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Abstract: In this work we try to address the imbalance of the number of points

which naturally occurs when slicing the response in Sufficient Dimension

Reduction methods (SDR). Specifically, some recently proposed support

vector machine based (SVM-based) methodology suffers a lot more due to

the properties of the SVM algorithm. We target a recently proposed algorithm

called Principal LqSVM and we propose the reweighting based on a different

cost. We demonstrate that our reweighted proposal works better than the

original algorithm.
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Introduction

Sufficient Dimension Reduction (SDR) is a class of

supervised linear and nonlinear feature extraction methods

which are being developed mainly in a regression as well

as in classification settings. In SDR we have a response

variable Y (which we assume univariate without loss of

generality) and a p-dimensional predictor vector X . Our

objective is to reduce the dimension of X by finding d

(where d < p) linear or nonlinear functions of X without

losing information on the conditional distribution Y |X . In

it’s simpler form, we can express this using the linear

independence model:

Y X |β T

X (1)

and our effort is to estimate the p × d matrix β . It is

obvious that if β is the identity matrix it satisfies the

conditional independence model above but there is no

dimension reduction achieved. The space spanned by the

columns of β is called a Dimension Reduction Subspace

(DRS). Since there are many β ’s that satisfy model (1) we

focus on estimating the one which gives the minimum d.

If such a space exists, we call it the Central Dimension

Reduction Subspace (CDRS) or simply the Central

Subspace (CS). CS does not always exist, but if it exists it

is unique. The conditions of existence are relatively mild

and we assume its existence throughout this paper. The

interested reader is referred to Cook (1998) for more

details on the existence of the subspace. Some methods

under this model include Sliced Inverse Regression (SIR)

by Li (1991), Sliced Average Variance Estimation (SAVE)

by Cook and Weisberg (1991), Contour Regression (CR)

by Li, Zha and Chiaromonte (2005), Directional

Regression (DR) by Li and Wang (2007) and Sliced

Inverse Mean Difference (SIMD) by Artemiou and Tian

(2015). Most of the methods discussed here use inverse

moments to perform feature extraction. More generally we

express the nonlinear feature extraction using the model:

Y X |φ(X)

where φ : Rp → R
d can be any linear or nonlinear

function of the predictors. Well known works on this

framework include Kernel SIR by Wu (2008) and Yeh et al

(2009), Kernel regression by Fukumizu, Bach and Jordan

(2009) and Principal Support Vector Machine (PSVM) by

Li, Artemiou and Li (2011). The last method was the first

among many methods that have been introduced the last

few years and they fall into the category of SVM-based

methodology. Among other methods that have been

introduced we have the Artemiou and Dong (2016), Shin

et al (2017), Shin and Artemiou (2017) and among others.

Using the idea of slicing from classic SDR methodology

like SIR and SAVE which estimate the CS using

inverse-moment-based ideas within each slice, the

SVM-based algorithms estimate the CS by deriving the

optimal hyperplane that separates the points between

slices. Li, Artemiou and Li (2011) proposed the use of the

c© 2018 Author Names. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.
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“left vs right” (LVR) algorithm when the response is

continuos and the “one vs another” (OVA) when the

response is categorical. In both cases, the slices that are

used to construct the separating hyperplane can be highly

imbalanced, that is, one may contain more points than the

other. In the classification setting, where the SVM were

introduced by Cortes and Vapnik (1995), this has been a

well known problem that has been addressed in a number

of ideas. The interested reader is referred to He and Garcia

(2009) for a selection of methods to tackle imbalance. In

the dimension reduction framework, Artemiou and Shu

(2014) used a cost based reweighted scheme to tackle

imbalance on the PSVM algorithm proposed by Li,

Artemiou and Li (2011). In this paper we will expand the

work by Artemiou and Dong (2016) in using a cost-based

reweighted scheme to tackle imbalance in Principal Lq

SVM (PLqSVM). We give a brief review of the

methodology in Section 2 and then we present our new

method which we call Cost-based Reweighted Principal

Lq Support Vector Machines (CRPLqSVM) in Section 3.

In Section 4 we will give some theoretical results and we

will present numerical Studies in section 5. We will close

with a small discussion section.

Literature review

There is a long literature on Sufficient Dimension

Reduction (SDR) as it goes back to the introduction of

Sliced Inverse Regression (SIR) by Li (1991). In this

section we will focus on the literature on some of the

Support Vector Machine (SVM) based literature and we

will also discuss reweighting approaches.

