Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Early postnatal in vivo gliogenesis from nestin-lineage progenitors requires Cdk5

Petrik, David, Yun, Sanghee, Latchney, Sarah E., Kamrudin, Sohail, LeBlanc, Junie A., Bibb, James A. and Eisch, Amelia J. 2013. Early postnatal in vivo gliogenesis from nestin-lineage progenitors requires Cdk5. PLoS ONE 8 (8) , e72819. 10.1371/journal.pone.0072819

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

The early postnatal period is a unique time of brain development, as diminishing amounts of neurogenesis coexist with waves of gliogenesis. Understanding the molecular regulation of early postnatal gliogenesis may provide clues to normal and pathological embryonic brain ontogeny, particularly in regards to the development of astrocytes and oligodendrocytes. Cyclin dependent kinase 5 (Cdk5) contributes to neuronal migration and cell cycle control during embryogenesis, and to the differentiation of neurons and oligodendrocytes during adulthood. However, Cdk5’s function in the postnatal period and within discrete progenitor lineages is unknown. Therefore, we selectively removed Cdk5 from nestin-expressing cells and their progeny by giving transgenic mice (nestin-CreERT2/R26R-YFP/CDK5flox/flox [iCdk5] and nestin-CreERT2/R26R-YFP/CDK5wt/wt [WT]) tamoxifen during postnatal (P) days P2-P 4 or P7-P 9, and quantified and phenotyped recombined (YFP+) cells at P14 and P21. When Cdk5 gene deletion was induced in nestin-expressing cells and their progeny during the wave of cortical and hippocampal gliogenesis (P2-P4), significantly fewer YFP+ cells were evident in the cortex, corpus callosum, and hippocampus. Phenotypic analysis revealed the cortical decrease was due to fewer YFP+ astrocytes and oligodendrocytes, with a slightly earlier influence seen in oligodendrocytes vs. astrocytes. This effect on cortical gliogenesis was accompanied by a decrease in YFP+ proliferative cells, but not increased cell death. The role of Cdk5 in gliogenesis appeared specific to the early postnatal period, as induction of recombination at a later postnatal period (P7-P9) resulted in no change YFP+ cell number in the cortex or hippocampus. Thus, glial cells that originate from nestin-expressing cells and their progeny require Cdk5 for proper development during the early postnatal period.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Biosciences
Publisher: Public Library of Science
ISSN: 1932-6203
Date of First Compliant Deposit: 11 September 2019
Date of Acceptance: 19 July 2013
Last Modified: 11 Sep 2019 08:34
URI: http://orca.cf.ac.uk/id/eprint/125340

Citation Data

Cited 9 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics