to �lter erroneous loops that
cannot be �ltered through visual appearances. Speci�cally,
we add additional constraints for detecting loops: When the
current frame successfully �nds its similar frame through
the Randomized Ferns method [27], we further estimate the
relative global pose between these two frames according
to their belonging submaps, where only those within the
thresholds (0.05m and 3� for all test scenes) are accepted
for the subsequent simultaneous tracking stage. Such a
criterion is only examined when the system does not lose
track. A representative example comparing incorporating
this criterion with the standard approach is visualized in
Fig. 6. Detailed comparisons on the quality of loop detection
are presented in Sec. 4.7, which demonstrate that such a
strategy achieves better pose graph constraints than the
previous loop detection criterion.

Figure 6. A representative comparative example for adding an additional
constraint in the loop detection. Better global consistency (right) can be
achieved compared to the original strategy (left) due to the improved
correctness of pose graph factors.

4 EXPERIMENTS AND RESULTS

Since there are no publicly available scans for indoor scenes
with robots containing all sensors involved above, we as-
sembled our scanning system based on a Turtlebot2 for
capturing real-world scenes. Furthermore for quantitative
evaluation, we simulate the scanning robot in high-�delity
synthetic scenes from ICL-NUIM [44] and SceneNet [43].
In this section, we �rst discuss our data acquisition system
(Sec. 4.1), then show our reconstruction quality in com-
parison to several state-of-the-art reconstruction systems
(Sec. 4.2), along with speed up testing to evaluate the robust-
ness of methods (Sec. 4.3). We then evaluate the contribution
of different types of sensors (Sec. 4.4), and the in�uence of
several parameters (Sec. 4.5). Also, both the SVM classi�er
(Sec. 4.6) and the additional loop criterion (Sec. 4.7) are
further evaluated. Finally, we present our running times
(Sec. 4.8) and discuss limitations (Sec. 4.9).

4.1 Data acquisition

Our scanning systems for both real-world and synthetic
scenes are shown in Fig. 7. For real-world scenarios, the
Turtlebot2 is assembled with an elevated Xtion Pro Live for

capturing 480P registered RGBD frames at 30Hz, and a SICK
TiM561 for outputting 270� �eld-of-view planar laser scans
at 15Hz. Both inertial and odometry messages are acquired
from the Kobuki base at 50Hz. The RGBD camera and the 2D
laser scanner are pre-calibrated using a15 � 10 chessboard
with each square of size 0:05m according to the method
proposed by Kassir et al. [45]. For online reconstruction,
sensor messages are sent to a workstation through a 5G
Wireless LAN for real-time reconstruction and localization.
Since our focus is to improve scene reconstruction, the robot
is manually driven by sending instructions from a keyboard.
4 scenes were recorded in our scanning dataset, where 2 of
them (RL1, RL2) are small living rooms and the rest 2 (RO1,
RO2) are cluttered laboratory scenes.

Figure 7. Our scanning system for real-world scenes (left) and synthetic
scenes (right), including corresponding sample frames (color, depth and
laser).

For synthetic data, we choose to render scenes mainly
from the ICL-NUIM living-room [44] and SceneNet [43] due
to their high-�delity production of indoor scenes. For highly
realistic simulation of robot motions and sensor noise, we
utilize Gazebo, a robot simulation platform for manip-
ulating a virtual Turtlebot2 with the same con�guration
of assembling and teleoperation as real-world scenarios.
Gaussian noise is added to every laser sensor message
with standard deviation set to 0.01m, and depth noise is
simulated according to the proposed noise model in [44].
32 scans from 7 scenes are generated in this way, i.e. ICL-
NUIM living-room (SA1-7), kitchen-16 (SB1-7), living-room-
11 (SC1-6), bath-room-8 (SD1-3), bed-room-2 (SE1-3), of�ce4
(SF1-3) and of�ce-41 (SG1-3). Note that the provided of�ce
rooms of ICL-NUIM do not come up with a standard
mesh model for simulating collision and ray-casting laser
scans, hence they are not used in our evaluation. During
different scans, we use various maximum linear/angular
speeds for manipulating robots (linear speed from 0.091m/s
to 0.201m/s, and angular speed from 26.8� /s to 60.6 � /s).
Compared to the original ICL-NUIM [44] which is designed
for RGBD scans, we have more scenes and trajectories for
comprehensive multi-sensor evaluation.