Before introducing the methods we will discuss some

notation. First of all we assume that we have a univariate

response variable Y with support Ω and a p dimensional

predictor vector X . If we let A1,A2 be two disjont subsets

of Ω we can define the binary version of the response

variable to be:

Ỹ = I(Y ∈ A1)− I(Y ∈ A2) (2)

where I(·) denotes the indicator function. Also we use the

equation ψTX + t = 0 to denote the hyperplane equation

where ψ ∈ R
p is the normal vector and t ∈ R is the offset.

Using now the discretized version of Y , that is Ỹ , in the

classification setting discussed by Cortes and Vapnik

(1995) one can find the optimal hyperplane which

separates the points according to their Ỹ value as the set

(ψ∗, t) ∈ R
p ×R by minimizing the following objective

function at the population level:

ψTψ +λE(1− Ỹ (ψT(X −E(X))− t))+ (3)

where λ is a fixed tuning parameter known as the cost (or

misclassification penalty) and the a+ = max{0,a}.

Principal Support Vector Machines (PSVM)
Li, Artemiou and Li (2011) introduced Principal

Support Vector Machines (PSVM) which takes the classic

SVM algorithm we discuss above and adapts it

accordingly to allow to it to be used as a dimension

reduction method in the SDR framework. First the authors

suggest a slight modification to the objective function

above and instead they propose the minimization of the

objective function:

ψTΣψ +λE(1− Ỹ (ψT(X −E(X))− t))+ (4)

where Σ = var(X). Although we are not going to deal

with the nonlinear feature extraction algorithm here the

inclusion of Σ in the objective function allows for a unified

framework of linear and nonlinear feature extraction.

The algorithm for PSVM can be described in the

following steps:

1. We first compute the sample mean X̄ and the sample

covariance matrix Σ̂.

2. We find the dividing points qr, for r = 1, . . . ,H −1

where H the number of slices and we define the H −
1 response vectors Ỹ

r
= (Ỹ r

1 , . . . ,Ỹ
r
n )

T where Ỹ r
i =

I(Yi > qr)− I(Yi ≤ qr).

3. We find (ψ̂r, t̂r) to be the minimizer of the objective

function:

ψTΣ̂ψ +λEn(1− Ỹ
r
(ψtrans(X − X̄)− t))+.

(5)

4. We construct the candidate matrix

V̂ = ∑
H−1
i=1 ψ̂r(ψ̂r)T and we do an eigenvalue

decomposition to get the eigenvectors u1, . . . ,ud

corresponding to the largest d eigenvalues. One can

find the subspace spanned by these eigenvectors as

an estimate for the CS, SY |X .

We note here that the description above fits the “left vs

right” (LVR) approach. For the OVA approach we need to

adjust the way we define the discretized version of the

response vector Ỹ b. The interested reader is referred to Li,

Artemiou and Li (2011) for the details. Also we note that

the objective function in (9) is solved by finding the dual

problem using the Karush-Kuhn-Tucker (KKT) equations

in a similar manner as the original SVM algorithm in

Cortes and Vapnik (1995). The dual problem is then

solved by using quadratic optimization.

Principal Lq Support Vector Machines (PLqSVM)
Artemiou and Dong (2016) identified, that there was

a problem with the objective function of PSVM. Due to

the fact that the second part, that is a+ = max{0,a} (also
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known as the hinge loss in classification literature), is not

strictly convex, under some conditions on the distribution

of X we may have not have a unique solution for the offset

t. Although this is not affecting the estimation of the CS as

it only depends on the normal vector ψ (which is always

unique), it created problems with the asymptotic theory of

PSVM as the gradient function, the Hessian matrix and the

influence function were dependent on the value of t. This

meant that one couldn’t use for example the asymptotic

theory of PSVM to create sequential tests for dimension

determination.

In an effort to avoid this, Artemiou and Dong (2016)

proposed the use of LqSVM which raises the hinge loss to

the power q ≥ 2 creating a strictly convex function which

can ensure the uniqueness of t. Therefore their objective

function is:

ψTΣψ +λE
[

(1− Ỹ (ψT(X −E(X))− t))+
]q
. (6)

The algorithm for estimation is essentially the same.

