Abstract. Every unitary solution of the Yang-Baxter equation (R-matrix) in dimension \(d \) can be viewed as a unitary element of the Cuntz algebra \(\mathcal{O}_d \) and as such defines an endomorphism of \(\mathcal{O}_d \). These Yang-Baxter endomorphisms restrict and extend to endomorphisms of several other \(C^* \)- and von Neumann algebras and furthermore define a \(\text{II}_1 \) factor associated with an extremal character of the infinite braid group. This paper is devoted to a detailed study of such Yang-Baxter endomorphisms.

Among the topics discussed are characterizations of Yang-Baxter endomorphisms and the relative commutants of the various subfactors they induce, an endomorphism perspective on algebraic operations on R-matrices such as tensor products and cabling powers, and properties of characters of the infinite braid group defined by R-matrices. In particular, it is proven that the partial trace of an R-matrix is an invariant for its character by a commuting square argument.

Yang-Baxter endomorphisms also supply information on R-matrices themselves, for example it is shown that the left and right partial traces of an R-matrix coincide and are normal, and that the spectrum of an R-matrix can not be concentrated in a small disc. Upper and lower bounds on the minimal and Jones indices of Yang-Baxter endomorphisms are derived, and a full characterization of R-matrices defining ergodic endomorphisms is given.

As examples, so-called simple R-matrices are discussed in any dimension \(d \), and the set of all Yang-Baxter endomorphisms in \(d = 2 \) is completely analyzed.

Contents

1. Introduction ... 2
2. R-matrices and Cuntz algebras 6
3. Towers of algebras associated with R-matrices 12
4. Algebraic operations on \(\mathcal{R} \) 18
4.1. Tensor products of R-matrices 19
4.2. Cabling powers of R-matrices 21
4.3. Sums of R-matrices 23
5. Equivalences of R-matrices 24
5.1. Equivalent R-matrices and braid group characters 31
6. Irreducibility, Reduction, and Index 34
6.1. Reduction of involutive R-matrices 37
7. Ergodicity and Fixed Points 40
8. Two-dimensional R-matrices 51
Acknowledgements ... 55
References ... 55

(RC) Dipartimento SBAI, Sapienza Università di Roma, Italy
(GL) School of Mathematics, Cardiff University, UK
E-mail addresses: roberto.conti@sbai.uniroma1.it, LechnerG@cardiff.ac.uk.
1. Introduction

This article is motivated by two circles of questions — one pertaining to the Yang-Baxter equation and one to endomorphisms of the Cuntz algebras and related operator algebras — that are brought into contact by the so-called Yang-Baxter endomorphisms. As the name suggests, these are endomorphisms of various C*- and von Neumann algebras, as explained below, defined by unitary solutions of the Yang-Baxter equation.

To introduce the subject, recall that the Yang-Baxter equation (YBE) is a cubic equation for an endomorphism $R \in \text{End}(V \otimes V)$ of the tensor square of a vector space V, namely

\begin{equation}
(R \otimes \text{id}_V)(\text{id}_V \otimes R)(R \otimes \text{id}_V) = (\text{id}_V \otimes R)(R \otimes \text{id}_V)(\text{id}_V \otimes R).
\end{equation}

This equation and its solutions play a prominent role in many different areas of physics and mathematics. It has its origins in statistical mechanics and quantum mechanics [Yan67, Bax72], but is long since known to also be closely connected to braid group representations and knot theory [Jon87, Tur88], von Neumann algebras and subfactors [Jon83], and braided categories [Lon92, TW05, EP12, GR18]. Representations of quantum groups [Dri86, Jim86] are a rich source of solutions for the Yang-Baxter equation.

In many of these fields, one is mostly interested in the case that V is a finite-dimensional Hilbert space and R is a unitary solution of (1.1). Also in the present article, we will only be concerned with such R-matrices, henceforth always assumed to be unitary, and refer to $d := \text{dim } V$ as the dimension of R. The set of all R-matrices of dimension d will be denoted $\mathcal{R}(d)$.

Unitary R-matrices are of great interest in several applications to quantum physics. For example, in topological quantum computation they serve as quantum gates [KL04, BG06, RW12], and in the context of integrable quantum field theories on two-dimensional Minkowski space, unitary solutions of a more involved Yang-Baxter equation involving a spectral parameter play the role of two-particle collision operators [AAR01]. Unitary solutions of (1.1), without spectral parameter, then describe the structure of short distance scaling limits of such theories [LS19].

Furthermore, as will be explained further below, R-matrices give rise to certain endomorphisms of von Neumann algebras that share many structural properties with endomorphisms appearing in quantum field theories with braid group statistics [Frö88, FRS89, Lon92].

Despite this widespread interest in the Yang-Baxter equation, only relatively little is known about its solutions, and in particular about its unitary solutions, which are very difficult to find in general. In dimension $d = 2$, all solutions are known [Hie92] but already for $d = 3$, this is no longer the case. For special classes of solutions, see e.g. [GJ89, Byt19].

The only general class of R-matrices that seems to be under good control are the involutive R-matrices (that is, $R^2 = 1$) which have recently been completely classified by one of us [LPW19] up to an equivalence relation originating from algebraic quantum field theory [AL17]. This classification relied crucially on
the fact that involutive R-matrices define extremal characters of the infinite symmetric group, a classification of which is known [Tho64].