4.2 Quality comparison

We compare our system with state-of-the-art publicly avail-
able RGBD fusion systems including KinectFusion (KF) [1],
Kintinuous (KT) [21], In�niTAM v2 with the RGBD tracker
(ITv2) [25], ElasticFusion (EF) [2], In�niTAM v3 (ITv3) [20],

1. of�ce4 is downloaded from of�cesSceneNetrepository, while of�ce-
4 from DownloadSceneNetrepository of SceneNet [43].
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KF KT ITv2 EF ITv3 BF eKF eKT eITv2 eEF eITv3 eBF CT Ours
SA 0.489/24 0.286/30 0.433/39 0.099/46 0.467/39 0.081/76 0.270/58 0.203/41 0.234/60 0.098/47 0.397/51 0.074/78 0.062/91 0.050/ 95
SB 0.512/23 0.315/26 0.549/33 0.263/15 0.307/33 0.094/29 0.357/44 0.342/28 0.291/51 0.251/16 0.285/72 0.091/30 0.073/95 0.045/ 99
SC 0.568/16 0.417/18 0.548/15 0.450/04 0.246/15 0.236/05 0.326/39 0.187/47 0.345/35 0.356/06 0.297/14 0.234/05 0.094/86 0.047/ 92
SD 1.379/17 0.323/27 0.604/28 0.140/13 0.834/28 0.284/24 0.216/62 0.119/68 0.094/85 0.128/17 0.147/69 0.284/24 0.053/98 0.049/ 99
SE 0.261/48 0.230/43 0.152/56 0.066/28 0.324/56 0.225/08 0.191/63 0.134/62 0.068/94 0.035/32 0.317/58 0.221/08 0.065/97 0.040/98
SF 0.273/41 0.169/47 0.443/64 0.039/40 0.167/64 0.182/12 0.129/69 0.067/84 0.081/89 0.034/41 0.147/68 0.160/14 0.065/97 0.042/99
SG 0.807/18 0.631/14 0.365/17 0.416/05 0.351/21 0.074/06 0.617/20 0.307/31 0.633/18 0.421/05 0.275/43 0.074/06 0.079/88 0.044/ 99

Table 2
RMSE (in meters) and the coverage of the reconstructed scenes. Frm. - number of total frames, Spd. - speed of the robot. Values are given in the
average of frames. Methods starting with `e' are with enhanced pose initialization combining multimodal sensors. Best RMSE and coverage are in

bold.

and BundleFusion (BF) [3]. To concentrate on the compari-
son of model quality, voxel hashing [22] is augmented for
earlier systems (KF). We now brie�y summarize different
trackers. KF only considers the geometric cost ED from
depth sensors for frame registration, while ITv2 in our
test has added the photometric cost EC as a supplement
for areas with low geometric hints. We choose to use the
latest version of KT, where the loop optimization module is
augmented into their back-end for better global consistency.
EF addresses the loop-closure through scene deformation
with two types of constraints. Since their scene represen-
tation is based on surfels, we use these scattered points
for quantitative evaluation. Both ITv3 and BF address loop
closure and are augmented with their corresponding pose
evaluation module, i.e., those recognized as tracking-failure
frames will not be integrated into the scene.

To better demonstrate the effectiveness of our tightly
coupled registration strategy (Equ. 4), we strengthened the
above-mentioned systems with a straight-forward coupling
of multiple sensors as our baseline. In detail, their cost
functions for optimizing registrations remain unchanged,
but the initial predictions of robot states are enhanced by
the EKF prediction coupling IMU, wheel encoders, and
laser odometry in our method, where the laser odometry
is acquired through relative transformations produced by
Gmapping [12]. In addition, we also use the �nal output
trajectory from the state-of-the-art Cartographer (CT) for
integrating a mesh. We set the parameters of input depth
cut-off to 4m and the voxel size to 1cm consistently for all
systems and scans, while other parameters are derived from
their default con�gurations.

Qualitative evaluation. Qualitative reconstruction re-
sults on both real-world scans and simulated scans are
shown in Fig. 9 for global consistency and Fig. 10 for
detailed views between CT and ours. Despite the dif�culty
to perform accurate quantitative evaluations on these real-
world scans, it can be easily observed from the global
appearance of each result that existing RGBD systems, al-
though enhanced with better initial predictions, are still un-
able to produce robust and consistent reconstruction. Both
CT and our algorithm are capable of outputting globally
consistent shapes, but ours outperforms CT in terms of
preserving surface details since only considering 2D infor-
mation is not suf�cient for accurate registrations, especially
when the robot is not idealistically moving on a plane. Com-
pared to hand-held scanning which is more �exible to avoid
occlusions, robot scanning in the current form has limited
completeness, but it still provides a feasible way to reduce
scanning costs and support dense scene understanding.