Solving this objective function is slightly more

challenging though, as it is not always possible to use

quadratic programming optimization. In the case that

q = 2 though, this is possible and therefore although

Artemiou and Dong (2016) developed the theory for

general q, they run simulations only for the case that

q = 2.

Cost-based Reweighted Principal Support Vector

Machine (CRPSVM)
Artemiou and Shu (2014) investigated the effect of

imbalanced of slices in the dimension reduction

framework. In the classification framework this is a well

known issue and there are a number of algorithms that

have been proposed to address this (see He and Garcia

(2009)). To address this Artemiou and Shu (2014)

proposed an algorithm that is based on using different

costs (λ ’s) for each slice.

In the classification framework, let’s assume there is a

class (minority) that have much less observations than the

other class (majority). Misclassifying one point from the

minority class has a much bigger effect than

misclassifying an observation from the majority class.

One approach that was suggested to address this is to give

the minority class a much bigger penalty than the majority

class (see for example Veropoulos et al. (1999)). A similar

approach for the dimension reduction framework was

proposed by Artemiou and Shu (2014). Imbalance

happens in the PSVM algorithm due to the construction of

the cutoff points qr, r = 1, . . . ,H − 1. To ensure, like in

previous algorithms that all slices have about the same

number of points qr = ((100/H) × r)th percentile.

Therefore if there are for example 100 observations and 10

slices, then q1 is the 10th percentile, which means on the

first iteration of the algorithm one class will have 10

points and the other 90 points. Similarly, for q2 we will

have 20 points on one class and 80 on the other. This

imbalance diminishes as we move to the middle of the

dataset and then starts to increase again as we move to the

higher percentiles.

When combining the two costs with the PSVM

objective function we get the following objective function

which we call Cost-based Reweighted Principal Support

Vector Machines (CRPSVM):

ψTΣψ +E
[

λỸ (1− Ỹ (ψT(X −E(X))− t))+
]

. (7)

One question is how to choose the two values for the cost.

One easy approach is to use the relationship λ−1/λ1 =
n1/n−1 where n j represents the number of observations

with Ỹ = j and λ j is the cost associated with the class that

represents Ỹ = j for j = 1,2.

Further studies on the reweighting in the dimension

reduction framework can be found in Smallman and

Artemiou (2017) who used a number of algorithmic

approaches to address imbalance and Artemiou (2019)

who used it to address robustness at the presence of

outliers.

Cost-based Reweighted Principal Lq

Support Vector Machines (CRPLqSVM)

In this paper we will address the imbalance with the

Principal Lq Support Vector Machine and we will propose

the Cost-based Reweighted Principal Lq Support Vector

Machines (CRPLqSVM) algorithm.

Population level results

We will use a similar approach as Artemiou and Shu

(2014) used for PSVM, that is, we will have address

imbalance by using different costs for each class. therefore

the objective function for proposed algorithm becomes

ψTΣψ +E
[

λỸ (1− Ỹ (ψT(X −E(X))− t))+
]q
. (8)

The following theorem proves that the normal vector of

the hyperplane that forms part of the solution of the above

objective function is part of the CS under the linearity

condition. The linearity condition is very common in linear

feature extraction in the SDR literature.

Theorem 1 Assume that the E(X |β T

X) is a linear function

of β T

X and that (ψ∗, t∗) is the solution that minimizes the

objective function (8) among all possible (ψ, t) ∈ R
p ×R.

Then ψ∗ ∈ SY |X .

The proof of the theorem is similar to the proof that was

used in Artemiou and Shu (2014) with the only difference

that we have the qth power of the hinge loss on the second
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term of the objective function. As it is claimed in there

their result holds for any convex function that is used.

Since
[

λỸ (1− Ỹ (ψT(X −E(X))− t))+
]q

is a convex

function then the theorem holds and we omit the details

here.

Estimation algortihm
The algorithm for CRPLqSVM can be described in the

following steps:

1. We first compute the sample mean X̄ and the sample

covariance matrix Σ̂.

2. We find the dividing points qr, for r = 1, . . . ,H −1

where H the number of slices and we define the H −
1 response vectors Ỹ

r
= (Ỹ r

1 , . . . ,Ỹ
r
n )

T where Ỹ r
i =

I(Yi > qr)− I(Yi ≤ qr).

3. We find (ψ̂r, t̂r) to be the minimizer of the objective

function:

ψTΣ̂ψ +λ ∗r
En[(1− Ỹ

r
(ψtrans(X − X̄)− t))+]q

(9)

where λ ∗r
is an n-dimensional vector with the ith

entry (i = 1, . . . ,n) the value of lambda

corresponding to the class indicated by Ỹ r
i .

4. We construct the candidate matrix

V̂ = ∑
H−1
i=1 ψ̂r(ψ̂r)T and we do an eigenvalue

decomposition to get the eigenvectors u1, . . . ,ud

corresponding to the largest d eigenvalues. One can

find the subspace spanned by these eigenvectors as

an estimate for the CS, SY |X .

As with PSVM this algorithm corresponds to the LVR

approach. One can easily adjust the algorithm accordingly

to fit the OVA approach.

There are two things we need to address in the

estimation part. The first is what type of values one will

use for the λ ’s. We decided to use a similar approach to

Artemiou and Shu (2014) who used the inverse ratio of the

number of observations in each class. Let n j where

j = −1,1 denote the number of observations that have

Ỹ r
i = j. Then we use

λ−1

λ1
=

n1

n−1

in each of the dividing point qr, r = 1, . . . ,H −1 algorithm.

The second is how to solve the optimization problem in

the third step of the algorithm above. Here we discuss how

this can be done in general.

First of all, we note that the general sample version can

also be written as:

ψTΣ̂ψ +
1

nq

n

∑
i=1

λỸi
[(1− Ỹi(ψ

T(X i − X̄)− t))+]q

where we omit the superscript r from Ỹi for simplicity as

the solution is the same for any dividing point. Now let’s

define Zi = Σ̂
−1/2

(X i − X̄) and ζ = Σ1/2ψ which means

the above optimization can be written as:

ζ Tζ +
1

nq

n

∑
i=1

λỸi
[(1− Ỹi(ζ transZ − t))+]q. (10)

The following Proposition then gives the solution. It has

been proven in the

Proposition 1 Let ζ ∗ ∈ mathbbRp be the minimizer of the

objective function (10).Then ζ ∗ = (1/2)ZT(α ⊙ Ỹ ) where

α is the solution to the following optimization problem:

max αT1n−
1

4
(α ⊙ Ỹ )TZZT(α ⊙ Ỹ )

+
1−q

q
(Dλ ∗n−1)

1
1−q (αT)

q
q−1 1n

subject to α ≥ 0n, (α ⊙ Ỹ )T1n = 0n

where 1n = (1, . . . ,1)T ∈R
n, 0n = (0, . . . ,0)T ∈R

n and Dλ ∗

is an n×n diagonal matrix that has the entries of vector

λ ∗ in the diagonal.

The proof of this proposition is very similar to Proposition

1 in Artemiou and Dong (2016) and therefore we omit

it. As discussed in Artemiou and Dong (2016) who had

a similar issue, this is not an easy problem to solve. In

the case that q = 2 this becomes a quadratic optimization

problem as the one solved in other SVM approaches in the

literature including the dimension reduction approaches

we discussed in the previous section. Therefore, using

q = 2 and the fact that Ỹi =±1 which makes αTα = (α ⊙
Ỹ )T(α ⊙ Ỹ ) then the optimization problem in the above

proposition simplifies to :

max αT1n −
1

4
(α ⊙ Ỹ )T(ZZT +2nD−1

λ ∗ )(α ⊙ Ỹ )

subject to α ≥ 0n, (α ⊙ Ỹ )T1n = 0n

which is a quadratic optimization problem and can be

easily solved. We need to remember that since we have

standardized the data, we have to use ψ∗ = Σ−1/2ζ ∗
to

obtain the solution of the unstandardized problem.

Numerical Studies

In this section we discuss numerical results of this

experiment.

4
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Table 1. Performance of PL2SVM and CRPL2SVM for different dimensions of the predictor and different number of

slices

H = 10 H = 20 H = 50

Models p PL2SVM CRPL2SVM PL2SVM CRPL2SVM PL2SVM CRPL2SVM

10 0.16 (0.043) 0.13 (0.037) 0.15 (0.041) 0.11 (0.032) 0.16 (0.048) 0.10 (0.032)

I 20 0.25 (0.051) 0.20 (0.042) 0.24 (0.048) 0.17 (0.032) 0.23 (0.055) 0.15 (0.036)

30 0.35 (0.062) 0.28 (0.053) 0.30 (0.057) 0.21 (0.049) 0.32 (0.057) 0.21 (0.048)

