A record of assimilation preserved by exotic minerals in the lowermost platinum-group element deposit of the Bushveld Complex: The Volspruit Sulphide Zone

Dominique Tanner a,b,⁎, Iain McDonald b, R.E. Jock Harmer c, Duncan D. Muir b, Hannah S.R. Hughes d,e

a GeoQuEST Research Centre, School of Earth and Environmental Sciences, University of Wollongong, NSW 2522, Australia
b School of Earth & Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AX, United Kingdom
c Department of Geology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
d Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, United Kingdom
e School of Geosciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa

Abstract

Low-grade platinum-group element mineralisation in the Volspruit Sulphide Zone is sulphide-poor (~5 vol. %), distributed over a ~60 m-thick horizon in the lowermost cumulates of the northern limb of the Bushveld Complex. Unlike any other platinum-group element (PGE) deposit of the Bushveld Complex, the Volspruit Sulphide Zone is hosted exclusively within harzburgitic and dunitic cumulates in the Lower Zone of the Rustenburg Layered Suite.

Here, we present a petrological investigation on the distribution of PGEs and chalcophile metals in mineralised pyroxenite cumulates across the Volspruit Sulphide Zone, to determine the origin of the PGE mineralisation in ultramafic cumulates and evaluate whether Volspruit-style mineralisation could occur in the stratigraphically lowest, ultramafic portions of other layered intrusions.

Electron microscopy of pyroxenite cumulates revealed (1) chromite inclusions containing dolomite, albite, monazite, Pb-chlorides, base metal sulphides and Pt-As minerals, (2) the presence of exotic microxenocrysts (~300 μm diameter) in the pyroxenite matrix such as grains of CaCO3, U-Th-oxide and Mn-ilmenite, and (3) base metal sulphide assemblages enclosing grains of primary galena, sphalerite and Pb-chlorides.

Systematic mapping of high-density mineral assemblages in pyroxenite cumulates across the Volspruit Sulphide Zone identified 196 precious metal mineral grains (Pt-, Pd-, Rh-, Au- or Ag-minerals), 98 Pb-sulphide grains (~3–5 vol. %), 27 Pb-chloride grains (~300 μm diameter) in the pyroxenite matrix such as grains of CaCO3, U-Th-oxide and Mn-ilmenite, and 3 base metal sulphide assemblages enclosing grains of primary galena, sphalerite and Pb-chlorides.

Trace element analyses of base metal sulphides reveal the highest S/Se values in pyrrhotite and chalcopyrite yet recorded in the Bushveld Complex. While some base metal sulphides are enriched in PGEs, the overall low-grade of the deposit and inferred fertile ultramafic magma(s) require relatively low R-factors (mass of silicate to sulphide melt) compared to other sulphide-poor PGE deposits, with a calculated R-factor of ~500–3000.

We consider that the presence of exotic inclusions in chromite, exotic microxenocrysts, and Pb/Zn/Cl grains enclosed within primary base metal sulphide assemblages provide strong evidence for crustal contamination in the Volspruit Sulphide Zone. The Malmani dolomite and the Black Reef quartzite within the lower Chuniespoort Group (2.2–2.4 Ga) are the most likely source of xenocrysts, assimilated in a staging chamber beneath the main Grasvally chamber, in which the Volspruit Sulphide Zone developed. It is possible that the Malmani dolomite contained an enrichment of Pb, Zn, Cl, and S minerals prior to assimilation. The assimilation of dolomite and limestone would locally increase the fO2 of the magma, triggering chromite crystallisation. The sudden removal of Fe from the melt, coupled with the addition of external sulfur triggered saturation of an immiscible sulphide melt in the ultramafic Volspruit magma. Chromite and base metal sulphides were subsequently emplaced into the main Grasvally magma chamber as a crystal-bearing slurry. Therefore, we consider it is possible for PGE mineralisation to occur in the ultramafic portion of any layered intrusion intruding in the vicinity of carbonate units. Even if this style of mineralisation in the lowermost portions of layered intrusions is sub-economic, it may reduce the grade or opportunity for PGE mineralisation higher up in the local magmatic stratigraphy, or in later magma emplacement events sourced from the same reservoir.

⁎ Corresponding author at: GeoQuEST Research Centre, School of Earth and Environmental Sciences, University of Wollongong, NSW 2522, Australia
E-mail address: dtanner@uow.edu.au (D. Tanner).
1. Introduction

Platinum-group element (PGE) mineralisation in layered intrusions typically occurs as stratiform reefs in the lower to central portions of an intrusive body, following some degree of magmatic differentiation (e.g., Maier, 2005; Naldrett, 2004). Stratiform PGE deposits hosted exclusively in the lowermost, least evolved peridotitic or pyroxenitic portions1 of a layered intrusion are relatively uncommon (Maier, 2005). Here, we investigate the distribution of precious metals and chalcophile elements in the Volspruit Sulphide Zone – the lowermost and least evolved PGE deposit of the Bushveld Complex – hosted entirely within pyroxenite. These results will be used to: (1) identify ore-forming processes that concentrate PGEs exclusively within ultramafic cumulates, and (2) evaluate whether Volspruit-style PGE mineralisation could occur elsewhere in the Bushveld Complex, or in less-explored layered intrusions.

1.1. Geological setting

The Bushveld Complex comprises three suites of plutonic rocks: (1) the Rustenburg Layered Suite (layered ultramafic to mafic cumulates), crosscut by (2) the Rashoop Granophyre Suite and (3) the Lebowa Granite Suite (von Gruenewaldt and Walraven, 1980). The focus of this study is the mineralised Volspruit Sulphide Zone in the Lower Zone of the ca. 2056 Ma Rustenburg Layered Suite, the largest known layered mafic intrusion on Earth (Cawthorn, 2015; Zeh et al., 2015). The Rustenburg Layered Suite is divided into five lobe-shaped limbs (Fig. 1a) which span an area of ~40,000 km² (Cawthorn, 2015). Recently, a northern extension of the Rustenburg Layered Suite has been described at the Waterberg project (Huthmann et al., 2018; Kinnaird et al., 2017).

The Rustenburg Layered Suite comprises a series of layered cumulate horizons ≤7 km thick (Cawthorn, 2015) (Fig. 2), subdivided into five informal subzones2: the noritic Marginal Zone, the ultramafic Lower Zone, the mafic-ultramafic, chromite-bearing Critical Zone, the mafic Main Zone and the mafic, magnetite-bearing Upper Zone. Recently, additional informal subzones have been defined: the Basal Ultramafic Sequence in the eastern limb (Wilson, 2015) and subzones within the Waterberg project (Kinnaird et al., 2017). The stratigraphic correlation of the northern limb is summarised in Fig. 2, including our interpretation of the relationship between the Lower Zone of the northern limb and the recently-defined stratigraphic subzones of the Rustenburg Layered Suite. While known PGE mineralisation in the eastern and western limbs is confined to the Critical Zone, the northern limb contains PGE mineralisation at a range of stratigraphic intervals (Figs. 2 and 3).

1.1.1. The Lower Zone of the Rustenburg Layered Suite

Formally, the Lower Zone in the eastern and western limbs of the Bushveld Complex comprises the Croydon Subsuite and the Vlakfontein Subsuite, respectively. The top of these subsuites is defined by the absence of cumulus chromite (South African Committee for Stratigraphy, 1980). However the Lower Zone of the northern limb, the Zoetveld Subsuite, contains cumulus chromite and multiple chromitite seams (van der Merwe, 2008).

Informally, the Lower Zone in the eastern and western limbs of the Bushveld Complex is defined by either the increase from ≤2% to ≥6% vol. % intercumulus plagioclase (Cameron, 1978), or the top of the olivine-rich interval ~200 m above the increase to ≥6% vol. % intercumulus plagioclase (Teigler and Eales, 1996).

The mineralised Volspruit Sulphide Zone is hosted within the Volspruit subzone, in the Lower Zone of the northern limb (Fig. 2). Fig. 3 demonstrates that there is ≤2 vol. % plagioclase throughout the Volspruit subzone, including the interval of the Volspruit Sulphide Zone. While accessory chromite is present (Fig. 3), no chromitite seams occur within the Volspruit subzone (Hulbert, 1983). So despite the presence of cumulus chromite, we consider the Lower Zone of the northern limb cannot be analogous to the Lower Critical Zone in the eastern and western limbs of the Bushveld Complex.

As observed by van der Merwe (1976), mineral compositions in the Lower Zone of the northern limb (En77-En91; Fo85-Fo95; Hulbert, 1983; Wilson, 2015; Yudovskaya et al., 2013), contain greater Mg content than minerals from the Lower Zone of the eastern limb (En77-En88; Fo94-Fo95; Wilson, 2015; Yudovskaya et al., 2013) (Fig. 2). Based on the relatively unevolved mineral compositions, we propose that the Lower Zone of the northern limb is more akin to the Basal Ultramafic Sequence of the eastern limb (En71-En92; Fo82-Fo92; Wilson, 2015; Yudovskaya et al., 2013) than the Lower Zone of the eastern limb.

1.1.2. Platinum-group element (PGE) mineralisation in the Rustenberg Layered Suite

PGE deposits within layered ultramafic to mafic cumulate rocks of the Bushveld Layered Suite host 70.9% of known global platinum resources (Mudd, 2012). These PGE resources are hosted within the Critical Zone (in the eastern and western limbs), the Platreef (in the northern limb, north of Mokopane), and the Grassvally Norite-Pyroxenite-Anorthosite (GNPA) member (in the northern limb, south of Mokopane) within the Rustenburg Layered Suite. In 2014, 163 PGE resources3 were defined in the Bushveld Complex (Zientek et al., 2014). Of these 163 resources, the Volspruit (Ni-PGE) Sulphide Zone is the only deposit known to occur in an exclusively ultramafic sequence (i.e. in cumulates where mafic minerals constitute >90% of the rock).

Ni-PGE mineralisation also occurs within the Ultramafic Sequence of the Waterberg project, an extension to the northern limb of the Bushveld Complex (Huthmann et al., 2018; Kinnaird et al., 2017). However, this Ultramafic Sequence is not ultramafic (c.f. Le Maitre et al., 2002) as “the amount of interstitial plagioclase in the Waterberg ultramafic rocks commonly exceeds 10–15 vol. % ...” (page 1383, Kinnaird et al., 2017). Similarly, PGE mineralisation is documented in Lower Zone lithologies beneath the Platreef at Turfspruit, in the northern limb of the Bushveld Complex (Yudovskaya et al., 2014, 2013), yet again, this mineralisation is not hosted exclusively within ultramafic lithologies. Where modal abundance data are presented for the drill core UMT006 at Turfspruit (Yudovskaya et al., 2014), it is evident that the only portions of the Lower Zone exhibiting elevated PGE concentrations

1. By peridotitic and pyroxenitic, we specifically mean horizons containing <10 vol. % felsic minerals (e.g. plagioclase) and >90% mafic minerals (e.g. olivine and/or pyroxene) viz. Le Bas and Streckeisen (1991); Le Maitre et al. (2002); Streckeisen (1976).

2. The South African Committee for Stratigraphy, 1980 do not officially recognise these informal subzones and would prefer workers to refer to the names of local subsuites. For example, the term for the Lower Zone of the northern limb of the Bushveld Complex is the Zoetveld Subsuite. In this paper we have followed the precedent to use the names of informal subzones instead, to reduce confusion for readers.

3. Resources explicitly defined by a national code for reporting the results of mineral exploration. Typically, Bushveld resources are defined according to the South African Code for the Reporting of Exploration Results, Mineral Resources And Mineral Reserves (SAMREC Code), or the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code) – depending on which stock exchange the exploration company is listed.
correspond with plagioclase pyroxenite, where plagioclase content exceeds 15 vol. %.

1.1.3. Spatially and temporally related Ni-PGE mineralisation in ultramafic lithologies

PGE mineralisation occurs in two ultramafic sequences (satellite intrusions) relatively proximal to and coeval with the Bushveld magmatic event: the Nkomati Ni-Cu-Cr-PGE deposit in the Uitkomst Complex and subeconomic Ni-PGE concentrations within the Molopo Farms Complex (Kaavera et al., 2018; Maier et al., 2017; Prendergast, 2012). These localities are examples of sulphide-rich mineralisation as they contain intersections of massive sulphide: up to 99 vol. % massive sulphides at Nkomati and up to 30 vol. % net-textured sulphides at the Molopo Farms Complex (Prendergast, 2012; Theart and Nooy, 2001).
1.2. Geology of the Volspruit Sulphide Zone

The Volspruit Sulphide Zone\(^4\) is a stratiform horizon enriched in Ni and PGEs (with an average grade of 0.14 wt% Ni and 1.25 ppm Pt + Pd + Au; Table 1), hosted within orthopyroxene-chromite cumulates of the Volspruit subzone in the Lower Zone of the northern limb (Fig. 3). The Volspruit Sulphide Zone constitutes the stratigraphically lowest occurrence of potentially economic PGE mineralisation in the magmatic stratigraphy of the Rustenburg Layered Suite, and occurs in the least evolved cumulates of any Bushveld orebody (Fig. 2).