This state of affairs provides one of the main motivations for this article: To develop tools that can be used to understand the set of R-matrices in the vastly more general non-involutive case. Although often times the braid group representations associated with an R-matrix are emphasized, these are by no means the only interesting algebraic structure attached to an R-matrix, and in this article, our focus is on certain endomorphisms and subfactors defined by R.

In order to introduce these endomorphisms, we recall some facts about the Cuntz algebras, see Section 2 for precise definitions and details. The Cuntz algebras \mathcal{O}_d, $d \in \{2, 3, \ldots\}$ [Cun77] are a family of C^*-algebras that play a prominent role in various fields – for example, in superselection theory and duality for compact groups [DR87], wavelets [BJ99], and twisted cyclic cocycles in noncommutative geometry [CPR10], to name just a very few samples from different areas.

There are two fundamental features of \mathcal{O}_d that underlie the main concept of this article: First, its unitary elements $u \in \mathcal{U}(\mathcal{O}_d)$ are in bijection with its (unital, *)-endomorphisms $\lambda_u \in \mathrm{End}(\mathcal{O}_d)$ [Cun80]. As \mathcal{O}_d is a simple C^*-algebra, these are automatically injective. Second, the Cuntz algebra \mathcal{O}_d can be thought of as being generated by a d-dimensional Hilbert space V, namely it contains all linear maps $V^\otimes n \to V^\otimes m$, $n, m \in \mathbb{N}_0$. In particular, there is a UHF subalgebra \mathcal{F}_d isomorphic to the infinite C^*-tensor product of $\mathrm{End} V$.

In view of these facts, we may view an R-matrix R, which is in particular a unitary element of $\mathrm{End}(V \otimes V)$, as a unitary in \mathcal{O}_d (with $d = \dim V$) and consider the corresponding endomorphism $\lambda_R \in \mathrm{End} \mathcal{O}_d$. They will be called Yang-Baxter endomorphisms, and their analysis is the main subject of this paper.

The Cuntz algebra \mathcal{O}_d can be completed in a natural way to a type $\mathrm{III}_{1/d}$ factor \mathcal{M}, and its subalgebra \mathcal{F}_d completes to a type II_1 factor $\mathcal{N} \subset \mathcal{M}$. Any endomorphism of the form λ_u with $u \in \mathcal{U}(\mathcal{F}_d)$ leaves the UHF subalgebra $\mathcal{F}_d \subset \mathcal{O}_d$ invariant, extends to endomorphisms of their weak closures \mathcal{M} and \mathcal{N} (all denoted by the same symbol λ_u), and thus provides us with the subfactors

$$\lambda_u(\mathcal{M}) \subset \mathcal{M}, \quad \lambda_u(\mathcal{N}) \subset \mathcal{N}.$$

These and related subfactors have been studied by several researchers, often times with the aim of determining their indices [CP96, Ake97, Izu93].

Whereas general endomorphisms of Cuntz algebras have a very rich structure with many different facets [CRS10, CS11], Yang-Baxter endomorphisms (that is, $u = R \in \mathcal{R}(d)$) and their subfactors have more special properties. For instance, as an additional structure present in the Yang-Baxter case there is a von Neumann algebra $\mathcal{L}_R \subset \mathcal{N}$ generated by the braid group representation associated with R, and λ_R restricts to the canonical endomorphism φ on \mathcal{L}_R. We will show that \mathcal{L}_R is a factor, so that any R-matrix R provides us with yet another subfactor

$$\varphi(\mathcal{L}_R) \subset \mathcal{L}_R.$$

We are thus in a situation where to any R-matrix we may associate various operator-algebraic structures, derived from their endomorphisms. On the one
hand, these data provide interesting invariants of R-matrices (such as Jones indices, commuting squares, fixed point algebras, etc.) that go beyond the trivial spectral and dimension data of the R-matrix itself. On the other hand, the analysis of Yang-Baxter endomorphisms contributes to the understanding of endomorphisms of \(O_d\) in general, which is an area in full swing on its own.

Since this is a long article, we now give a fairly detailed overview of its contents and main results.

Section 2 introduces R-matrices, Cuntz algebras, and the associated von Neumann algebras \(L_R \subset \mathcal{N} \subset \mathcal{M}\) in more detail. We recall in particular that if one takes \(R\) to be one of the most basic R-matrices, namely the tensor flip \(F\), one obtains the canonical endomorphism \(\varphi = \lambda_F \in \text{End} O_d\), acting as a shift on the UHF subalgebra. Drawing on the interplay of \(\lambda_R\) and \(\varphi\), we give three different characterizations of the subset of Yang-Baxter endomorphisms of \(\text{End} O_d\) (Prop. 2.3), two of which are due to Cuntz [Cun98] and one of us [CHS12], respectively. A notable feature is that a Yang-Baxter endomorphism is an automorphism if and only if \(R\) is a multiple of the identity (Cor. 2.5).