10 0.70 (0.168) 0.66 (0.154) 0.72 (0.165) 0.69 (0.137) 0.72 (0.186) 0.70 (0.176)

II 20 1.06 (0.135) 1.03 (0.137) 1.02 (0.168) 0.99 (0.160) 1.03 (0.161) 1.00 (0.164)

30 1.23 (0.120) 1.20 (0.128) 1.21 (0.126) 1.19 (0.123) 1.20 (0.137) 1.18 (0.131)

10 1.12 (0.225) 1.14 (0.239) 1.07 (0.234) 1.03 (0.274) 1.08 (0.220) 1.05 (0.240)

III 20 1.43 (0.201) 1.41 (0.214) 1.45 (0.185) 1.41 (0.213) 1.40 (0.216) 1.36 (0.225)

30 1.62 (0.132) 1.58 (0.145) 1.59 (0.152) 1.54 (0.156) 1.61 (0.144) 1.55 (0.168)

Simulated data
We simulate data from the following models:

Model I :Y = X1 +X2 +σε,

Model II :Y = X1/{0.5+(X2 +1)2}+σε,

Model III :Y = X1(X1 +X2 +1)+σε,

where X ∼ Np(0p, Ip), ε ∼ N(0,1), p = 10,20,30. We

also use n = 100, σ = 0.2, the number of slices

H = 10,20,50 and we define the cutoff points qr for

r = 1, . . . ,H − 1 to be equally spaced percentiles. To

compare between the algorithms we use the distance

between the projection matrices on the estimated and the

real subspace, that is ‖Pβ −P
β̂
‖ where Pβ = β (β Tβ )−1β T

and P
β̂
= β̂ (β̂

T

β̂ )−1β̂
T

and ‖ · ‖ is the Frobenius norm.

We compare the the PL2SVM algorithm in Artemiou

and Dong (2016) with our proposed CRPL2SVM in Table

1 for p = 10,20,30 and for H = 10,20,50. As one can see

generally the reweighted algorithm performs better than

the original algorithm for all combinations of p and H. We

also see that in most cases the higher the number of slices

the best the performance of the reweighted algorithm. This

is due to the fact that the imbalance is more intense the

higher the number of slices are.

Real Data Analysis

In this section we use a real dataset to show the

advantage of the cost reweighted method. We use the

dataset on Computer Hardware (Ein-Dor and Feldmesser

(1987)) from UC Irvine machine learning repository (Dua

and Graff (2019)). The objective is to create a regression

model that estimates relative performance of the Central

Processing Unit (CPU) of a computer using some of its

characteristics, including cache memory size, cycle time,

minimum and maximum input/output channels, and

minimum and maximum main memory. Relative

performance was calculated using observations from users

of different machines in the market. The dataset consists

of 209 models where performance is not available. We

apply both algorithms, the PL2SVM and the cost

reweighted one using 10 slices. Figure 1 shows the

expected nonlinear relationship with the performance in

the first direction of both methods. The two directions are

very strongly correlated (correlation is 0.97), but it is clear

that the cost reweighted one is slightly better as the points

are closer to the curve than the PL2SVM one.

Discussion

The effect of imbalance of classes in the classification

setting has been studied well over the years. With the use

of classification methods in the SDR framework, there is

a need to study and understand the effect of imbalance in

this setting. the two settings are fundamentally different

as in classification we are interested to find the optimal

hyperplane and reduce the misclassification rate, while in

the dimension reduction setting we are only interested for

a hyperplane alignment which will estimate accurately the

CS. Also we note that the imbalance in the SDR framework

is artificial as it depends on the way we select the number

of slices, with higher number of slices leading to a more

imbalance between the slices. In this work, we investigate

the effect of imbalance when the LqSVM is used in the

SDR framework and we see that addressing the imbalance

helps in estimating the CS more accurately.

As He and Garcia (2009) have suggested there is a

huge literature on addressing imbalance and we are only

proposing the use of a single method here. Although, it has

shown positive results a more substantial study is needed

to understand the effect of imbalance on the dimension

reduction framework we are discussing in this work.
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Fig. 1. Plots of the first directions for PL2SVM (left) and CRPL2SVM (right) plotted against the response variable. We

can clearly see the quadratic nature of the relationship and the fact that the cost reweighted algorithm gives a stronger

relationship.
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