\(^4\) We use the term “Volspruit Sulphide Zone” synonymously with the term “Volspruit Sulphide Layer” of Hulbert (1983). This zone of mineralisation is also sometimes referred to as “Cyclic Unit 11” of the Volspruit subzone (Hulbert and von Gruenewaldt, 1982), the “Volspruit Ni-PGE Reef” in technical mining reports (e.g. Venmyn, 2010), the “Grasvally” project (e.g. Sylvania Resources Ltd., 2010), or “Grasvally” in academic literature (Maier et al., 2016; Yudovskaya et al., 2017). However, economic PGE mineralisation within the Volspruit Sulphide Zone has only been defined on the Volspruit and Zoetveld Farms, rather than the Grasvally Farm. This confusion is likely caused because the Lower Zone magma chamber in this region is often referred to as the “Grasvally chamber” or “Grasvally body” in academic literature (e.g. McDonald and Holwell, 2007; van der Merwe, 2008), so-called because economic chromitite seams of the Drummondlea subzone (Fig. 3) are mined at the Grasvally Chrome Mine on the Grasvally and Zoetveld Farms (Hulbert and von Gruenewaldt, 1985).
southern pit comprises the remainder of the resource: an orebody with an average vertical width of 47 m, dipping ~45° NW for 1 km along strike (Venmyn, 2010). Faulting is evident in both orebodies, although detailed structural information is not available for this region (Venmyn, 2010). Based on the map of Hulbert (1983) (Fig. 1c), we suppose that the northern and...
southern orebodies are the same Volspruit Sulphide Zone that have since experienced ~1.5 km of dextral displacement along a N-S striking fault.

Partially digested country rock xenoliths and associated partial melts of floor rocks are observed in a prominent ~100 m-thick harzburgite horizon that occurs a few tens of metres beneath the Volspruit Sulphide Zone; these features are less common in the pyroxenites of the Volspruit Sulphide Zone (EScience Associates (Pty) Ltd, 2011). Evidence of xenoliths and country rock assimilation is only recently reported in one technical mining report; no evidence of these relationships is documented in peer-reviewed literature. To date, all published studies of the Volspruit Sulphide Zone have analysed pyroxenite samples (Hulbert, 1983; Hulbert and von Gruenewaldt, 1985, 1982; Paktunc et al., 1990; this study).

Preliminary studies suggest that Ni-PGE mineralisation is controlled by high-tenor (up to 195 ppm Pd and 11 ppm Ru in pentlandite), low-volume (2–3 vol. % sulphide) magmatic sulphide assemblages, with accessory platinum-group minerals (Hulbert, 1983; Hulbert and von Gruenewaldt, 1982; Paktunc et al., 1990; this study).

Grade of samples from drillcore GVN-042, intersecting the Volspruit Sulphide Zone

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth range (m)</th>
<th>Ni (ppm)</th>
<th>Cu (ppm)</th>
<th>Au (ppb)</th>
<th>Pt (ppb)</th>
<th>Pd (ppm)</th>
<th>Rh (ppb)</th>
<th>Cr (ppm)</th>
<th>Sr (ppm)</th>
<th>Ni/Cu</th>
<th>Pt/Pd</th>
</tr>
</thead>
<tbody>
<tr>
<td>7B</td>
<td>67.88–68.88</td>
<td>1514</td>
<td>340</td>
<td>60</td>
<td>1210</td>
<td>1535</td>
<td>220</td>
<td>14305</td>
<td></td>
<td>4.45</td>
<td>0.79</td>
</tr>
<tr>
<td>14A</td>
<td>87.88–88.88</td>
<td>2364</td>
<td>580</td>
<td>60</td>
<td>1065</td>
<td>1605</td>
<td>210</td>
<td>26816</td>
<td></td>
<td>4.08</td>
<td>0.66</td>
</tr>
<tr>
<td>16A, 16B</td>
<td>90.88–91.88</td>
<td>1709</td>
<td>361</td>
<td>70</td>
<td>1550</td>
<td>2090</td>
<td>270</td>
<td>18905</td>
<td></td>
<td>4.73</td>
<td>0.74</td>
</tr>
<tr>
<td>18B</td>
<td>96.88–97.88</td>
<td>2216</td>
<td>635</td>
<td>75</td>
<td>1440</td>
<td>1850</td>
<td>230</td>
<td>14673</td>
<td></td>
<td>3.49</td>
<td>0.78</td>
</tr>
<tr>
<td>22A, 22B</td>
<td>106.88–107.88</td>
<td>3595</td>
<td>1003</td>
<td>70</td>
<td>1310</td>
<td>1890</td>
<td>285</td>
<td>4576</td>
<td></td>
<td>3.58</td>
<td>0.69</td>
</tr>
<tr>
<td>25A</td>
<td>115.88–116.88</td>
<td>1808</td>
<td>497</td>
<td>55</td>
<td>2500</td>
<td>2255</td>
<td>225</td>
<td>18609</td>
<td></td>
<td>3.64</td>
<td>1.11</td>
</tr>
<tr>
<td>27B</td>
<td>120.88–121.88</td>
<td>2809</td>
<td>581</td>
<td>45</td>
<td>1200</td>
<td>1650</td>
<td>150</td>
<td>4401</td>
<td></td>
<td>4.83</td>
<td>0.73</td>
</tr>
</tbody>
</table>

* Data from Zientek et al. (2014).
* North Pit corresponds to the northern pit outline of the Volspruit Sulphide Zone shown in Fig. 1.
* Bulk assay data provided by Pan Palladium Ltd. (this study).

Table 1 Ore grades in the Volspruit Sulphide Zone, compared to other deposits in the northern limb of the Rustenburg Layered Suite.

<table>
<thead>
<tr>
<th>Average grade and tonnage of PGE resources in the northern limb of the Bushveld Complexa</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ore deposit (from north to south)</td>
<td>Ni (wt%)</td>
</tr>
<tr>
<td>Aurora and Haca Projects</td>
<td>0.03</td>
</tr>
<tr>
<td>Bioskantsho Project</td>
<td>0.11</td>
</tr>
<tr>
<td>Mogalakwena Mine</td>
<td>–</td>
</tr>
<tr>
<td>Akanani Project</td>
<td>0.18</td>
</tr>
<tr>
<td>Akanani Project</td>
<td>0.25</td>
</tr>
<tr>
<td>Tursfpsruit Project</td>
<td>0.15</td>
</tr>
<tr>
<td>Macalacoksp Project</td>
<td>0.17</td>
</tr>
<tr>
<td>Mokopane Project</td>
<td>0.15</td>
</tr>
<tr>
<td>War Springs Project</td>
<td>–</td>
</tr>
<tr>
<td>Rooipoort Project</td>
<td>0.19</td>
</tr>
<tr>
<td>Volspruit Project-North Pit</td>
<td>0.14</td>
</tr>
</tbody>
</table>

1.3. Sulphide-poor PGE mineralisation in the ultramafic portions of layered intrusions

Of 115 PGE deposits or occurrences in layered intrusions worldwide, Maier (2005) documented 18 PGE occurrences hosted within ultramafic silicate rocks from the lower portion of a layered intrusion. However, literature on cumulate rocks is fraught with petrologic inconsistencies caused by the range of proposed nomenclature schemes: the IUGS system (Le Bas and Streckeisen, 1991; Le Maître et al., 2004; Streckeisen, 1976), systems based on cumulus and intercumulus texture (Hunter, 1996; Irvine, 1980) and occasionally terms inherited from local mine geologists. In some cases, the lack of petrologic information makes it difficult to determine whether mineralisation was exclusively hosted within ultramafic cumulates (~90% mafic minerals), or in a mixture of mafic and ultramafic lithologies.

Mmagmatic sulphide deposits are divided into (1) Ni-Cu ore deposits with net-textured and/or massive sulphides (typically 20–90 vol. % sulphide; c.f. Naldrett, 2004) and (2) PGE deposits with disseminated sulphides (typically 0.5–5% sulphide; c.f. Barnes et al., 2017; Naldrett, 2004). This is a critical distinction, because the volume of sulphide liquid to silicate liquid in magmatic sulphide deposits is considered the first order control on the PGE tenor of ore (e.g. Campbell and Naldrett, 1979). Of the twenty-two “ultramafic” PGE occurrences documented in layered intrusions (Barnes et al., 2011; Kinnaird et al., 2017; Knight et al., 2011; Maier, 2005; Mansur and Ferreira Filho, 2016; Teixeira et al., 2015), only eight are truly “sulphide-poor” (with ≤10 vol. % disseminated sulphide) and confined to ultramafic host rocks (with >90 vol. % mafic minerals).

The eight sulphide-poor PGE occurrences within the ultramafic sequences of layered intrusions are documented in Table 2, in order of increasing sulphide content. We have excluded examples of PGE mineralisation in lamprophyric cumulates (Barnes et al., 2008), discordant dunite pipes (e.g. McDonald, 2008), Alaskan-type deposits (e.g. Thakurta et al., 2008) and similar concentrically-zoned intrusions...
Thus ultramafic mineralisation could deplete a fertile magma in PGEs. Constituting ~7% of known PGE deposit styles, any economic or high-density mineral assemblages (including platinum-group minerals), and (2) quantify the trace element chemistry of base metal sulphides. Until now, few data have been available on the distribution of PGE and chalcophile trace elements (e.g. Helmy and Mogessie, 2001) from the compilation presented in Table 2.

With the exception of the Jinbaoshan sill (259 Ma), these PGE occurrences are Paleoproterozoic or older. The proposed mechanism for PGE concentration in the localities listed in Table 2 involves sulphide saturation in layered intrusions and guiding future mineral exploration. Understanding how and why fertile, primitive magmas achieve sulphide saturation in layered intrusions is crucial to understanding the formation of layered intrusions and guiding future mineral exploration.

Table 2

A compilation of Volspruit-style mineralisation: sulphide-poor (< 10 vol% sulphide) PGE occurrences documented within the ultramafic portion of a layered intrusion.

<table>
<thead>
<tr>
<th>Locality of PGE mineralisation</th>
<th>Lithology</th>
<th>Age</th>
<th>Max. vol. % sulphide in ore</th>
<th>Max. grade of mineralisation and/or defined deposit</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphide Zone, Luanga</td>
<td>orthopyroxenite, harzburgite & peridotite</td>
<td>2763 Ma</td>
<td>< 3 vol %</td>
<td>1.24 ppm (Pt+Pd+Rh+Ru)/442 Mt</td>
<td>Mansur and Ferreira Filho, 2016; Mansur, 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lago Grande</td>
<td>orthopyroxenite, harzburgite with <60 vol % chromite</td>
<td>2722 Ma</td>
<td>< 3 vol %</td>
<td>No information publically available</td>
<td>Teixeira et al., 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Volspruit Sulphide Zone, Bushveld Complex, South Africa</td>
<td>orthopyroxenite (minor harzburgite), typically <15 vol. % chromite</td>
<td>~2056 Ma</td>
<td>< 3.6 vol %</td>
<td>5 ppm (Pt+Pd+Rh+Au)/4–16 m core</td>
<td>Hubert and von Gruenewaldt, 1982; Venmyn, 2010; Cawthorn, 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NKT massif, Monchepuloton, Monchegorsk Complex, Kola Region, Russia</td>
<td>lherzolite, harzburgite, olivine-websterite, orthopyroxenite, typically <1 vol. % chromite</td>
<td>~2445–2506 Ma</td>
<td>< 5 vol %</td>
<td>3.3 ppm (Pt+Pd)/3 m core</td>
<td>Karykowski, 2017; Karykowski et al., 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Santa Rita deposit, Fazenda Mirabela Intrusion, Brazil</td>
<td>dunite, orthopyroxenite, harzburgite, typically <0.5 vol. % chromite</td>
<td>~2100 Ma</td>
<td>< 5 vol %</td>
<td>1.5 ppm (Pt+Pd)/1 m core</td>
<td>Barnes et al., 2011; Knight et al., 2011</td>
</tr>
<tr>
<td>Ni-PGE ore in the Kevitsa Intrusion, northern Finland</td>
<td>olivine pyroxenite & websterite</td>
<td>2058 Ma</td>
<td>< 6 vol %</td>
<td>0.09 ppm (Pt+Pd)/121 Mt</td>
<td>Le Vaillant et al., 2016; Scandinavian Minerals Limited, 2006; Yang et al., 2013; Söderholm, 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Main Sulphide Zone, Great Dyke, Zimbabwe</td>
<td>pyroxenite & websterite</td>
<td>2575 Ma</td>
<td>< 10 vol %</td>
<td>5 ppm (Pt+Pd)/2–3 m core</td>
<td>Chaumba, 2017; Obertühr, 2011; Zientek et al., 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Jinbaoshan ultramafic sill, Emeishan large igneous province, China</td>
<td>wehrlite, typically <10 vol. % chromite</td>
<td>259 Ma</td>
<td>< 10 vol %</td>
<td>1612 Mt (Ngesi mine)</td>
<td>Tao et al., 2007; Wang et al., 2008; Wang et al., 2010</td>
</tr>
</tbody>
</table>

(a) These results report the concentration of PGE in the bulk rock, rather than the sulphide tenor of mineralisation normalised to 100% sulphide.