With the framework set up in this manner, we consider in Section 3 the three towers of relative commutants of the subfactors (1.2) (for \(u = R \in \mathcal{R}(d)\)) and (1.3). We give explicit characterizations of all three relative commutants. The characterizations of the relative commutants of (1.2) rely strongly on results from [CP96, Ake97, Lon94], but the characterization of the relative commutant \(\mathcal{L}_{R,n} := \varphi^n(\mathcal{L}_R)' \cap \mathcal{L}_R\) (Prop. 3.5) is new: We characterize it as an intersection of \(\mathcal{L}_R\) with a matrix algebra, and as the fixed point algebra of \(\mathcal{L}_R^{\varphi^n(R)}\), reminiscent of work of Gohm and Köstler in noncommutative probability [GK09].

The section concludes with a structural result on the algebras \(\mathcal{L}_{R,n}\): For any \(n \in \mathbb{N}\), the diagrams

\[
\begin{align*}
\mathcal{F}_d^n & \subset \mathcal{N} & \varphi^n(\mathcal{N}) & \subset \mathcal{N} \\
\cup & \cup & \cup & \cup \\
\mathcal{L}_{R,n} & \subset \mathcal{L}_R & \varphi^n(\mathcal{L}_R) & \subset \mathcal{L}_R
\end{align*}
\]

(1.4)

are commuting squares (Thm. 3.8), where \(\mathcal{F}_d^n\) is the subalgebra of \(\mathcal{F}_d\) isomorphic to \(\text{End} V^\otimes n\). This implies in particular that the left inverses of \(\lambda_R\) and \(\varphi\) coincide on \(\mathcal{L}_R\), and is later used as a basic tool for computing braid group characters and invariants for \(R\).

Section 4 discusses three algebraic operations on the set of all R-matrices: A tensor product, Wenzl's cabling powers [Wen90], and a kind of direct sum. We relate these operations on R-matrices \(R\) to operations on Yang-Baxter endomorphisms \(\lambda_R\): The tensor product of R-matrices turns out to correspond to the tensor product of endomorphisms (on the level of the \(\text{II}_1\) factor \(\mathcal{N}\)) and the cabling power \(R^{(n)}\) turns out to correspond to the \(n\)-fold power \(\lambda_R^n\) (again, on the type \(\text{II}_1\) factor). At the time of writing, our understanding of the “box sum” \(R \boxplus S\) on the level of endomorphisms is still incomplete, but we show how it is reflected in the relative commutant of \(\lambda_{R_S}\).

In Section 5 we introduce three equivalence relations on R-matrices \(R,S \in \mathcal{R}(d)\), each of which formalizes that one of their subfactors (1.2), (1.3) are equivalent. Several different scenarios for these equivalences are discussed. The
equivalence relation relating to the L_R-subfactor (1.3), denoted \sim, is taken from [LPW19] and shown to exactly capture the braid group character defined by R. We compare with the classification of involutive R-matrices in Section 5.1 and prove that equivalent R-matrices $R \sim S$ have similar partial traces. In this context, we also show that the left and right partial traces of an R-matrix always coincide and are normal (Thm. 5.10), which provides direct information on the R-matrices themselves.

Section 6: As a unital normal endomorphism of the type III factor \mathcal{M} with finite-dimensional relative commutant, a Yang-Baxter endomorphism can be decomposed into finitely many irreducible endomorphisms of \mathcal{M}, unique up to inner automorphisms (i.e. as sectors in quantum field theory language) [Lon89, Lon91]. The main difficulty is that the decomposition of a Yang-Baxter endomorphism does typically not respect the Yang-Baxter equation, that is, its irreducible components are no longer of Yang-Baxter form. Nonetheless, such a decomposition provides information on the underlying R-matrix; for example we find upper and lower bounds on the minimal and Jones indices of the subfactors (1.2) in terms of spectral data of R and its partial trace (Cor. 6.2). Another corollary is that an R-matrix whose eigenvalues are concentrated in a sufficiently small disk around 1 is necessarily the identity (Cor. 6.5).

In Section 6.1, we present a reduction scheme that does respect the Yang-Baxter structure and works directly on the level of the R-matrix by restricting it to tensor product subspaces defined by projections in the relative commutant $\lambda_R(\mathcal{M})' \cap \mathcal{M}$. This scheme is currently under control for the special class of involutive R-matrices and sheds new light on the classification of involutive R-matrices from the point of view of endomorphisms.

Section 7 is about fixed points of Yang-Baxter endomorphisms. Our first result in this direction is that on the level of the type II factor \mathcal{N}, the relative commutant $L_R' \cap \mathcal{N}$ coincides with the fixed point algebra \mathcal{N}^{λ_R} (Prop. 7.1). Moreover, λ_R is ergodic as an endomorphism of \mathcal{M} if and only if it is ergodic in restriction to \mathcal{N} (Prop. 7.3). This structure enables us to obtain a clear picture of ergodicity and fixed point algebras for Yang-Baxter endomorphisms which is not known for general elements of $\text{End} \mathcal{O}_d$ or $\text{End} \mathcal{M}$. In particular, we give a complete characterization of ergodic Yang-Baxter endomorphisms in Thm. 7.5 in terms of a condition that only involves the adjoint action of R on $\text{End} \mathcal{V}$. We also explain that ergodicity on the level of the C^*-algebras \mathcal{O}_d or \mathcal{F}_d is quite different from ergodicity on the level of the corresponding von Neumann algebras \mathcal{M} or \mathcal{N}.