Quantitative evaluation. Two metrics are calculated for
quantitative evaluation by comparing reconstructed sam-
ples (mesh models or point clouds) with the given ground
truth scene: registration error and overall coverage. The tra-
ditional registration error is calculated as the RMSE between
sample points to their nearest points on surfaces, while the
overall percentage of coverage is used to re�ect the overall
effectiveness of the tracker. To calculate this metric, we �rst
�nd out the covered area on the ground truth mesh through
the ground truth camera trajectory, and then use a threshold
(0.10m) to search its surroundings on their output scene to
check whether this area has been successfully reconstructed.
The low coverage rate may be due to poor reconstruction
accuracy, false-positive tracking attempts, or frames being
rejected by their pose evaluation module. We list the results
of our overall quantitative performance in Tab. 2 averaged
over the total reconstructed points.

As shown in Tab. 2, our system has shown better perfor-
mance on most tested trajectories, outperforming both state-
of-the-art RGBD and LiDAR systems in scene quality, even
when they are enhanced with straightforwardly performed
multi-sensor fusion strategies (those methods starting with
`e'). Typically in simulation environments, scenes gener-
ated via estimated poses from Cartographer have shown
comparable results, but coarse laser information is still
not suf�cient for high-accuracy localization and especially
vulnerable to non-ideal motions (such as vibrations), which
was mentioned before and visualized in Fig. 10. Admittedly,
providing an initial guess for RGBD registration is able to
improve their performance in most cases, but their results
still lack quality, as a good initial guess cannot guarantee
that the follow-up iterations will not fall into local opti-
mum. Although EF and BF occasionally provide comparable
reconstruction accuracy, they discard a substantial amount
of frames (or unstable surfels in EF) as these methods are
not sure if such frames are precisely located, resulting in an
insuf�cient coverage rate.

4.3 Scanning speed evaluation

In addition, we analyze how the speed of robot motion may
affect reconstruction results in different systems. 2 trajec-
tories (SA-1 and SA-2) are chosen to simulate accelerated
cases, where intermediate camera and odometry frames of
these trajectories are removed to match the frame rates,
and inertial sensor readings are also updated. Such sim-
ulation is bene�cial in maintaining the same trajectory to
make the results more interpretable, although our current
implementation has a limitation that we do not simulate
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the motion blur of color frames. The results of running on
such accelerated simulation sequences are shown in Fig. 8,
averaged over total reconstructed points.
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Figure 8. Reconstruction quality (RMSE and coverage) when scanning
speed is increased on the same trajectory.

In Fig. 8, it is obvious that previous RGBD systems
are vulnerable to fast movement. Especially for con�dence
based fusion such as EF and BF, they remove surfels or
frames which are dif�cult to align to maintain overall pre-
cision. As a result, their overall coverage is dramatically
declined. It also reveals that augmenting initial hints in such
conditions largely bene�ts the �nal quality. In summary, our
method performs consistently well, even with 9 times speed
up.

4.4 Effectiveness of cost terms in pose estimation

For better evaluating the strategy of combining multiple
sensors in our proposed tracking module (Equ. 4) through
jointly minimizing their costs (Equs. 5-7), we examine the
performance of possible different combinations. In detail,
we randomly choose 1000 adjacent pairs of frames on
each scene (7000 in total), and use �ve combinations as
listed in Tab. 3 to demonstrate their effectiveness, with
their translational/rotational error recorded for quantitative
comparison. Since synthetic scenes from SceneNet [43] (SB-
SG) do not contain color information, we split the set into
two parts and do not consider EC on these scenes. Ac-
cording to our experiment, the combination of RGBD costs
(ED and possible EC) and the laser cost (EL ) achieves the
best performance on the test set, which demonstrates the
effectiveness of the proposed multi-sensor pose estimation
scheme.

SA Others
Tran-Err. Rot-Err. Tran-Err. Rot-Err.