(b) Results reported in this study.

(e.g. Helmy and Mogessie, 2001) from the compilation presented in Table 2.

To determine the mechanism(s) for ore genesis, we used nine pyroxenite samples from the Volspruit Sulphide Zone to (1) characterise high-density mineral assemblages including platinum-group minerals, and (2) quantify the trace element chemistry of base metal sulphides. Our methodology for identification of platinum-group minerals in sulphide ore differs from previous studies because:

1.3.1. Mineralisation in the lower portions of layered mafic intrusions

While sulphide-poor PGE mineralisation in ultramafic cumulates constitutes ~7% of known PGE deposit styles, any economic or subeconomic mineralisation could deplete a fertile magma in PGEs. Thus ultramafic-hosted deposits have the potential to destroy the opportunity for other styles of PGE mineralisation higher up in the magmatic stratigraphy (c.f., Latypov et al., 2017), or in subsequent magma emplacement events sourced from the same reservoir (c.f., Mungall et al., 2016). A few detailed analytical studies of PGE distribution in sulphide-poor, ultramafic-hosted PGE deposits exist (e.g. Barnes et al., 2011; Diella et al., 1995; Gervilla and Kojonen, 2002; Grokhovskaya et al., 2012; Knight et al., 2011; Teixeira et al., 2015), but do not contain coupled studies comparing platinum-group mineral assemblages with the trace element chemistry of sulphides. Until now, few data have been available on the distribution of PGE and chalcophile trace elements from the Volspruit Sulphide Zone (e.g. Hubert, 1983; Paktunc et al., 1990). By filling this knowledge gap, we hope to refine the genetic model for mineralisation in the lowermost portion of the Bushveld Complex.

2. Sampling and analytical techniques

To determine the mechanism(s) for ore genesis, we used nine pyroxenite samples from the Volspruit Sulphide Zone to (1) characterise high-density mineral assemblages (including platinum-group minerals), and (2) quantify the trace element chemistry of base metal sulphides.
(1) we systematically recorded all high-density minerals present in each sample (not just platinum-group minerals & electrum), and
(2) the texture of every high-density phase and the adjacent mineral assemblage were compiled and are provided as a visual atlas (Appendix A) and spreadsheet (Appendix B).

2.1. Samples

Nine samples of mineralised pyroxene ± chromite cumulates from the northern orebody of the Volspruit Sulphide Zone were taken from seven intervals between 67.88–121.88 m depth in the drill core GVN-042. Each sample is ~ 4 cm in length. By georeferencing the Fig. on page 8 of Pan Palladium Limited (2002), we estimate that the core GVN-042 was collared at 24°20’49.66″S, 28°56’54.13″E (the star shown in Fig. 1c) on the farm Volspruit 326KP. The location of centre-pivot irrigation systems around the drill-hole permit us to locate the drill core collar with reasonable accuracy (within a twenty-metre radius).

The nine drill core samples were impregnated with resin and prepared as rectangular polished blocks, with approximate dimensions of 20 x 30 x 3 mm. These samples are catalogued in the system for Earth sample registration (SESAR) database with international geo sample numbers (IGSN) from IEDDT0001–IEDDT0009. All depth values reported in the text are relative to the depth in the drillcore; they have not been corrected to account for dip. Core logs of GVN-042 were not provided with the samples, or available to the authors at the time of writing.

The mineralised pyroxene ± chromite cumulates used in this study were sampled across 53 m of drillcore. As the northern orebody is ~59 m writing. provided with the samples, or available to the authors at the time of

2.2. Analytical techniques

2.2.1. Bulk rock geochemistry

The bulk rock geochemistry of one-metre intervals of drillcore was provided to us by Pan Palladium. The bulk geochemical data was determined by X-ray fluorescence for Ni, Cu, Cr and Sc; Rh, Pd, Pt and Au were determined by fire assay and inductively coupled plasma mass spectrometry.

2.2.3. Electron microscopy: identification and characterisation of high-density minerals

A polished block from each stratigraphic level in the deposit was carbon-coated and examined for high-density minerals under the FEI XL30 field emission gun environmental scanning electron microscope (SEM) at Cardiff University. The perimeter of each polished rock surface was outlined using FEI software to facilitate sample navigation in the SEM. Analyses and back-scattered electron images were acquired at 20 kV with a nominal beam current of ~2 nA. Once the sample was in focus, the brightness and contrast of the back-scattered electron image were adjusted so that silicate, oxide and base metal sulphide minerals were black, and only minerals with a greater molar mass (and therefore, greater density) were visible (e.g. platinum-group minerals and Pb-minerals). Each sample was then systematically searched for high-density minerals at 350x magnification by conducting manual y-axis traverses across the stage at a moderate scanning speed (1.68 ms per line with 968 lines per frame). Once a high-density mineral was found, it was imaged and analysed semi-quantitatively using an Oxford Instruments X-act energy dispersive spectrometer (EDS) and Inca X-ray analysis system. The brightness and contrast were recorded and briefly readjusted to image and analyse the adjacent mineral assemblage surrounding each high-density mineral. All visible minerals observed using this method were recorded and presented in Appendixes A and B.

To collect additional analyses and back-scattered electron images, we used a bench-top Phenom XL scanning electron microscope with a built-in EDS detector at the University of Wollongong.

2.2.4. Trace element chemistry of base metal sulphides

Trace element contents of base metal sulphide minerals were analysed in situ, in each of the nine samples using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Relative abundances of trace elements were determined by ablating traverses (40 μm diameter wide; 300 μm long) at 6 μm/sec across base metal sulphide grains. We used a New Wave Research UP213 UV laser system coupled to a Thermo X series 2 ICP-MS housed at Cardiff University, following the methods described by Pritchard et al. (2013) and Smith et al. (2014).

Given the fine grain size of sulphides analysed in this study, regions of the traverse containing mixed peaks from co-olution of silicate, oxide, other sulphide or platinum-group minerals were excluded. The following isotopes were measured: 24Mg, 25Si, 31S, 39K, 52Cr, 57Fe, 59Co, 60Ni, 60Cu, 66Zn, 67Zn, 77As, 79Se, 82Se, 83Kr, 89Ru, 99Ru, 103Rh, 108Pd, 109Pd, 113Cd, 115Sb, 121Sb, 125Te, 185Re, 187Os, 193Ir, 195Pt, 197Au, 206Pb and 209Bi. Internal standardisation was based on 32S using stoichiometric values for pentlandite (33 wt% S), pyrrhotite (38 wt% S) and chalcopyrite (35 wt% S), as these were the only minerals observed in our study.

The reference material CANMET Po724 (a synthetic FeS doped with ~40 ppm PGEs and Au) was measured to monitor the relative standard deviation (RSD) of analyses (Appendix C). Our results fall within reported values from published literature, with the exception of 106Pd, 106Pd and 209Bi, where few values have been reported. Analyses of PGEs & Au were < 9% RSD.

For elements where multiple isotopes were analysed (Zn, Se, Ru & Pd), we preferentially used the isotopes 68Zn, 77Se, 101Ru and 109Pd, as these were the only minerals observed in our study.

3. Results

3.1. Bulk rock chemistry

The bulk rock chemistry of one-metre drillcore intervals from the northern orebody of the Volspruit Sulphide Zone is provided in Table 1. These data demonstrate that our samples are high-grade relative to the resource estimate for the northern orebody, with a maximum grade of Ni, Pt and Pd in the northern Volspruit Sulphide Zone is provided in Table 1. These data demonstrate that our samples are high-grade relative to the resource estimate for the northern orebody, with a maximum grade of Ni, Pt and Pd in the northern Volspruit Sulphide Zone is provided in Table 1.

3.2. Petrologic features of orthopyroxenites in the Volspruit Sulphide Zone

The mineralised cumulates from the Volspruit Sulphide Zone are medium-grained chromite orthopyroxenites and orthopyroxenites (viz. Märtel et al., 2002), showing variable degrees of serpentisation (Fig. 4; Fig. 5a-i). Orthopyroxene is subhedral, with a grain size typically 0.2–3 mm, but with grains up to 5 mm in the sample at 1158–
116.88 m depth. Samples contain 5–96 vol. % orthopyroxene, 0.5–15% chromite, 0.3–4% base metal sulphides and 1–85% serpentine minerals (Appendix D; Fig. 4). In each sample, orthopyroxene is crosscut and replaced by serpentine veinlets. Given the high degree of serpentinisation in some samples (e.g. Figs. 4 and 5), it is possible that either olivine or clinopyroxene could have been a precursor silicate mineral to serpentine, rather than orthopyroxene. However, relics of olivine or clinopyroxene are rarely observed under electron microscopy. Serpentinite minerals are observed infilling fractures up to 0.5 mm wide. The sample at 106.88–107.88 m depth (Figs. 4–5) demonstrates that there is variability in the degree of serpentinisation within one metre intervals of the Volspruit Sulphide Zone. Pervasive serpentinisation at the micrometer-scale is evident in all samples, with alteration typically occurring at the margin between base metal sulphides and adjacent orthopyroxene. Many base metal sulphide assemblages exhibited altered margins, with sulphide minerals replaced by serpentine minerals.

As well as identifying the mineralogy of high-density mineral assemblages in the Volspruit Sulphide Zone, electron microscopy of petrological relationships surrounding the high-density assemblages revealed: (1) sub-rounded to spherical inclusions hosting exotic6 phases within chromite, (2) the presence of exotic microxenocrysts (<300 μm diameter) in the pyroxenite matrix, and (3) base metal sulphide assemblages atypical of sulphide-poor PGE mineralisation.

3.2.1. Chromite-hosted inclusions

Silicate, carbonate and sulphide inclusions are observed within chromite crystals, with differences in the inclusion density between samples (Fig. 6a–h). These inclusions typically occur within the core of chromite grains, rather than the rim. They are either sub-rounded, rounded, or have faceted margins that may be negative crystal shapes. The texture of host chromite ranges from isolated euhedral-subhedral crystals, to chains of chromite, equigranular chromite aggregates and amoeboidal chromites.

The proportion of chromite grains containing inclusions ranges from 5–60%. Of the grains bearing inclusions, the inclusion density ranges from 1–10 inclusions per grain. Samples with a higher percentage of chromite grains containing inclusions also exhibit the greatest density of inclusions per grain (i.e. the sample in which 60 vol. % of chromites have one or more inclusion contain chromite crystals bearing up to 10 silicate inclusions per grain; Appendix D). While there is no pattern with the vol. % chromite against depth in the Volspruit Sulphide Zone, the most striking feature of these data is that the percentage of chromite grains containing inclusions increases with height in the Volspruit Sulphide Zone – from 8% of chromite grains bearing inclusions at the base of the Volspruit Sulphide Zone (120.88–121.88 m depth), to 60% near the top (87.88–88.88 m depth) (Appendix D). The topmost sample of the Volspruit Sulphide Zone is the one exception, with only 5% of grains containing inclusions at 67.88–68.88 m depth.

The mineral assemblages that characterise the silicate inclusions in chromite are different from those found in pyroxene in the Volspruit subzone. Orthopyroxene was not observed in any of the inclusions analysed. Instead, inclusions in chromite contain a range of exotic, more felsic and occasionally hydrous silicate and aluminosilicate phases such as albite, (Ca,Fe,K)-Al-Si-Cl-O, and (La,Sm,Eu)-Al-Si-O (Fig. 6). High-density minerals including (La,Ce)-monazite and Pb-chlorides are also observed in silicate inclusions, hosted within chromite.