The article concludes in Section 8, devoted to an analysis of the family of all R-matrices of dimension $d = 2$. Strengthening a theorem of Dye [Dye03] (building on Hietarinta’s classical [Hie93]), we show that $\mathcal{R}(2)$ is the disjoint union of four families that could be called trivial R-matrices, diagonal R-matrices, off-diagonal R-matrices, and a special case (see Thm. 8.1 for details). We then use the results of the previous sections to analyse the properties of the corresponding endomorphisms in detail. In particular, we discuss the special case, an R-matrix that has appeared in various places in the literature (see, for example [CF00, FRW06, RS87]), explain why it is special from the point
of view of endomorphisms, and compute its (infinite-dimensional) fixed point algebra N^{tr}.

As mentioned before, we expect that the results in this article will be important for the classification of R-matrices, or a more detailed analysis of the structure of $\mathcal{R} = \bigcup_{d \in \mathbb{N}} \mathcal{R}(d)$, a topic that is not touched upon in the present work. Another interesting aspect not covered is the C^*-tensor category naturally generated by an R-matrix, to which we hope to return in a future investigation.

2. R-matrices and Cuntz algebras

The algebraic structures investigated in this article are all derived from unitary solutions of the Yang-Baxter equation (YBE), which we will refer to as R-matrices.

Definition 2.1. Let V be a finite dimensional Hilbert space. An R-matrix on V is a unitary $R : V \otimes V \to V \otimes V$ such that

\begin{equation}
(R \otimes \text{id}_V)(\text{id}_V \otimes R)(R \otimes \text{id}_V) = (\text{id}_V \otimes R)(R \otimes \text{id}_V)(\text{id}_V \otimes R).
\end{equation}

The dimension of R is defined as $\dim R := \dim V$. The set of all R-matrices on Hilbert spaces of dimension $d \in \mathbb{N}$ is denoted $\mathcal{R}(d)$, and the set of all R-matrices (of any dimension) is denoted \mathcal{R}.

Many examples of R-matrices exist, but the general structure of \mathcal{R} is not known. Very simple R-matrices that can be produced in any dimension are multiples of the identity, $R = q \cdot 1$ (such R-matrices will be called trivial), and multiples of the tensor flip, i.e. $R = q \cdot F$, where $F(v \otimes w) = w \otimes v$, $v, w \in V$. Here q lies in \mathbb{T}, the unit circle in the complex plane. As is well known and will be recalled later, any R-matrix, to which we hope to return in a future investigation.

As mentioned before, we expect that the results in this article will be important for the classification of R-matrices, or a more detailed analysis of the structure of the braiding.

The Cuntz algebra \mathcal{O}_d, $d \in \mathbb{N}$, is the unital C^*-algebra generated by d isometries S_1, \ldots, S_d such that $S_i^* S_j = \delta_{ij} 1$ and $\sum_{i=1}^d S_i S_i^* = 1$ [Cun77]. Using standard notation for multi-indices $\mu = (\mu_1, \ldots, \mu_n)$, we set $S_{\mu} := S_{\mu_1} \cdots S_{\mu_n}$ and refer to $|\mu| := n$ as the length of μ.

The subalgebra $\mathcal{F}_d^n := \text{span}\{S_{\mu} S_{\nu}^* : |\mu| = |\nu| = n\}$ is naturally isomorphic to the n-fold tensor power $M_d^\otimes n$ of the full matrix algebra M_d. In particular, we may view R-matrices $R \in \mathcal{R}(d)$ as elements of $\mathcal{F}_d^2 \subset \mathcal{O}_d$. The norm closure of the increasing family $\mathcal{F}_d^0 \subset \mathcal{F}_d^1 \subset \cdots$ is a UHF algebra of type d^∞ which we denote \mathcal{F}_d.

A richer class of examples is presented in Def. 2.10.

We will suppress this isomorphism in our notation. For instance, the matrix units $E_{ij} \in M_d$ are identified with the Cuntz algebra elements $S_i S_j^* \in \mathcal{F}_d^1$, and $R \in M_d \otimes M_d$ is identified with $R = \sum_{i,j,k,l=1}^d R_{ijkl}^q S_i S_j S_k S_l^* \in \mathcal{F}_d^2$, where $R_{ijkl}^q = (e_i \otimes e_j, R(e_k \otimes e_l))$ and $\{e_i\}_{i=1}^d$ is the standard basis of C^d.

\footnote{1}
An important feature of \mathcal{O}_d that we will rely on throughout is that its unitary elements $u \in \mathcal{U}(\mathcal{O}_d)$ are in bijection with its (unital, injective) endomorphisms $\lambda_u \in \text{End} \mathcal{O}_d$ \cite{Cun80}. On generators, the endomorphism λ_u corresponding to $u \in \mathcal{U}(\mathcal{O}_d)$ is defined by

$$\lambda_u(S_i) := u S_i,$$

and every endomorphism of \mathcal{O}_d is of this form.