ED 0.0027 0.13 0.0024 0.12
EC 0.0056 0.27 - -
ED +EC 0.0017 0.09 - -
EL 0.0018 0.10 0.0021 0.10
E 0.0014 0.07 0.0018 0.08

Table 3
The average translational/rotational errors of using different
combinations of terms, in meters and degrees, respectively.

4.5 Evaluation of parameters

Our parameter settings are �xed for all test cases, including
both real-world scenarios and simulated scans from diverse
scenes. We further perform an experiment of adjusting the

weight wl for balancing between laser and RGBD costs used
in Equ. 4. Speci�cally, we choose several candidates for � d
(in different columns) and � b (in different rows), and re-
run our system for testing. As the results of the mean and
standard deviation of RMSE reveal in Tab. 4, our system is
still able to maintain high-quality reconstruction even when
the weight is changing within a certain range, where the
parameters we use are considered as a good choice suitable
for most situations.

0.25 0.33 0.5 0.75
2.5 0.0487(0.0053) 0.0476(0.0052) 0.0476(0.0057) 0.0475(0.0044)
5.0 0.0484(0.0053) 0.0474(0.0058)0.0471(0.0060) 0.0475(0.0063)
7.5 0.0477(0.0054) 0.0478(0.0052) 0.0476(0.0062) 0.0481(0.0061)
10.0 0.0476(0.0054) 0.0484(0.0055) 0.0482(0.0056) 0.0489(0.0055)

Table 4
Performance in terms of RMSE of different parameter con�gurations,
where the corresponding standard deviation is shown in the bracket.

4.6 Pose evaluation quality

We further evaluate the performance of our classi�er for
pose evaluation (Sec. 3.3) when running on these simulated
scans, and compare it with the previous system [20]. Speci�-
cally, we additionally attempt their classi�er on our system,
and use the deviation of the estimated transformations
compared to the ground-truth as the criterion for statistics.
As a consequence, both precision and recall of our classi�er
have signi�cantly outperformed the one in [20], leading
to a better judgement of these estimated poses in robotic
scanning scenarios (see Tab. 5).

In�niTAM v3 Ours
Scene Attempts Precision Recall Precision Recall
SA 29428 0.8452 0.7783 0.9770 0.9905
SB 40133 0.8680 0.7894 0.9844 0.9865
SC 40736 0.8346 0.7625 0.9841 0.9883
SD 3641 0.8761 0.7333 0.9783 0.9885
SE 7568 0.8528 0.7440 0.9745 0.9906
SF 11894 0.8518 0.7289 0.9725 0.9905
SG 24591 0.8643 0.7581 0.9762 0.9857
Ave. 157991 0.8526 0.7672 0.9801 0.9881

Table 5
Statistics of pose evaluation classi�cation precision and recall,

averaged over all tracking attempts for all scenes.

4.7 Relocalization quality

We further compare the effectiveness of pose graph con-
struction between In�niTAM v3 [20] and ours, where Ran-
domized Ferns [27] are used in both methods to detect loops,
but our algorithm uses an additional constraint (Sec. 4.7)
to �lter them. Speci�cally for each tested trajectory, we
traverse its �nal pose graph and compare all ultimate edge
constraints to the ground truth relative transformations.
Their average translation/rotation errors are summarized
and listed in Tab. 6.

In Tab. 6, it is shown that the severity of erroneous edges
can be diminished through our global position constraints.
Such errors have positive correlations with �nal reconstruc-
tion errors, when tested with the same tracker for a fair
comparison.
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In�niTAM v3 Ours
Tran-Err. Rot-Err. Tran-Err. Rot-Err.

SA 0.423 2.275 0.120 2.090
SB 0.628 4.097 0.069 1.539
SC 0.391 3.684 0.094 1.283
SD 0.071 1.266 0.064 1.418
SE 0.247 2.098 0.081 1.177
SF 1.214 9.379 0.103 1.724
SG 0.171 3.181 0.072 1.685

Table 6
The average translational/rotational errors of factors between submaps,

in meters and degrees, respectively.

4.8 Memory usage and running times

We deployed our system on a desktop PC with an i7-
6850K CPU (3.6GHz, 6 cores), 32GB RAM, and a single
GeForce Titan Xp GPU (12GB, 3840 cores). In summary, we
group the performance by different scenes and list average
performance in Tab. 7. Each newly allocated submap takes
a �xed 132MB for 3D and 8MB for 2D voxel blocks. The
average running time is gradually increased and remains
stable after a certain amount of submaps are created as
discussed in [20]. Overall, statistics show that the running
time meets the real-time requirement (less than 66ms for
15Hz synchronized messages).