One subchondritic-hosted carbonate inclusion was observed at 115.88–116.88 m depth (Fig. 7e). This inclusion contains Ca-Mg carbonate (i.e. dolomite) with trace Sr and Fe, with magnetite on one margin of the chromite inclusion. As magnetite was only observed at the boundary between the host chromite and dolomite, we infer that the magnetite grew after entrapment, so it is likely of secondary origin.

Base metal sulphide inclusions in chromite are observed in two samples. At 90.88–91.88 m depth (Fig. 6d), a small bleb6 composed of pentlandite and pyrrhotite occurs in association with albite and a possibly hydrated aluminosilicate. At 115.88–116.88 m depth, seven sulphide inclusions are documented within one chain of chromite crystals (Fig. 5h).

The sample at 90.88–91.88 m depth contains one 8 μm base metal sulphide bleb composed of pyrrhotite and pentlandite within a polymetallic chromite-hosted silicate inclusion (Fig. 6d). This bleb is attached to the chromite-inclusion boundary. The silicate inclusion hosting the sulphide bleb contains hydrous felsic aluminosilicate minerals, albite and one monazite grain.

In the chain of seven sulphide inclusions at 115.88–116.88 m depth, four inclusions contain base metal sulphide assemblages, while three contain a mixture of sulphide and silicate minerals. Outside this one chain of chromite crystals, sulphide inclusions are not observed elsewhere in the sample. This sample contains a low proportion of silicate inclusions in chromite (8 vol. %) but exhibits the highest grade of ore and greater Pt/Pd compared to other samples from the Volspruit Sulphide Zone (Table 1).

In the sulphide-only inclusions, pyrrhotite is the dominant mineral, with pentlandite, magnetite and minor chalcopyrite. In one sulphide inclusion, flakes of Fe-rich pyrrhotite were observed amongst Fe-poor pyrrhotite (Fig. 6h). Three-quarters of sulphide-rich inclusions contain sperrylite (PtAs2) too fine to observe using systematic high-density mineral identification at 350x magnification. The largest high-density mineral within a chromite-hosted sulphide inclusion was an elongate 0.9 x 0.2 μm sperrylite inclusion (Fig. 6f). Sperrylite occurs at the contact between sulphides (pyrrhotite, pentlandite and chalcopyrite) and enclosing chromite (Fig. 6). In only one case, sperrylite was observed.

6 Here, we use the term bleb as defined by Barnes et al., (2017, page 475) as “a composite aggregate, at a scale from tens of micrometres to a few centimetres, regardless of its textural relationship to associated gangue silicate phases”.

Fig. 4. Variation in the modal abundance of minerals with depth in the Volspruit Sulphide Zone. The modal proportion of minerals was visually estimated under reflected light using nine polished blocks from seven intervals in the GVN-042 drill core, intersecting the Volspruit Sulphide Zone.
away from the inclusion margin, at a pentlandite-pyrrhotite grain boundary.

In the three sulphide-silicate inclusions, Pb-chlorides and Pb-sulphides were observed in association with pyrrhotite, magnetite and hydrated Fe-Mg silicates such as phlogopite. In both the silicate-sulphide inclusions and the sulphide-only inclusions, magnetite is only observed at the boundary between chromite and pyrrhotite, so it likely formed post-entrapment.

3.2.2. Microxenocrysts

Electron microscopy revealed exotic minerals less than 300 μm in diameter: CaCO₃ (at 106.88–107.88 m), Mn-rich ilmenite (ilmenite76-pyrophanite24; at 106.88–107.88 m) and U–Pb-Th oxide (120.88–121.88 m depth) (Fig. 8a-c). Because these minerals (1) occur within the pyroxenite matrix, but are atypical of ultramafic mineral assemblages, and (2) do not display interstitial textures suggestive of late-crystallising phases, we interpret these exotic minerals as microxenocrysts. Neither xenoliths nor xenocrysts are evident in samples from the Volspruit Sulphide Zone under reflected light. Baddeleyite and titanite were also documented (Fig. 8), but these are less likely to be xenocrysts.

3.2.3. Atypical magmatic sulphide assemblages

Under reflected light microscopy, disseminated blebs of pyrrhotite, pentlandite and chalcopyrite show no unusual characteristics. Typical base metal sulphide assemblages occur as blebs containing intergrowths of pyrrhotite, pentlandite, chalcopyrite and cubanite, but these minerals also infill fractures in chromite and are included within chromite. Electron microscopy revealed that some magmatic sulphide assemblages were accompanied by a suite of accessory Pb- and Zn-minerals atypical of magmatic sulphide deposits (cf. Naldrett, 2004).

Fig. 9a-f demonstrates that base metal sulphide assemblages include accessory sphalerite, Pb-sulphide minerals (± minor Se, Cl) and a suite of Pb-chloride minerals (± K, S, Se, Te). While sphalerite and Pb-minerals are not exclusively hosted within base metal sulphide assemblages, it is significant for the genesis of the Volspruit Sulphide Zone that many are, as they appear to be primary inclusions.

Unlike the Pb-minerals, sphalerite is not a high-density phase that is easily distinguished under back-scattered electron imaging; only two occurrences are observed – although they may be more prevalent than we have documented. In one instance at 106.88–107.88 m depth (the sample containing the highest number of included Pb-sulphides and Pb-chlorides), sphalerite is included in the centre of a base metal sulphide bleb. Fig. 9b shows the ~125 μm² sphalerite grain with curvilinear to cuspatc margins bounded by pyrrhotite and chalcopyrite. We interpret this image as primary sphalerite, crystallising in the remaining space against the already solidified pyrrhotite. In the same sample, there is a second occurrence of sphalerite with a more ambiguous origin, with relic sphalerite (<4 μm²), chalcopyrite and pentlandite trapped within the cleavage of a blocky Se-bearing galena crystal (Fig. 9c).
Accessory Pb-sulphide and Pb-chloride minerals are included within base metal sulphide assemblages at four depth intervals of the Volspruit Sulphide Zone (samples from 87.88–88.88 m, 90.88–91.88 m, 106.88–107.88 m & 115.88–116.88 m depth). For example, galena (with detectable Se using EDS analysis) occurs as rounded inclusions up to 60 μm in diameter within pyrrhotite (Fig. 9a). Fig. 8a shows both Pb-chloride and Pb-sulphide included within the same sulphide bleb. As Pb-minerals are high density, a more complete analysis of Pb-sulphide and Pb-chloride minerals is presented below.

3.3. Quantification and characterisation of high-density mineral assemblages

A total area of 32.895 cm² of pyroxenite cumulates were searched for high-density minerals, identifying 0.00027 area % high density phases. The high-density mineral assemblage in the Volspruit Sulphide Zone contains: 196 precious metal mineral grains (Pt-, Pd-, Rh-, Au- or Ag-minerals; 24 area %), 126 Pb-mineral grains (76 area %), and 2 exotic mineral grains (0.1 area %) (Fig. 10). These data are available to download electronically in Appendix B. Below, we report the results of the precious metal mineral assemblages and Pb-minerals separately. Precious metal minerals are only observed in close association with Pb-minerals in three instances (Fig. 9d-f). The two exotic high-density minerals, (La-Ce) monazite and U-Th-Pb oxide (Fig. 8) are both interpreted as microxenocrysts, as discussed above.

3.3.1. Characterisation of precious metal minerals

The 196 precious metal mineral grains range in size from 0.25–180 μm² and contain a diverse range of compositions. Pt, Pd, Ag, Au and Rh are the dominant cations, typically forming complexes with one or more of the following anions: Te, Bi, As, Fe, S, Sn or Sb. In order of decreasing modal abundance, precious minerals identified in the Volspruit Sulphide Zone include: Pt-bismuthotellurides, Pd-bismuthotellurides, Pt-alloys, Pt-bismuthides, Pt-arsenide, Pt-arsenosulphide, electrum (Au-Ag), (Pt, Pd)-bismuthotellurides, Ag-telluride, (Pt-Rh)-arsenosulphide (Fig. 7a-f). Other precious metal minerals constitute <15 μm² in area. Pt and Pd-sulphides are notably absent from this assemblage.

The abundance of precious metal minerals varies with height in the Volspruit Sulphide Zone (Fig. 10). However, there are no systematic mineralogical trends with depth in the core. The Pt/Pd of precious metal minerals oscillates above and below 1 throughout the Volspruit Sulphide Zone, with no systematic trend. Instead, some horizons are punctuated with a greater diversity of precious metal minerals. For example, Fe-alloys are most dominant in the sample at 96.88–97.88 m depth with the highest volume of precious metal minerals and Rh only occurs in the sample at 115.88–116.88 m depth with the highest volume of arsenides and polysulfides.
Precious metal minerals were observed in a variety of host assemblages (Fig. 11), with textures ranging from spongy, symplectic to euhedral. Of the 196 precious metal mineral grains identified, 39% are enclosed within serpentinite near altered base metal sulphide(s), 29% are at the altered grain boundary between base metal sulphide(s) and silicate(s), 10% are enclosed within base metal sulphide, and 8% are enclosed within serpentinite. The remainder of assemblages occur at altered grain boundaries between base metal sulphide, silicate and chromite (4%), grain boundaries between serpentine and pyroxene near altered base metal sulphide (4%) and in the absence of base metal sulphide (4%), altered silicate-chromite grain boundaries (1%) and enclosed within silicates in fractured chromite (0.5%).

Precious metal minerals either occur as individual phases or as intergrowths with more than one mineral (Fig. 7). Two assemblages contain clear core-rim relationships, with Pd(Bi,Te,Sb) overgrowing a cylindrical core of PtAs$_2$ at the margin of a pentlandite grain (Fig. 7b) at 106.88–107.88 m depth and Pt(Te,Bi)$_2$ overgrowing Pd(Te,Bi), nucleating from a clinopyroxene at 67.88–68.88 m depth. Fe-alloys were the only precious metal mineral assemblages to exhibit symplectic textures (Fig. 7f). Sponge-like textures were evident in a few instances at 120.88–121.88 m depth and at 67.88–68.88 m depth.

The primary precious metal minerals included within magmatic sulphide blebs are enclosed within pyrrhotite, pentlandite or chalcopyrite. Pyrrhotite contains primary inclusions of Pd(Bi,Te) (5 grains), Pd$_2$(Te, Bi), Pd$_4$(BiTe)$_2$, Pd$_3$Te, (Pd,Pt)$_2$Sn, Pd$_4$(Sb,As)$_4$ and Pt(Te,Bi)$_2$. Pentlandite contains primary inclusions of electrum (Au-Ag), (Pd,Pt)Bi, Pd(Bi, Te), Pt$_2$Te and Pt(Te,Bi). Chalcopyrite contained primary inclusions of (Pd,Pt)(Bi,Te)$_2$ and Pt(Te,Bi)$_2$.

Fig. 7. Selected back-scattered electron images of high-density precious metal minerals from the Volspruit Sulphide Zone. Po = pyrrhotite, pn = pentlandite, serp = serpentine minerals, chr = chromite, opx = orthopyroxene, cpy = chalcopyrite. Please refer to Appendix A for a complete annotated visual atlas of high-density minerals collected in this study.

Fig. 8. Back-scattered electron images of minerals interpreted as microxenocrysts (highlighted in bold text) from the Volspruit Sulphide Zone. Po = pyrrhotite, cpy = chalcopyrite, serp = serpentine minerals, chr = chromite.

7 We define high-density minerals "enclosed within serpentinite and near altered base metals sulphides" as high-density phases which are less than 100 μm from, and in textural continuity with an altered base metal sulphide assemblage.
3.3.2. Characterisation of Pb-minerals

Pb-minerals were observed at each of the seven intervals from the Volspruit Sulphide Zone. Of the 126 Pb-mineral grains observed in this study, 98 grains (92 area%) were Pb-sulphides (± Se, Cl) and 27 grains (7 area%) were Pb-chlorides (± K, Se, Te, S); grain size ranges from 0.25–1950 μm². Pb-Te-chlorides were observed in two instances, associated with precious metal assemblages (Fig. 9e-f). Pb-minerals dominate high-density mineral assemblages at 90.88–91.88 m depth and 106.88–107.88 m depth in the Volspruit Sulphide Zone, where Pb is dominantly hosted by Pb-sulphides. Fig. 10 shows that while Pb-sulphides are more abundant overall, they were only observed at four out of seven depth intervals. While Pb-chlorides were less abundant, they were observed at six out of seven depth intervals.