We can now introduce our central object of interest.

Definition 2.2. A Yang-Baxter endomorphism of \mathcal{O}_d is an endomorphism of the form λ_R, $R \in \mathcal{R}(d)$.

An important example is the so-called canonical endomorphism $\varphi := \lambda_F$ given by the flip F, which takes the explicit form $\varphi(x) = \sum_{i=1}^d S_i x S_i^*$, $x \in \mathcal{O}_d$. This endomorphism satisfies $S_i x = \varphi(x) S_i$ for all $x \in \mathcal{O}_d$ and $i = 1, \ldots, d$, and restricts to the one-sided shift $x \mapsto id_{M_d} \otimes x$ on the infinite tensor product UHF algebra $\mathcal{F}_d \simeq M_d \otimes M_d \otimes \ldots$, which indicates its relevance for R-matrices in view of (2.1). In fact, the YBE takes the form

$$R \varphi(R)R = \varphi(R)R \varphi(R) \tag{2.2}$$

when R is viewed as an element of $\mathcal{F}_d^2 \subset \mathcal{O}_d$.

Without further mentioning, we will often use two basic consequences of the definition of λ_u (for general unitary $u \in \mathcal{U}(\mathcal{O}_d)$) and φ: The composition law

$$\lambda_u \lambda_v = \lambda_{u(vu)} \tag{2.3}$$

and an explicit formula for the action of λ_u on \mathcal{F}_d^n: Given arbitrary unitary $u \in \mathcal{U}(\mathcal{O}_d)$ and an integer $n \geq 1$, we define two elements of \mathcal{F}_d^{n+1},

$$u_n := u \varphi(u) \cdots \varphi^{n-1}(u), \quad n u := \varphi^{n-1}(u) \cdots u = (u^*)^n \tag{2.4}$$

and see that

$$\lambda_u(x) = (\text{ad} u_n)(x) \quad \text{for} \ x \in \mathcal{F}_d^k, \quad n \geq k, \tag{2.5}$$

$$\lambda_u(x) = \lim_{n \to \infty} (\text{ad} u_n)(x) \quad \text{for} \ x \in \mathcal{F}_d. \tag{2.6}$$

The latter limit exists in the norm topology of \mathcal{O}_d \cite{Cun98}, and we note that for $u \in \mathcal{F}_d$, the endomorphism λ_u leaves \mathcal{F}_d invariant, $\lambda_u(\mathcal{F}_d) \subset \mathcal{F}_d$.

We now recall some properties and characterizations of Yang-Baxter endomorphisms and add a new one.

Proposition 2.3. Let $R \in \mathcal{U}(\mathcal{F}_d^2)$. The following conditions are equivalent:

a) $R \in \mathcal{R}(d)$, namely $R \varphi(R) R = \varphi(R) R \varphi(R)$,

b) $\lambda_R(R) = \varphi(R) \ [\text{Cun98}]$,

c) R commutes with every element $x \in \lambda_R^2(\mathcal{O}_d)$ \cite{CHS12},

d) $\lambda_R^2 = \lambda_{\varphi(R)R}$.

Proof. The equivalence a) \iff b) was shown in \cite{Cun98}, and a) \iff c) was shown in \cite{CHS12}. To show a) \iff d), note that one has for any $R \in \mathcal{U}(\mathcal{F}_d^2)$

$$\lambda_R^2 = \lambda_{R \varphi(R) R} = \lambda_{R \varphi(R) R \varphi(R) R} = \lambda_{R \varphi(R) R \varphi(R) R},$$

which coincides with $\lambda_{\varphi(R)R}$ if and only if $R \varphi(R) R \varphi(R)^* = \varphi(R) R$. This condition is clearly equivalent to the YBE as expressed in a).
Remark 2.4. Characterization c) could be phrased as $R \in (\lambda^2_R, \lambda^3_R)$ in standard notation for intertwiner spaces for endomorphisms, which emphasizes the similarity of our setup to algebraic quantum field theory and subfactors [DHR71, Lon92, FRS89]. We reserve this notation for a von Neumann algebraic version introduced later on.

It is a natural question to ask whether Yang-Baxter endomorphisms can be automorphisms, i.e. surjective. Whereas it is well known and easy to check that for $u \in F_1^d$, the associated endomorphism λ_u is an automorphism, with inverse $\lambda_u^{-1} = \lambda_{u^*}$, the problem to recognize which endomorphisms λ_u are automorphisms is delicate in general [CS11]. For Yang-Baxter endomorphisms the answer is however a straightforward consequence of Prop. 2.3 c) [CHS12].

Corollary 2.5. A Yang-Baxter endomorphism λ_R is an automorphism if and only if R is trivial.