Seq. Frm. Sub. Mem. Time Seq. Frm. Sub. Mem. Time
RL1 1041 10 2.1 28.5 RL2 984 12 2.5 23.2
RO1 4307 40 7.0 33.0 RO2 1385 13 2.6 32.1
SA 1070 7 1.7 26.9 SB 1347 8 1.8 28.7
SC 1980 15 3.0 31.6 SD 341 5 1.4 24.1
SE 590 6 1.5 25.1 SF 957 6 1.5 25.3
SG 791 6 1.5 23.9

Table 7
The average memory usage and computational time for each test

scene. All timings are given in milliseconds and memory footprints in
GB.

4.9 Limitations

Our system has two main limitations: (1) The post syn-
chronization method used for associating RGBD and laser
frames are based on their timestamps, which may be slightly
different under an approximate time policy. We have not
considered possible motion happened during this time in-
terval when jointly registering multiple frames. Theoret-
ically, the maximum time offset within such a batch of
frames may reach 1/60 seconds (0.01 seconds on average
as reported through our experiments). Hence, the motion
during this time interval will in�uence the accuracy of
pose estimation due to a slight difference of actual pose
when these frames are generated. A general solution for the
problem is to use a hardware synchronization device that
simultaneously triggers the shutter/scan of each sensor. (2)
The laser costEL is based on the Manhattan assumption [39]
as most 2D LiDAR SLAM algorithms do: Idealistically, the
laser scanner only captures points right on the horizontal
plane at its height, but these points are actually distributed
in a narrow slice due to both possible structural vibration
during robot motion and uneven ground it drives on. For a
major category of surfaces (walls, cabinets, and poles) that
are orthogonal to the gravity direction within such a slice,
strategies as illustrated in Fig. 4 can be used for constructing

reasonable costs. Our method works robustly even if the
scene contains some non-orthogonal points, as an overall
cost function considering all the points is optimized. In
order to test the in�uence of non-orthogonal surfaces, we
take scenes with such surfaces and evaluate their impact.
For each scene, we identify those non-orthogonal points on
surfaces, count their proportion among all laser points in
the scene, and test the performance of our pose estimation
scheme both with and without these points taken into
account in the cost function. As shown in Tab. 8, these
scenes contain about10% of non-orthogonal points, which
is representative for real-world scenes, and these points
have little effect on the performance of pose estimation.
In practice, their proportion or in�uence can be further
reduced through changing the height of the laser scanner
or stabilizing the robot motion, respectively.

E (with non-ortho) E (without non-ortho)
Tran-Err. Rot-Err. Tran-Err. Rot-Err. non-orthogonal (%)

SA 0.0014 0.07 0.0013 0.07 12.53
SC 0.0021 0.08 0.0020 0.07 12.40
SE 0.0019 0.09 0.0018 0.09 8.57
SF 0.0017 0.09 0.0017 0.09 5.51

Table 8
The average translational/rotational errors with/without non-orthogonal

points, in meters and degrees, respectively. Scenes without
non-orthogonal surfaces (SB, SD, and SG) are not listed.

5 CONCLUSIONS

In this paper, we present a real-time system considering
measurements from heterogeneous sensors for robot-based
high-�delity dense reconstruction. Planar laser frames are
fused into a 2D TSDF volume for pose estimation in com-
bination with the original RGBD scheme, and a classi�er
that considers information from multiple sensors, as well as
the registration progress, is proposed for pose evaluation.
In the future, our system can be combined with a smart
motion planning system for automatically gathering real-
world scenes, mass producing high-�delity 3D scenes for
understanding and manipulation tasks.
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Figure 9. Typical examples of reconstruction results in global top-down views. Color-coding is used for synthetic scenes to visualize surface normals.
Both CT and ours can maintain the global consistency of reconstruction. Please refer to our supplementary document for close-up views of these
results.
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Figure 10. Typical examples of reconstruction results in local views. Color-coding is used for synthetic scenes to visualize surface normals. CT is
based on 2D laser scans and thus not suf�cient for precisely estimating 3D poses. Their reconstruction results are worse than ours in these local
views. Please refer to our supplementary document and video for a more detailed/dynamic comparison of these results.