Pb mineral assemblages exhibit a range of textural associations (Fig. 11). Of the 125 Pb-minerals, 50% of these are enclosed within serpentinite. 20% occur within serpentinite near altered base metal sulphide assemblages. 8% are enclosed in base metal sulphide assemblages, while 5% occur at altered grain boundaries between base metal sulphide(s)and silicate(s). The remainder occur at serpentine-pyroxene grain boundaries (sometimes near altered sulphide), enclosed within chrome-tungsten-hosted silicate inclusions, enclosed within altered base metal sulphide assemblages in fractured chrome, enclosed within silicate(s) in fractured chrome, enclosed within pyroxene and at altered triple junctions between silicate-chromite-base metal sulphide(s).

Half the Pb-sulphide minerals observed in this study have blocky/graphic textures. Nine out of the ten K-Pb-chlorides, as well as two Pb-chloride grains and four Pb-sulphide grains exhibit a spongy texture. Otherwise, Pb-minerals are typically homogenous.

Primary Pb-sulphides and Pb-chlorides are enclosed within pyrrhotite, pentlandite, chalcopyrite, pyroxene or chromite-hosted silicate inclusions. In one instance at 106.88–107.88 m depth, an inclusion of Pb(Cl,Se) was observed in Pb(S,Se), enclosed within pyrrhotite. Pyrrhotite hosts primary inclusions of KPb₂Cl₅, KPb₇Cl₁₂, Pb(S,Se), PbS (seven grains), Pb₂Cl and PbCl. Pentlandite hosts four primary

Fig. 9. Back-scattered electron images of Pb and Zn minerals associated with magmatic sulphide assemblages (a-c) and precious metal mineral assemblages (D-F) from the Volspruit Sulphide Zone. Serp = serpentine minerals, cpy = chalcopyrite, po = pyrrhotite, pn = pentlandite, opx = orthopyroxene, chr = chromite.

Fig. 10. Variation in the composition and abundance of high-density minerals with depth in the Volspruit Sulphide Zone.
3.4. Trace element chemistry of base metal sulphides

LA-ICP-MS traverses across pyrrhotite, pentlandite, chalcopyrite and cubanite demonstrate that a range of precious metals and semi-metals are concentrated within base metal sulphides in the Volspruit Sulphide Zone. These data are available to download in Appendix E, and are summarised in Table 3 and are plotted against depth in the Volspruit Sulphide Zone in Fig. 11. Due to the small size of base metal sulphides and fine intergrowths between different sulphide phases in the Volspruit Sulphide Zone, pure trace element analyses could not be obtained for each mineral at every depth. A lack of suitable reference materials meant that some trace metals such as Pb could not be measured. Nevertheless, we measured a diverse range of trace metals in sulphides from the Volspruit Sulphide Zone, which reveal critical information about the distribution of platinum-group elements and semi-metals between minerals in base metal sulphide assemblages.

3.4.1. Concentration of precious metals in base metal sulphides

Most notably, magmatic sulphide assemblages in the Volspruit Sulphide Zone achieve extremely high tenors, with up to 251 ppm (Pt + Pd + Rh + Au) in pentlandite from 87.88–88.88 m depth. However, there is a significant range of tenors within minerals from the same depth interval. For example, pentlandite at 90.88–91.88 m depth containing 4221 ppm Pd and 19 ppm Rh. The highest concentration of PGEs in pentlandite at 87.88–88.88 m depth is defined by 236 ppm Pd, 14 ppm Rh, 6 ppm Ru, 2 ppm Ir and 2 ppm Os. While Ru is primarily concentrated in pentlandite, pyrrhotite also contains consistently high tenors, with up to 8 ppm Ru.

Pentlandite and pyrrhotite typically contain ≤1 ppm Pt, with the exception of pyrrhotite at 120.88–121.88 m depth containing 4–6 ppm Pt. Pyrrhotite at 120.88–121.88 m depth is also enriched in Rh, Ru, Ir and Os (Fig. 12). Chalcopyrite contains the highest Ag concentrations (up to 66 ppm), although Ag concentrations can reach up to 18 ppm in

Table 3

Range of tenors and S/Se values in base metal sulphides from the Volspruit Sulphide Zone. The complete dataset for all trace elements in base metal sulphides is presented as a spreadsheet in Appendix E.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Depth (m)</th>
<th>n=</th>
<th>108 Ru (ppm)</th>
<th>189 Os (ppm)</th>
<th>193 Ir (ppm)</th>
<th>103 Rh (ppm)</th>
<th>195 Pt (ppm)</th>
<th>106 Pd (ppm)</th>
<th>109 Ag (ppm)</th>
<th>3PGE + Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalcopyrite</td>
<td>90.88–91.88</td>
<td>2</td>
<td>bdl-0.1</td>
<td>bdl</td>
<td>bdl</td>
<td>0.5–0.8</td>
<td>11.9–66.2</td>
<td>3.377–3.85</td>
<td>0.5–0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>96.88–97.88</td>
<td>1</td>
<td>bdl</td>
<td>bdl</td>
<td>bdl</td>
<td>0.2</td>
<td>5.0</td>
<td>6.804</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>115.88–116.88</td>
<td>1</td>
<td>bdl-0.2</td>
<td>bdl</td>
<td>bdl</td>
<td>3.1</td>
<td>5.264</td>
<td>bdl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cubanite</td>
<td>106.88–107.88</td>
<td>2</td>
<td>bdl</td>
<td>bdl</td>
<td>0.1</td>
<td>0.7</td>
<td>7.858</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentlandite</td>
<td>87.88–88.88</td>
<td>2</td>
<td>5.9–8.5</td>
<td>2.2–2.3</td>
<td>1.7–2.6</td>
<td>14.2–18.9</td>
<td>0.1–0.3</td>
<td>3.099–3.87</td>
<td>235.5–258.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90.88–91.88</td>
<td>7</td>
<td>2.7–5.7</td>
<td>0.5–1.9</td>
<td>1.3–1.8</td>
<td>7.8–19.3</td>
<td>0.1–0.8</td>
<td>116.1–227.8</td>
<td>1.7–18.5</td>
<td>1.405–3.202</td>
</tr>
<tr>
<td></td>
<td>106.88–107.88</td>
<td>3</td>
<td>0.7–6.3</td>
<td>0.3–1.3</td>
<td>0.2–4.2</td>
<td>1.4–50.8</td>
<td>bdl-0.2</td>
<td>3.520–5.277</td>
<td>40.9–112.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120.88–121.88</td>
<td>3</td>
<td>bdl–2.6</td>
<td>0.2–0.9</td>
<td>0.1–0.5</td>
<td>0.4–6.5</td>
<td>bdl</td>
<td>4.372–5.715</td>
<td>51.8–91.3</td>
<td></td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td>67.88–68.88</td>
<td>5</td>
<td>bdl–1.9</td>
<td>0.3–0.7</td>
<td>0.1–0.3</td>
<td>bdl–0.1</td>
<td>bdl–0.2</td>
<td>4.899–5.281</td>
<td>bdl–0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>87.88–88.88</td>
<td>3</td>
<td>bdl–3.1</td>
<td>0.1–1.2</td>
<td>bdl–0.6</td>
<td>bdl–0.2</td>
<td>bdl–0.7</td>
<td>4.136–5.139</td>
<td>0.1–1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90.88–91.88</td>
<td>1</td>
<td>0.2</td>
<td>bdl</td>
<td>bdl</td>
<td>0.5</td>
<td>bdl</td>
<td>4.405</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>96.88–97.88</td>
<td>10</td>
<td>0.2–2.0</td>
<td>bdl–0.8</td>
<td>0.1–0.6</td>
<td>bdl–0.7</td>
<td>bdl–0.1</td>
<td>5.835–10.480</td>
<td>bdl–2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>106.88–107.88</td>
<td>17</td>
<td>bdl–2.6</td>
<td>bdl–0.8</td>
<td>bdl–1.0</td>
<td>bdl–0.4</td>
<td>bdl–0.3</td>
<td>4.842–8.990</td>
<td>bdl–0.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>115.88–116.88</td>
<td>10</td>
<td>bdl–2.4</td>
<td>0.1–1.0</td>
<td>bdl–0.5</td>
<td>bdl–0.8</td>
<td>bdl–0.1</td>
<td>4.371–18.972</td>
<td>bdl–1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120.88–121.88</td>
<td>8</td>
<td>bdl–7.2</td>
<td>bdl–1.1</td>
<td>bdl–1.6</td>
<td>bdl–2.96</td>
<td>bdl–6.1</td>
<td>6.360–21.566</td>
<td>bdl–35.7</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 11. Location and textural association of high-density minerals in the Volspruit Sulphide Zone.
pentlandite. By contrast, Au occurs at <0.06 ppm in all base metal sulphides analysed in this study.

3.4.2. Concentration of other trace elements within base metal sulphides

Base metal sulphides in the Volspruit Sulphide Zone are important reservoirs for a suite of trace metals including (in order of decreasing abundance) Co, Zn, As, Te, Cd, Sb and Bi. Just like the precious metals, these trace metals may exhibit a wide range of concentrations within minerals from the same depth interval; e.g., pentlandite from 90.88–91.88 m depth contains 104–237 ppm Se. Pentlandite is the primary host of Co (up to 1.4 wt%), Se (up to 237 ppm) and Te (up to 7 ppm); chalcopyrite is the primary host of Zn (up to 3,416 ppm); Cd is most

<table>
<thead>
<tr>
<th>Depth (m) in the Volspruit Sulphide Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>598</td>
</tr>
<tr>
<td>606</td>
</tr>
<tr>
<td>614</td>
</tr>
<tr>
<td>622</td>
</tr>
<tr>
<td>630</td>
</tr>
</tbody>
</table>

Concentration of trace elements in sulphide minerals

Fig. 12. Variation in the trace element chemistry of base metals sulphide minerals (chalcopyrite, cubanite, pyrrhotite and pentlandite) with depth in the Volspruit Sulphide Zone.
concentrated in cubanite (up to 6 ppm). While two grains of sphalerite were observed at 106.88–107.88 m depth, this sample contained neither the highest nor the lowest concentration of Zn in base metal sulphides. The two lowest values of the Volspruit Sulphide Zone (115.88–116.88 m and 120.88–121.88 m depth) contain the most significant concentrations of As, with up to 219 ppm As in pyrrhotite. Sb only occurs above 1 ppm in pyrrhotite at 106.88–107.88 m depth. The only two elements found to co-occur with depth in the Volspruit Sulphide Zone are Co in pentlandite and Cd in chalcopryite/cubanite (Fig. 12).

The S/Se values of base metal sulphides from the Volspruit Sulphide Zone are unusually high for magmatic sulphide minerals. Pyrrhotite from the Volspruit Sulphide Zone is characterised by S/Se values ranging from 4,136–21,566. Chalcopyrite and cubanite record S/Se values of 3,377–7,858; S/Se values of 1,405–5,715 were measured in pentlandite. The highest S/Se values occur in pyrrhotite grains from the two lowermost samples of the Volspruit Sulphide Zone (115.88–116.88 m and 120.88–121.88 m depth). These horizons do not contain the greatest concentration of Se-bearing Pb-minerals. In pentlandite and chalcopyrite, increasing S/Se values correspond with a decrease in precious metal concentration. There is poor correlation between S/Se and the tenor of pyrrhotite in samples with S/Se (0.1–6 ppm), with up to 219 ppm As in pyrrhotite. Sb only occurs above 1 ppm in pyrrhotite at 106.88–107.88 m depth. The only two elements found to co-occur with depth in the Volspruit Sulphide Zone are Co in pentlandite and Cd in chalcopryite/cubanite (Fig. 12).

4. Discussion

The Volspruit Sulphide Zone is a rare occurrence of sulphide-poor PGE mineralisation in the ultramafic portion of a layered intrusion, with low-grade ore distributed over a ~60 m horizon. It is the only known deposit of this kind in the spectrum of Bushveld PGE mineralisation. Hulbert and von Gruenewaldt (1982, 1985) proposed that the Volspruit Sulphide Zone formed as a consequence of sulphide melt saturation in response to S enrichment in the magma during fractionation. They propose that this ultrafelsic magma mixed with a sudden influx of denser, cooler and less primitive basaltic magma, which triggered saturation of chromite and sulphides to form the Volspruit Sulphide Zone. In light of the new data presented above, and recent advances in our knowledge of ore-forming processes, we consider that the current genetic models for mineralisation of the Volspruit Sulphide Zone (Hulbert and von Gruenewaldt, 1982, 1985) require significant re-evaluation.

4.1. Evidence to support a high degree of sediment assimilation

We contend that the Volspruit Sulphide Zone experienced a high degree of country rock assimilation. Our interpretation is supported by quantitative geochemical data: (1) high δ34S values and (2) extremely high S/Se values, further corroborated by qualitative geological observations: (3) local geological relationships, (4) exotic inclusions in chromite, (5) the presence of microxenocrysts and (6) the presence of primary Pb-sulphides, Pb-chlorides and sphalerite in magmatic sulphide assemblages.