Proof. If λ_R is an automorphism, then so is λ^2_R, and hence $\lambda^2_R(O_d) = O_d$. But R commutes with $\lambda^2_R(O_d)$, and O_d has trivial center. Hence R is trivial. The other direction is evident. \hfill \Box

With the help of the canonical endomorphism φ, we may also conveniently introduce the previously mentioned braid group representations associated with $R \in R(d)$. Let $B_n = \langle b_1, \ldots, b_{n-1} \rangle$ denote the braid group on n strands with its standard Coxeter generators b_i, and let B_∞ denote the infinite braid group, namely the inductive limit of the family $B_n \subset B_{n+1} \subset \ldots$. Given $R \in R(d)$, the multiplicative extension of

$$
\rho_R(b_k) := \varphi^{k-1}(R) \in F_d^{k+1} \subset F_d, \quad k \in \mathbb{N},
$$

is a group homomorphism $\rho_R : B_\infty \to \mathcal{U}(\mathcal{F}_d)$. We will frequently consider the C^*-algebra generated by ρ_R, namely

$$
\mathcal{B}_R := C^*\{\varphi^n(R) : n \in \mathbb{N}_0\} \subset \mathcal{F}_d,
$$

and the closely related C^*-algebras

$$
\mathcal{A}_R := \{x \in \mathcal{O}_d : \lambda_R(x) = \varphi(x)\}, \quad \mathcal{A}_R^{(0)} := \mathcal{A}_R \cap \mathcal{F}_d.
$$

Lemma 2.6. Let $R \in R(d)$ be an R-matrix and λ_R its corresponding Yang-Baxter endomorphism.

a) $\mathcal{B}_R \subset \mathcal{A}_R^{(0)}$, i.e.

$$
\lambda_R(x) = \varphi(x), \quad x \in \mathcal{B}_R.
$$

b) λ_R restricts to an endomorphism of \mathcal{F}_d, \mathcal{A}_d, $\mathcal{A}_d^{(0)}$, and \mathcal{B}_R.

c) For any $n \in \mathbb{N}$, one has

$$
\lambda_R^n = \lambda_{n,R} = \lambda_{\rho_R(b_n \cdots b_1)}, \quad n \in \mathbb{N}.
$$

3These automorphisms are usually referred to as quasi-free automorphisms [Eva80].
Proof. We first prove that \(\lambda_R \) restricts to \(\mathcal{A}_R \), and to this end recall that for general \(u \in \mathcal{U}(\mathcal{O}_d) \), one has \(\lambda_u \circ \varphi = \text{ad} u \circ \varphi \circ \lambda_u \). This implies that if \(x \in \mathcal{O}_d \) satisfies \(\lambda_R(x) = \varphi(x) \), then

\[
\lambda_R(\lambda_R(x)) = \lambda_R(\varphi(x)) = R \varphi(\lambda_R(x)) R^* = R \varphi(\varphi(x)) R^* = \varphi(\varphi(x)) = \varphi(\lambda_R(x)),
\]

where the next to last step follows from the general fact that \(\mathcal{F}_d^0 \) commutes with \(\varphi^n(\mathcal{O}_d) \).

This argument yields \(\lambda_R(\mathcal{A}_R) \subseteq \mathcal{A}_R \). As \(R \in \mathcal{F}_d \), we also have \(\lambda_R(\mathcal{F}_d) \subseteq \mathcal{F}_d \) and therefore \(\lambda_R(\mathcal{A}_d(0)) \subseteq \mathcal{A}_d(0) \) as well.

Regarding \(\mathcal{B}_R \), the argument (2.12) can be used to prove \(\lambda^n_R(R) = \varphi^n(R) \) by induction in \(n \in \mathbb{N} \), the case \(n = 1 \) being settled by Prop. 2.3 b). This implies, \(n \in \mathbb{N}_0 \),

\[
\lambda_R(\varphi^n(R)) = \lambda_R^{n+1}(R) = \varphi^{n+1}(R) = \varphi(\varphi^n(R)).
\]

As \(\mathcal{B}_R \) is generated by \(\varphi^n(R) \), \(n \in \mathbb{N}_0 \), we have shown both a) and b).

For c), we note that \(nR = \varphi^{n-1}(R) \cdots R = \rho_R(b_n \cdots b_1) \) by definition of \(nR \) and \(\rho_R \), and carry out another induction in \(n \) to show \(\lambda^n_R = \lambda_{\rho_R(b_n \cdots b_1)} \). In fact,

\[
\lambda_R^{n+1} = \lambda_R \lambda_{\rho_R(b_n \cdots b_1)} = \lambda_{\lambda_R(\varphi^{n-1}(R) \cdots R)} = \lambda_{\varphi^n(R) \cdots R} = \lambda_{\rho_R(b_n \cdots b_1)}. \qed
\]

Remark 2.7. For general \(R \), the algebra \(\mathcal{A}_R \) is not contained in \(\mathcal{F}_d \) (take \(R = F \) with \(\mathcal{A}_F = \mathcal{O}_d \) as a counterexample). We also mention that our later results will imply that in general, \(\mathcal{A}_d(0) \) is strictly larger than \(\mathcal{B}_R \). In the special case \(R = F \), the \(\mathcal{C}^* \)-algebra \(\mathcal{B}_F \) has been shown in [DR87] to be equal to \(\mathcal{O}_{U(d)} \), namely the fixed point algebra of \(\mathcal{O}_d \) under the canonical action of \(U(d) \) by quasi-free automorphisms.