4.1.1. Quantitative evidence for assimilation

The Platreef/GNPA orebodies are typically viewed as an end-member for sediment contamination in the Bushveld Complex, as they occur near the contact between the Rustenburg Layered Suite and the country rocks beneath it (granites to the north and interbedded quartzites, shales, limestones and dolomites to the south; Fig. 1b). Sulfur isotopes in the Platreef range from δ34S = −0.6% at Zwartfontein (Holwell et al., 2007) to δ34S = +10.1% at Townlands (Manuyurkeva et al., 2005), but are higher than the δ34S values of the local mantle (δ34S = −1.8 to +2.4 %) (Westerlund et al., 2004). Sulfur isotopes of the Volspruit Sulphide Zone (δ34S = +3.8 to +4.3 %) are enriched relative to the local mantle (Hulbert, 1983), indicating a significant degree of sedimentary contamination.

Despite the vast literature on sulphide chemistry in the Platreef, the only studies presenting S/Se values of contaminated Platreef/GNPA sulphides are Smith (2014) and Smith et al. (2016). Estimates of S/Se in manganous sulphides (i.e. uncontaminated magmas) range from 2,850–4,350 (Ekcrand and Hulbert, 1987). In mineralised GNPA samples from the Rooipoort area, the highest S/Se values (up to 8,900) occur within secondary pyrite, with S/Se up to 5,600 in primary pyrrhotite (Smith, 2014; Smith et al., 2016). In the Platreef at Tuftspruit, the highest S/Se values (up to 10,800) are also recorded in pyrite, with S/Se up to 7,500 in pyrrhotite. Magmatic sulphide assemblages in the Volspruit Sulphide Zone contain the highest S/Se values yet recorded in the Bushveld Complex, with S/Se up to 21,566 in pyrrhotite and 6,804 in chalcopyrite. We return to a more in depth discussion on the origin of extremely high S/Se values after reviewing all the evidence for assimilation in the Volspruit Sulphide Zone.

4.1.2. Qualitative evidence for assimilation

Multiple processes can be invoked to explain the range of δ34S and S/Se values in the Volspruit Sulphide Zone (c.f. Queffuras and Barnes, 2015; Smith et al., 2016). Fortunately, the regional geology and petrology of samples provide strong, if qualitative evidence in support of sedimentary assimilation, and allow us to identify some of the assimilated sediments.

While ~500 m of the Volspruit subzone is documented beneath the Volspruit Sulphide Zone (Fig. 3), country rock beneath the Volspruit subzone has never been intersected by drilling campaigns. As the lithology and geochemistry of the assimilant(s) is unknown, we are unable to quantify the degree of assimilation using sulfur isotopes or chalcophile trace element modelling. While the proximity of in situ country rocks relative to the Volspruit Sulphide Zone remains unknown, one technical mining report implies the presence of metasedimentary xenoliths and their partial melts in the Volspruit Sulphide Zone (Escience Associates Pty Ltd, 2011). The map of Hulbert (1983) (Fig. 1c) documents two ~100 m-wide slivers of hornfels, included within the Volspruit subzone, near the northern orebody of the Volspruit Sulphide Zone. These rafts of hornfels appear to be offset by NNW-trending faults, otherwise their relationship to the Volspruit subzone is not documented. The Pretoria Group metasediments are a potential source of contaminants to the Volspruit Sulphide Zone, as they are the closest sedimentary units on the palette, with minor shale/marl and hornfels. At greater depth, below the Pretoria Group metasediments, the Platreef/GNPA orebodies are typically viewed as an end-member for sediment contamination in the Bushveld Complex, as they occur near the contact between the Rustenburg Layered Suite and the country rocks beneath it (granites to the north and interbedded quartzites, shales, limestones and dolomites to the south; Fig. 1b). Sulfur isotopes in the Platreef range from δ34S = −0.6% at Zwartfontein (Holwell et al., 2007) to δ34S = +10.1% at Townlands (Manuyurkeva et al., 2005), but are higher than the δ34S values of the local mantle (δ34S = −1.8 to +2.4 %) (Westerlund et al., 2004). Sulfur isotopes of the Volspruit Sulphide Zone (δ34S = +3.8 to +4.3 %) are enriched relative to the local mantle (Hulbert, 1983), indicating a significant degree of sedimentary contamination.

Despite the vast literature on sulphide chemistry in the Platreef, the only studies presenting S/Se values of contaminated Platreef/GNPA sulphides are Smith (2014) and Smith et al. (2016). Estimates of S/Se in manganous sulphides (i.e. uncontaminated magmas) range from 2,850–4,350 (Ekcrand and Hulbert, 1987). In mineralised GNPA samples from the Rooipoort area, the highest S/Se values (up to 8,900) occur within secondary pyrite, with S/Se up to 5,600 in primary pyrrhotite (Smith, 2014; Smith et al., 2016). In the Platreef at Tuftspruit, the highest S/Se values (up to 10,800) are also recorded in pyrite, with S/Se up to 7,500 in pyrrhotite. Magmatic sulphide assemblages in the Volspruit Sulphide Zone contain the highest S/Se values yet recorded in the Bushveld Complex, with S/Se up to 21,566 in pyrrhotite and 6,804 in chalcopyrite. We return to a more in depth discussion on the origin of extremely high S/Se values after reviewing all the evidence for assimilation in the Volspruit Sulphide Zone.
rutile, quartz, apatite, or zircon) are documented elsewhere in the Bushveld and other layered mafic intrusions, and are attributed to the partial melting and assimilation of country rock (Spandler et al., 2005), mixing with a felsic component (Yao et al., 2017), or the reaction of pyroxene with volatile-rich melts enriched by the introduction of late magmatic fluids expelled during fractional crystallisation (Li et al., 2005). So interpreting a foreign origin for exotic mineral inclusions is not unprecedented. Relative to previous studies (Li et al., 2005; Spandler et al., 2005; Yao et al., 2017; Yudovskaya and Kinnaird, 2010), chromite-hosted mineral inclusions in the Volspruit Sulphide Zone are unusual, because (1) pyroxene is absent and not abundant within silicate inclusions, and (2) relict dolomite is preserved. While post-entrapment equilibration likely alters the distribution of incompatible elements between chromite and included silicate minerals (Spandler et al., 2007), this process cannot explain the exotic mineralogy observed within chromite grains in this study.

In order to assess the end-members for assimilation, we have compiled a list of xenocrystic phases and contaminants, and compared their potential sources (Table 4). While this style of analysis is qualitative, it provides strong evidence in support of carbonate assimilation. The source of albite and U-Th oxide could be from assimilation of a felsic intrusion, or clastic sediments.

The combination of primary Pb-sulphides, Pb-chlorides and sphalerite in base metal sulphide assemblages is rather unusual in magmatic sulphide deposits. It is possible that their presence is under-reported in some studies, because they are (1) accessory minerals, (2) considered as secondary assemblages, and (3) do not concentrate precious metals other than Ag. Sphalerite, galena and Pb-chlorides associated with magmatic sulphides are also documented both Cu-rich ores at Sudbury, Ontario (Dare et al., 2014), and in Cu-Ni ores from the Minnamax deposit, at the base of the Duluth Complex, Minnesota (McSwiggen, 1999). In extreme circumstances (e.g. metamorphosed sulphide deposits), galena and sphalerite can fractionate from a sulphide liquid (Mavrogenes et al., 2013), rather than exsolve from a crystalline sulphide.

The association of primary Pb-sulphides, Pb-chlorides and sphalerite in base metal sulphide assemblages could be explained by either (1) crystallisation from residual liquids, or (2) addition from an external source. While some studies suggest that this mineral assemblage is consistent with a magmatic origin (e.g. Mungall and Brenan, 2003), reviews of sulphide liquid evolution in natural systems (Holwell and McDonald, 2010; Naldrett, 2004) do not include these minerals in the resultant mineral assemblage. As some of the Pb-sulphide inclusions in the Volspruit Sulphide Zone are up to 50 μm across (e.g. the sample at 106.88–107.88 m depth), these accessory minerals should be readily and routinely identified under reflected light if they are typical products of sulphide liquid fractionation.

Instead, the rare association of primary Pb-sulphides, Pb-chlorides and sphalerite within base metal sulphide assemblages imply that Pb, Zn and Cl were added from an external reservoir, and incorporated into the sulphide liquid, as halogens can be dissolved in sulphide melts (c.f. Mungall and Brenan, 2003). Hulbert (1983) notes two localities in Pretroria Group metasediments southeast of the Volspruit orebodies where sulphides are visible (shown with asterisks in Fig. 1c). Unfortunately, no further information on these localities was given. Massive sulphides have been documented in metasedimentary sequences from the Silverton Formation and Timeball Hill Formation, within the Pretoria Group (Reczko et al., 1995). Alternatively, 19 Mississippian Valley-type deposits (enriched in Pb-Zn-F) are documented in the Malmani sub-groups (Chuniespoort Group) and the Campbellrand sub-group – the stratigraphic equivalent of the Malmani subgroup to the west (Martiniet al., 1995). These Mississippi Valley-type deposits formed 2.4–2.35 Ga, after the deposition of the Campbellrand-Malmani dolomite platform ca. 2.55 Ga (Martiniet al., 1995). Thus, they were available for assimilation at the time of the Bushveld Complex ca. 2.06 Ga; in fact, some of these Mississippi Valley-type deposits were overprinted by metamorphism associated with the intrusion of the Bushveld Complex (Martiniet al., 1995). An alternative hypothesis is that basinal brines (i.e. CO₂H₂OCl + metal-rich fluids) were introduced to the Volspruit magmatic system at the time of, or prior to chromite mineralisation.

From the range of xenocrysts in Table 4, we infer that assimilation of Mississippi Valley Type deposits hosted within dolomites of the Malmani subgroup is the best explanation for the presence of Pb-chloride minerals in the Volspruit Sulphide Zone. As Mississippi Valley Type deposits are patchy and structurally controlled, there was some serendipity involved creating the Volspruit Sulphide Zone. However, if Pb-chlorides are observed more widely in layered mafic intrusions elsewhere, this interpretation will require revision.

The addition of a Pb and Zn-bearing source did not result in ores with a high proportion of base metal sulphides, as observed in Ni-Cu deposits, where 20–90 vol.% sulphide is typical (Naldrett, 2004). It is possible that assimilation initially created a high volume of sulphide liquid, which was subsequently reduced via sulphide resorption (Kerr and Leitch, 2005) or by mechanical sorting during hydrodynamic processes (Maieret al., 2013). In either case, Ni-PGE mineralisation in the Volspruit Sulphide Zone is highly unusual in the spectrum of magmatic
sulphide deposits, as it contains strong evidence for assimilation of sediments yet only contains 2–5 vol. % sulphide.

4.2. Evidence to explain chromite formation

Our study has documented a diverse assemblage of chromite-hosted inclusions (Fig. 6). Hulbert and von Gruenewaldt (1985) observed similar chromite inclusions. They inferred that euhehedral, inclusion-free chromite co-crystallised with ultramafic cumulates; in situ post-cumulus sintering of chromite produced amoeboid textures and rounded inclusions (viz. Fig. 6 in Hulbert and von Gruenewaldt, 1985). They attribute the onset of chromite saturation to increased density phases are all present in sub-rounded inclusions. As chromite inclusions are mineralogically distinct from their cumulate matrix (i.e. inclusions are dominated by “exotic” mineralogy rather than pyroxene), we contend that chromite inclusions observed in this study were trapped during chromite crystallisation in an earlier, highly contaminated magma, prior to emplacement at the current level in the Volspruit subzone.

The morphology of observed chromite inclusions range from negative crystal shapes to sub-spherical. Inclusions often occur within chains of interconnected chromite clusters, similar to those described in komatitic cumulates (e.g., Vukmanovic et al., 2013). We envision that negative crystal shapes and subrounded-rounded inclusions in chromite cores result from dendritic growth and subsequent recrystallisation, as described by Vukmanovic et al. (2013). Dendritic chromite is observed in komatitic dunites and spinifex zones at or near the flow tops of komatitites, as a result of Cr supersaturation in the melt (e.g., Barnes, 1986).

The diverse mineralogy of chromite-hosted inclusions documented in this study indicate contamination:

1. included multiple assimilants (given the mineralogical diversity of the inclusion suite),
2. introduced felsic and hydrous phases into the magmatic system (e.g., Fig. 6a-d),
3. introduced carbonate into the magmatic system (Figs. 7e and 8a),
4. introduced heavy minerals (Pb-chlorides, monazite and U-Th-Pb oxide) into the magma (Fig. 8), and
5. at certain stages chromite crystallisation was accompanied by sulphide saturation (e.g., Fig. 6e-h).

Chromite saturation (i.e., the limit of Cr solubility) in a melt is controlled by: (1) the initial Cr content, (2) temperature, (3) oxygen fugacity (fO_2), and (4) the activity of SiO$_2$ (Barnes, 1986, 1998; Murck and Campbell, 1986; Roedder and Reynolds, 1991). While we do not refute Hulbert and von Gruenewaldt (1985)’s observation that chromite assemblages experienced sintering during post-cumulus modification (as evidenced by chains of chromite), we propose that the suite of inclusions in chromite from the Volspruit Sulphide Zone were initially trapped as melt and/or mineral inclusions during rapid onset of chromite crystallisation (i.e. supersaturation of chromite), prior to entering the main Grasvally magma chamber.

4.3. Carbonate assimilation and its affect on oxygen fugacity

Carbonate assimilation is often considered a contributing factor to ore-forming processes in magmatic sulphide deposits (e.g., Harris and Chaumba, 2001; Lehmann et al., 2007; Maier et al., 2007). However, the significance of this contribution is unclear, as there are competing effects of oxidation and reduction during carbonate assimilation and/or following the addition of CO$_2$ to a magma. To some extent, the assimilation of carbonate will reduce the fO_2 of a melt, because (1) the creation of skarns promote oxidation of Fe, thus reducing the ferric iron content and fO_2 of the magma (Spandler et al., 2012), and (2) increasing the CO$_2$ content of a melt reduces H$_2$O solubility, increasing the CO$_2$/H$_2$O of the exsolved fluid phase (Mollo et al., 2010). Conversely, the experimental work of Simakin et al. (2012) demonstrates that the addition of CO$_2$ oxidises Fe in the melt and promotes spinel nucleation. The oxidative capacity of CO$_2$ addition is also supported by modelling (Wenzel et al., 2002). More recent experiments suggest that carbonate assimilation produces sharp fO_2 gradients within in a magma reservoir (Mollo and Vona, 2014). In natural systems, this process is likely to be rapid (Jolis et al., 2013) and extremely heterogeneous, with varied degrees of protolith assimilation (Iacono Marziano et al., 2007) and variation in the composition of the protolith (Canino et al., 2013), creating temporal fO_2 fluctuations in the magma reservoir. The capacity for CO$_2$ as an oxidizing or reducing agent also depends on whether a magmatic system is open or closed (Mollo et al., 2010).

In layered intrusions, there is evidence for locally increased fO_2 at the margins of magmatic reservoirs in contact with carbonates. For example, thin chromite stringers are observed between the contact of serpentinitised harzburgite and a calc-silicate xenolith in the Lower Chromite zone of the Platreef (Yudovskaya and Kinnaird, 2010). Dolomite xenoliths in the loko-Dovyyen Intrusion are often mantled by forsterite and spinel rims, and some olivine-spinel skarns contain accessory base metal sulphide assemblages (Wenzel et al., 2002). In this way, it is possible to locally nucleate spinel, base metal sulphide, Mg-rich silicates and Ca-rich pyroxene (e.g. pigeonite), which are diluted during transport from the initial magmatic reservoir.

4.4. How enriched are PGEs in the Volspruit Sulphide Zone?

As platinum-group minerals were directly observed within chromite-hosted sulphide inclusions (Fig. 6), it is unlikely that late-magmatic fluids migrating through the crystal pile (c.f. Boudreau and McCallum, 1992) played a significant role in the PGE enrichment of the Volspruit Sulphide Zone. Instead, the texture and high tenor of base metal sulphides in the Volspruit Sulphide Zone indicate that PGEs were partitioned into an immiscible sulphide liquid, which scavenged PGEs from a larger body of silicate magma (i.e. high R factor).

An inherent problem in reconciling the chalcopyhile element budget of layered mafic intrusions is that it is difficult to normalise the concentration of elements to 100% sulphide liquid – a calculation necessary for estimating the degree of precious metal enrichment in a sulphide liquid. Recalculating the tenor of base metal sulphides to 100% sulphide in sulphide-poor PGE deposits can create large errors (Barnes and Ripley, 2016). The reasons for this are two-fold: (1) the calculation assumes that chalcophile elements in magmatic sulphide assemblages are only controlled by the minerals pyrrhotite, pentlandite and chalcopyrite, and (2) calculations at such low sulphide concentrations magnify errors. The data in Table 1 is acquired over one-metre drillcore intervals, while the modal abundance of base metal sulphides was variable within each sample and estimated from an area of only a few cm2. Therefore, these data cannot be reconciled meaningfully. Instead, we use published PGE data with corresponding S analyses from von Gruenewaldt et al. (1989), to estimate the degree of precious metal enrichment required to form the Volspruit Sulphide Zone (i.e., the R factor, where the mass of silicate liquid:sulphide liquid = R:1; Campbell and Naldrett, 1979).
Mineralisation of the Volspruit Sulphide Zone formed from a relatively unfractuated sulphide liquid. Fig. 13 shows the range of R-factors required to concentrate PGEs in the Volspruit Sulphide Zone are between 500:1 to 3000:1, assuming an ultramafic magma (the B1-UM CD-005 magma\(^5\); Barnes et al., 2010), a range of published partition coefficients (Barnes and Ripley, 2016) and bulk PGE and S analyses from von Gruenewaldt et al. (1989). However, the R-factor may also be controlled by kinetic, rather than equilibrium processes such as the nucleation to growth rate of immiscible sulphide liquid, the rate of chalcophile element diffusion, and the rate of melt migration (Mungall, 2002). In any case, the calculated R factors in the Volspruit Sulphide Zone are orders of magnitude less than R factors from other sulphide-poor PGE deposits. Typically, high-tennage Ni-Cu sulphide deposits require silicate:sulphide values of 100:1–2000:1, while sulphide-poor PGE deposits such as the Merensky Reef require silicate:sulphide ratios (500:1 to 3000:1), compared to typical sulphide-poor PGE deposits.

4.5. Processes controlling S/Se values in the Volspruit Sulphide Zone

While S/Se values are typically interpreted as direct evidence for contamination of a magma, a range of other processes control them. The first order factors controlling S/Se in magmatic sulphides are (1) S/Se of parent magma mantle values (\(-3000\)), (2) prior sulphide saturation events (\(<\text{S/Se}\)), (3) contamination (\(<\text{S/Se} > \text{10,000}, \text{depending}\) on contaminant) (4) R-factor (\(<\text{S/Se} > \text{sulphide and PGE tenor}) and (4) crystallisation (\(<\text{S/Se} \text{enriched in MSS relative to ISS}) (Queffurus and Barnes, 2015). Smith et al. (2016) proposed that sulphide resorption (viz. Kerr and Leitch, 2005) lowers the S/Se of the sulphide melt, decoupling proxies for contamination (S/Se and \(\delta^{34}\text{S}\)) in magmatic sulphide assemblages. Secondary alteration from metamorphism, metasomatism from magmatic fluids, and low-temperature processes also preferentially remove S and thus decrease S/Se values (Queffurus and Barnes, 2015).

The first observation about S/Se in the Volspruit Sulphide Zone is that both the \(\delta^{34}\text{S}\) of bulk sulphide and S/Se of pyrrhotite and chalcopyrite greatly exceed mantle values, providing strong evidence for sediment assimilation. However, we note that the S/Se of Pretoria Group and Chuniespoort Group metasomatised likely contain extreme heterogeneity in S/Se. Large et al. (2014) documented rapid fluctuations of Se in marine pyrite around this time period (20–200 ppm) caused by pulses of oxidation preceding the Precambrian great oxidation event, resulting in S/Se values from 2.673 to 26.725 in marine pyrite. Secondly, S/Se values are extremely high compared to the S/Se of Platreef sulphides, confirming low R factors and/or minimal requirement for sulphide resorption into the parent magma or secondary alteration in the Volspruit Sulphide Zone. Thirdly, S/Se values in sulphides are not only elevated, but are highly heterogeneous between samples.

Such high S/Se values mean that processes which reduce the S/Se value (R-factor, sulphide resorption, S-loss during degassing, metasomatism or alteration) are not a primary control on the S/Se content in the Volspruit Sulphide Zone. Instead, we need to consider processes where sulfur is added, or selenium is lost from base metal sulphides. We think it is unlikely that S-addition from assimilation alone can account for the high S/Se values, for two reasons. Firstly, some of the S/Se values recorded in this study are greater than postulated sedimentary end-members. For example, sedimentary rocks with the highest S/Se are sulphide-bearing sediments, such as black shales (Queffurus and Barnes, 2015), yet we have noted that pyrite in marine shales beneath the Volspruit subzone should be characterised by S/Se of 2,673–26,725. So to create pyrrhotite where S/Se = 21,566 would require an implausibly high degree of mixing. Unfortunately, Se has not been measured in the country rocks beneath the Bushveld Complex. Secondly, if S-addition from assimilation were the primary control on S/Se, then this should dilute the tenor of the sulphide minerals. That is, we would expect to see PGE grade of sulphides decrease with S/Se, which we do not observe in pyrrhotite (Fig. 14).

So while we consider that S-addition is an important control on S/Se in the Volspruit Sulphide Zone (evidenced by the addition of Pb and Zn into base metal sulphides), another process must be invoked to explain the high and heterogenous S/Se values. Exploring processes whereby Se is lost from sulphide is the only remaining option.

Initially, we considered that the high and heterogeneous S/Se values may be caused by precipitation of Se-bearing Pb-sulphides and Se-bearing Pb-chlorides from a fractionating sulphide melt. Se is known to be highly compatible in the structure of galena, along with Ag and other semi-metals such as Te and Bi (George et al., 2015, 2016). Thus, we can test the influence of galena and Pb-chlorides on the S/Se of sulphides during sulphide melt evolution by assessing the depletion of Ag, Te and Bi with S/Se values (Fig. 14). If the high S/Se of pyrrhotite is inherited from fractionation of galena (i.e. Se removal) from a sulphide melt– noting that galena may not necessarily be visible in the exposed, polished sulphide bleb – then high S/Se analyses should correlate with the lowest values of Ag, Te and Bi, elements also highly compatible in galena. However, this is not observed in pyrrhotite (Fig. 14), indicating that high S/Se in pyrrhotite is not inherited from fractionation of galena. Ag decreases with increasing S/Se in chalcopyrite, but not Te and Bi. It is more likely that Ag varies with Au and PGEs, rather than being controlled by the S/Se (and thus galena fractionation) in chalcopyrite. These data are also supported by the observation that Se-bearing Pb-chlorides or Pb-sulphides were not observed at 115.88–116.88 m and 120.88–121.88 m depth, where the greatest S/Se values are recorded.

\(^5\) The B1-UM chill CD-005 was chosen as ECBV050 (the only other analysis with PGE values) contained less PGEs than the more evolved B1 magma.
degassing in magmatic systems e.g., (Jenner et al., 2010). Fig. 10 in Jenner et al. (2010) suggests the transition from immobile selenite to volatile selenate may begin above ~FMQ + 2. Regardless of the absolute values of the selenite-selenate transition, it is likely that assimilating carbonate country rocks into an ultramafic magma will produce extreme gradients in fo₂. Locally, portions of magma in close contact with country rock may become extremely oxidised, accompanied by extensive degassing from surrounding carbonates.

In such an environment, we consider that it might be possible to oxidise Se to a volatile selenate species—so that both S and Se would be lost during degassing. Small changes in the oxidation state could change the proportion of Se lost. Thus, assimilation of a sulphide-rich carbonate would alter the S/Se of magmas in the Volspruit subzone by adding crustal S, and by local removal of S and Se via degassing of an oxidised magma. We consider this process the best available explanation to explain high and heterogeneous S/Se values in the Volspruit Sulphide Zone.

An alternative hypothesis to explain the high S/Se values is that Se was removed from sulphides in the Volspruit Sulphide Zone during oxidation by high-pH postmagmatic fluids, as observed in the Jinchuan Ni-Cu-PGE deposit (Prichard et al., 2013). However, this hypothesis is not supported by either (1) the range of S concentrations observed in sulphides, or (2) the absence of an alteration overprint in BMS assemblages. As pentlandite contains up to 237 ppm Se, this hypothesis would require Se to be selectively leached from pyrrhotite, but retained in pentlandite. As Se is less mobile than S (Prichard et al., 2013), postmagmatic alteration of BMS should create secondary mineral assemblages. For example, alteration with no sulfur loss would create an assemblage of millerite, magnetite, pyrite, violarite and/or cubanite, or abundant magnetite with rare millerite, violarite or cubanite if sulfur is lost from the system (e.g. Holwell et al., 2017; Prichard et al., 2013; Ripley et al., 2005; Smith et al., 2016). These secondary mineral assemblages were not observed in the Volspruit Sulphide Zone.

Therefore, we think the data in this study best supports the model for S-addition and subsequent Se- and S-degassing during assimilation as an explanation for the high S/Se values.

4.6. Origin of the Volspruit Sulphide Zone

Here, we summarise the paragenetic sequence of events leading to the creation of the Volspruit Sulphide Zone (Fig. 15).

4.6.1. Source magma

Cumulates from the Volspruit subzone cannot have formed from a B1 magma under reasonable conditions (Yudovskaya et al., 2013), as they contain relatively unevolved compositions: up to 47.52 wt% Cr₂O₃ in chromite, up to En₉₀ in orthopyroxene and up to Fo₉₀ in olivine. Yudovskaya et al. (2013) propose that chills from the Basal Ultramafic Sequence (Wilson, 2015), or analyses of B1-UM chills CD-005 and ECBV050 (Barnes et al., 2010) would be suitable candidates for parental magmas. Of these, PGE analyses of the B1-UM chills CD-005 are most appropriate. Contrary to Hulbert and von Gruenewaldt’s (1982) model, we found no evidence to support the contribution of a more evolved B1, B2, or B3 magma (Barnes et al., 2010), a “denser, cooler and less primitive basaltic liquid” (pp. 306, Hulbert, 1983), or northern limb Main Zone-style magma (McDonald et al., 2005).

Given the Pt/Pd of suitable parental magmas is 1.08–2.13 (Barnes et al., 2010), while the Pt/Pd of the modelled PGE resources in the northern limb are consistently <1.0 (Table 1), it is likely that the Lower Zone of the northern limb had a separate ultramafic source with distinct highly siderophile element chemistry from magmas in the eastern limb of the Bushveld Complex. While the B1 magma contains 33 ppb Pt + Pd, the ultramafic chill B1-UM CD-005 contains 50 ppb Pt + Pd (Barnes et al., 2010). Therefore, less upgrading is required to form a viable ore deposit.
4.6.2. Magma intruded assimilant(s) beneath the Rustenburg Layered Suite

We observed sulphide inclusions, silicate inclusions and trapped crustal assimilants within chromite. As these inclusions typically occur in the centre of chromite grains, we infer that inclusions were trapped soon after chromite crystals nucleated in the parent magma. Thus, these trapped inclusions record the earliest magmatic processes during the formation of the Volspruit Sulphide Zone. As these chromite inclusions (1) occur in the centre of chromite grains, (2) do not match the composition of minerals typically observed in the Volspruit subzone, and (3) contain dolomite, albite, hydrous phases, monazite and Pb-chlorides – we consider that these inclusions record the earliest history of magmatic emplacement into sedimentary rocks in a staging chamber/sill beneath the main Grasvally magma chamber (i.e. beneath the Rustenburg Layered Suite).

We envisage that primitive, ultramafic magmas intruded along a sedimentary contact beneath the main Grasvally magma chamber. The record of assimilation from microxenocrysts (e.g., calcium carbonate, U-Th oxide, Mn-rich ilmenite), exotic chromite inclusions (e.g., dolomite, albite, monazite) and Pb and Zn-rich magmatic sulphide assemblages indicate that limestone and dolomite were assimilated along at least one margin of this contact. The most voluminous local source of calcite and dolomite is the Malmani dolomite, which is also a documented host of Pb-Zn Mississippi Valley-type deposits (Martini et al., 1995). As the Malmani dolomite rests above the Black Reef Quartzite, we postulate that this contact may be the location of the sub-Grasvally staging chamber.

4.6.3. Assimilation of oxidised sediments triggered chromite saturation

Assimilation of carbonates with a minor contribution from other sediments locally increased the fO2 of the ultramafic magma and triggered chromite saturation, evidenced by the presence of the exotic chromite inclusions. Assimilation of carbonates may be accompanied by extensive volatilisation of CO2, released from assimilants and adjacent country rock, creating a turbulent magmatic environment. Despite a potentially turbulent environment, the heterogeneity of assimilants in the magma could still create sharp gradients in fO2, and thus fronts of chromite crystallisation in the magma.

4.6.4. Chromite crystallisation and addition of external sulfur triggered sulphide saturation

As sulphide inclusions are not consistently observed in chromites, we propose that chromite saturation preceded sulphide saturation, but there was at least one period where both processes were simultaneous. It is likely that saturation of an immiscible sulphide liquid was triggered by (1) addition of external sulfur from sedimentary contaminants, and (2) a decrease in Fe following chromite crystallisation.
(lowering the amount of sulfur required to achieve sulphide saturation). It is possible that sulphide saturation was triggered by a sudden influx of sedimentary sulfur, such as assimilating pre-existing Pb-Zn Mississippi Valley-type mineralisation, basinal brines, or a large quantity of sedimentary sulfur. Continued carbonate assimilation would create sharp fO₂ gradients surrounding large xenoliths and roof pendants, accompanied by degassing of S and probably Se. During this process, remaining immiscible sulphide liquid would be stirred amongst silicate liquid, at a ratio of <3000:1. Periods of quiescence with less assimilation and magma replenishment would allow cumulates to settle, forming chains of chromite and sintered chromite textures.

4.6.5. Emplacement of crystal-rich slurries into the main Grasvally magma chamber

A turbulent pulse of magma or a sudden fault rupture moves crystal-rich slurries containing entrained sulphide droplets, chromite crystals and pyroxene grains out of the staging chamber and into the growing Volspruit subzone in the main Grasvally magma chamber. The chromite-sulphide-silicate slurry is emplaced as a stratiform horizon – the full extent of this layer remains unknown – it is unlikely to be as contiguous as the Merensky Reef. We estimate that the Volspruit Sulphide Zone is restricted to a Grasvally sub-chamber ~60 m thick and continuous ~3 km along strike (Fig. 1C). During and following this event, emplacement of the Volspruit subzone continues.

4.6.6. Crystallisation of the Volspruit Sulphide Zone

There is very little plagioclase present in the Volspruit subzone, so the volume of trapped intercumulus melt is very small. Most of the interstitial liquid must have been squeezed out from the weight of overlying cumulates, and mixed with magmas above it. As the cumulates cooled, interstitial sulphide melt droplets fractionated, exsolving a copper-rich liquid, crystallising Fe-Ni-rich monosulphide solution and Cu-rich intermediate solid solution, before crystallising the observed base metal sulphide and precious metal mineral assemblages (e.g. Holwell and McDonald, 2010; Naldrett, 2004).

4.6.7. Post-cumulus serpentinisation of Volspruit subzone – fluid flow during reheating?

The metamorphic aureole surrounding the northern limb of the Bushveld Complex records two stages of contact metamorphism. These are attributed to (1) emplacement of the Lower Zone and (2) emplacement of layered rocks above Lower Zone cumulates (Nell, 1985). McDonald et al. (2005) contend that emplacement of the GNPA and overlying magmatic stratigraphy occurred while there was still melt replenishment occurring in the Grasvally (Lower Zone) magma chamber, but replenishment of Lower Zone magmas north of Grasvally had ceased. However van der Merwe (2008)) assert that there was a major hiatus between emplacement of Lower Zone and Main Zone magmas. The data from this study can neither confirm nor deny these hypotheses.

If van der Merwe (2008)’s hypothesis is correct, alteration and serpentinisation of the Volspruit deposit could have occurred during the emplacement of overlying magmas. However, it is most likely that alteration and serpentinisation of the Volspruit cumulates occurred during low-grade regional metamorphism associated with gentle folding and/or one of the four episodes of faulting recorded in the region (Hulbert, 1983; van der Merwe, 2008). We postulate that the regional metamorphism must have been low grade, as we observed no evidence for melting and remobilisation of sulphides. However, it is difficult to provide evidence for remelting of magmatic sulphide assemblages, as magmatic assemblages are texturally similar. Serpentinisation affected base metal sulphides more or less equally – precious metal minerals are the only phases that are not altered.

4.7. Would we expect another Volspruit-style deposit in the Bushveld Complex?

To date, there are no other ore deposits in the Bushveld Complex similar to the Volspruit Sulphide Zone, implying that these ore-forming processes are unique. We propose that assimilation of a carbonate unit containing significant sulfur and subsequent crystallisation of chromite was crucial to the formation of an immiscible sulphide liquid in the initial sulphide-undersaturated ultramafic magma. The presence of Pb-sulphides, Pb-chlorides and sphalerite suggests that this magma may have assimilated pre-existing Pb-Zn mineralisation or basinal brines. We consider that the Malmani Dolomite is the most likely assimilant. As the Malmani Dolomite extends across the Kaapvaal craton, it is possible that other staging chambers could have assimilated this horizon, but the resulting mineralisation in the main Bushveld chamber is likely to be localised and not continuous across great distances.

It is possible that the occurrence of even sub-economic Volspruit-style mineralisation in ultramafic cumulates could reduce the grade and opportunity for PGE mineralisation events higher up in the local magmatic stratigraphy of a layered intrusion (c.f., Latypov et al., 2017), or in or in subsequent magma emplacement events sourced from the same reservoir (c.f., Mungall et al., 2016). However, given the low R-factors required to form Volspruit-style mineralisation, the presence of this type of mineralisation does not necessarily preclude further opportunities for creating economically viable concentrations of PGEs.

5. Conclusion

This study demonstrates that qualitative petrological evidence such as detailed inclusion and microxenocryst studies provide additional lines of evidence for assimilation, complementing existing quantitative geochemical proxies such as the S/Se ratio and sulfur isotope compositions. Identification of microxenocrysts is particularly useful when the end-member compositions of assimilants is not known. These new qualitative techniques could be applied beyond layered intrusion research, to identify the range of crustal contaminants in other magmatic systems where macro-xenoliths are neither sampled nor preserved.

We consider that the Volspruit Sulphide Zone formed as a result of the following processes:

1. Parental magmas are derived from a fertile ultramafic source, similar to B1-UM in composition.
2. The ultramafic source intruded into carbonate sediments (possibly the contact between the Malmani dolomite and the Black Reef quartzite) beneath the main Grasvally chamber in the northern Bushveld Complex.
3. Assimilated carbonate rocks increased the fO₂ of the ultramafic magma, triggering rapid precipitation of chromite.
4. Addition of external sulfur from the sedimentary assimilant, coupled with the sudden reduction in the Fe content of the melt from chromite crystallisation triggered the exsolution of an immiscible sulphide phase. It is possible that addition of external sulfur, Pb, Zn and Cl was enhanced by the assimilation of pre-existing Pb-Zn-Cl mineralisation or basinal brines.
5. Chromite, base metal sulphides and pyroxene were emplaced into the Grasvally chamber as a crystal-bearing slurry, forming a PGE horizon ~60 m thick and ~3 km wide.
6. The ~60 m thick Volspruit Sulphide Zone crystallised and underwent post-cumulus serpentinisation that did not alter PGE distribution.

While mineralisation in the ultramafic portions of layered intrusions is uncommon, it is possible for PGE mineralisation to occur in these environments if the ultramafic magmas intrude in the vicinity of carbonate sediments. It is possible that Volspruit-style mineralisation may reduce the opportunity for economically viable PGE mineralisation higher up in
the local magmatic stratigraphy of a layered intrusion, or in later magma emplacement events sourced from the same reservoir.

Acknowledgements

The authors wish to thank Pan Palladium for access to the sample suite used in this study. We appreciate the help of Tony Oldroyd with sample preparation. Valuable discussions with Hazel Prichard helped frame this project. Lloyd White is thanked for advice in drafting figures. The authors are grateful for considered and constructive reviews from Wolfgang Maier, Edward Ripley, Danie Grobler and James Mungall. These reviews greatly improved the manuscript. This work was supported by the UK National Environment Research Council’s Security of Supply of Mineral Resources Consortium (SoS MiniEars) [grant number NE/M011615/1] “TeaSe: tellurium and selenium cycling and supply.” D.T. acknowledges support from the University of Wollongong Research Committee [grant number 888/006/240] and a Start-Up grant from the Faculty of Science, Medicine and Health at the University of Wollongong. H.H. was funded by the Claude Leon Foundation and supported by the Centre of Excellence for Integrated Mineral & Energy Resource Analysis (CIMERA) at the Universities of Witwatersrand and Johannesburg.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.lithos.2018.10.032.

References