Any \(\mathcal{R} \)-matrix defines several \(\mathcal{C}^* \)-algebra inclusions, namely \(\lambda_R(\mathcal{O}_d) \subseteq \mathcal{O}_d \), \(\lambda_R(\mathcal{F}_d) \subseteq \mathcal{F}_d \), \(\lambda_R(\mathcal{B}_R) = \varphi(\mathcal{B}_R) \subseteq \mathcal{B}_R \), etc. We now recall further structure that will allow us to promote these inclusions to subfactors of von Neumann algebras.

Trivial \(\mathcal{R} \)-matrices \(\mathcal{R} = d^{-it_1}, t \in \mathbb{R} \), define a \(\frac{2\pi}{\log d} \)-periodic one-parameter group of automorphisms \(\sigma_t := \lambda_d^{-it_1} \) of \(\mathcal{O}_d \), and we define the spectral subspaces

\[
\mathcal{O}_d^{(n)} := \{ x \in \mathcal{O}_d : \sigma_t(x) = d^{-itn}x \}, \quad n \in \mathbb{Z}.
\]

Sometimes it will be more convenient to work with a rescaled version of \(\sigma \), namely the \((2\pi) \)-periodic gauge action \(\alpha_t := \sigma_{-it/\log d} = \lambda_{e^{it}} \).

One has \(\mathcal{O}_d^{(0)} = \mathcal{F}_d \), and \(E^0 : \mathcal{O}_d \to \mathcal{F}_d \), \(E^0(x) := \frac{1}{2\pi} \int_{0}^{2\pi} \alpha_t(x) dt \) is a conditional expectation onto the UHF subalgebra.

Viewing \(\mathcal{F}_d \) as an infinite tensor product, we have the canonical normal normalized trace state \(\tau : \mathcal{F}_d \to \mathbb{C} \), and define \(\omega := \tau \circ E^0 \). This is a KMS state on \(\mathcal{O}_d \) with modular group \(\sigma_t \), \(t \in \mathbb{R} \), and we denote the von Neumann algebras generated by its GNS representation \((\pi_\omega, \mathcal{H}_\omega, \Omega_\omega) \) as

\[
\mathcal{M} := \pi_\omega(\mathcal{O}_d)'', \quad \mathcal{N} := \pi_\omega(\mathcal{F}_d)'' \subset \mathcal{M}.
\]

It is well known that \(\mathcal{M} \) is a factor of type \(\text{III}_{1/d} \) and \(\mathcal{N} \) is a factor of type \(\text{II}_1 \). We will use the same symbols \(\omega, \tau \) and \(E^0 : \mathcal{M} \to \mathcal{N} \) [Haa89] to denote the extensions of these maps to the weak closures \(\mathcal{M} \) and \(\mathcal{N} \).
For our purposes, it is important to note that for any \(u \in \mathcal{F}_d \) (and in particular, for any R-matrix), the corresponding endomorphism \(\lambda_u \) extends to a normal endomorphism of \(\mathcal{M} \) leaving \(\omega \) invariant \([Lon94]\). Also here, we will use the same symbol for the extension.

To complete the picture, we also introduce the von Neumann algebra \(\mathcal{L}_R \) generated by the \(C^* \)-algebra \(\mathcal{B}_R \) corresponding to some R-matrix \(R \in \mathcal{R} \), i.e.

\[
\mathcal{L}_R := \pi_\omega(\mathcal{B}_R)' \subset \mathcal{N} \subset \mathcal{M}.
\]

As an immediate consequence of \((2.10)\), we observe

\[
\lambda_R|_{\mathcal{L}_R} = \varphi|_{\mathcal{L}_R}.
\]

Further structural elements relevant for our analysis are conditional expectations and left inverses. Because \(\lambda_R \) commutes with the modular group, Takesaki’s theorem provides us with a unique \(\omega \)-preserving conditional expectation \(E_R : \mathcal{M} \to \lambda_R(\mathcal{M}) \), which is faithful and normal and has the form

\[
E_R = \lambda_R \circ \varphi_R
\]

with \(\varphi_R \) the corresponding \(\omega \)-preserving left inverse of \(\lambda_R \). Recall that \(\varphi_R : \mathcal{M} \to \mathcal{M} \) is a completely positive normal linear map that satisfies

\[
\varphi_R(\lambda_R(x)y\lambda_R(z)) = x\varphi_R(y)z, \quad x, y, z \in \mathcal{M}.
\]

These properties of \(\varphi_R \) and the limit formula \((2.6)\) imply

\[
\varphi_R(x) = \text{w-lim}_{n \to \infty} R_n^*xR_n, \quad x \in \mathcal{N}.
\]

As \(R_n \in \mathcal{L}_R \subset \mathcal{N} \), this yields in particular

\[
\varphi_R(\mathcal{N}) = \mathcal{N}, \quad \varphi_R(\mathcal{L}_R) = \mathcal{L}_R.
\]

The left inverse \(\varphi_R \) is usually difficult to evaluate explicitly. However, in the case of the flip \(R = F \), one finds \(\varphi_F(x) = \frac{1}{d} \sum_{k=1}^d S_k^*xS_k \), \(x \in \mathcal{M} \), which restricts to the normalized partial trace on the first tensor factor on \(\mathcal{N} \cong M_d \otimes M_d \otimes \ldots \), namely

\[
\varphi_F(a_1 \otimes a_2 \otimes a_3 \ldots) = \tau(a_1) \cdot a_2 \otimes a_3 \otimes \ldots, \quad a_i \in M_d.
\]

We summarize these structures in the following proposition in terms of commuting squares of von Neumann algebras \([GdlHJ89]\).

Proposition 2.8. Let \(R \in \mathcal{R}(d) \) and consider the diagram

\[
\begin{array}{ccc}
\lambda_R(\mathcal{M}) & \subset & \mathcal{M} \\
\mathcal{M} & \cup & \mathcal{L}_R \\
\lambda_R(\mathcal{N}) & \subset & \mathcal{N} \\
\mathcal{N} & \cup & \mathcal{L}_R \\
\varphi(\mathcal{L}_R) & \subset & \mathcal{L}_R \\
\end{array}
\]

\text{a) All von Neumann algebras in the diagram are hyperfinite factors. } \mathcal{M}, \lambda_R(\mathcal{M}) \text{ are of type } III_{1/d} \text{ and } \mathcal{N}, \lambda_R(\mathcal{N}) \text{ are of type } II_1. \text{ If } R \text{ is non-trivial, } \mathcal{L}_R, \varphi(\mathcal{L}_R) \text{ are of type } II_1 \text{ as well.}

\text{b) Both squares in the diagram are commuting squares.}
Proof. a) All we need to show is that \mathcal{L}_R is a factor. So let $x \in \mathcal{L}_R \cap \mathcal{L}'_R$. Then x commutes with $R_n \in \mathcal{L}_R$ for all $n \in \mathbb{N}$, and we have $\lambda_R(x) = \lim_n (\text{ad } R_n)(x) = x$. But since λ_R restricts to φ on \mathcal{L}_R, we get $\varphi(x) = \lambda_R(x) = x$. The canonical endomorphism φ is well known to have only trivial fixed points, hence $x \in \mathbb{C}1$.

b) By Takesaki’s theorem, the conditional expectation $E_R : \mathcal{M} \to \lambda_R(\mathcal{M})$ commutes with the modular group. This implies that $E_R(\mathcal{N}) \subset \mathcal{N} \cap \lambda_R(\mathcal{M}) = \lambda_R(\mathcal{N})$, i.e. the upper square in the diagram is a commuting square.

Recall that for $x \in \mathcal{N}$, we have $\phi_R(x) = w\text{-lim}_n (\text{ad } R_n^*)(x)$. As $R_n \in \mathcal{L}_R$, this directly gives invariance of \mathcal{L}_R under ϕ_R, and therefore $E_R(\mathcal{L}_R) \subset \lambda_R(\mathcal{L}_R) = \varphi(\mathcal{L}_R)$. This shows that the lower square in (2.22) is a commuting square. \Box

Remark 2.9. As just demonstrated, any R-matrix provides us with (at least) three subfactors. Let us point out that the \mathcal{M}- and \mathcal{N}-subfactors contain only partial information about R as an R-matrix. For example, let $R = F$ be the flip, $u \in U(\mathcal{F}_{d}^{1})$ non-trivial, and $\alpha := \lambda_u \in \text{Aut } \mathcal{M}$. Then $\lambda_R \alpha = \lambda_S$ with $S = \varphi(u)F$.

Diagonalizing u, it is easy to see that S is a diagonal R-matrix (cf. Def. 2.10 b)). Moreover, λ_R and α commute, and therefore $\lambda_R^n(\mathcal{M}) = \lambda_S^n(\mathcal{M})$, $\lambda_R^n(\mathcal{N}) = \lambda_S^n(\mathcal{N})$ for all $n \in \mathbb{N}$. But despite R and S defining identical \mathcal{M}- and \mathcal{N}-subfactors, they are quite different from each other as R-matrices, for instance $R^2 \neq 1$ and $S^2 \neq 1$.

On the other hand, the subfactors generated by the braid group representations, $\varphi(\mathcal{L}_R) \subset \mathcal{L}_R$ and $\varphi(\mathcal{L}_S) \subset \mathcal{L}_S$, differ in this example. For instance, we will see later that the first one is irreducible but the second one is not.

It is a natural question to ask what the indices of the subfactors in (2.22) are. Adopting standard notation, we will write $\text{Ind}_{E_R}(\lambda_R)$ for the index of $\lambda_R(\mathcal{M}) \subset \mathcal{M}$ taken w.r.t. the ω-invariant conditional expectation, $\text{Ind}(\lambda_R)$ for the minimal index of $\lambda_R(\mathcal{M}) \subset \mathcal{M}$ [Kos86, Hia88, Lon89], and $[\mathcal{N} : \lambda_R(\mathcal{N})]$, $[\mathcal{L}_R : \varphi(\mathcal{L}_R)]$ for the Jones indices [Jon83] of the type Π_1 subfactors $\lambda_R(\mathcal{N}) \subset \mathcal{N}$, $\varphi(\mathcal{L}_R) \subset \mathcal{L}_R$, respectively.

Independently of the Yang-Baxter equation, it is known that $\text{Ind}_{E_R}(\lambda_R) = [\mathcal{N} : \lambda_R(\mathcal{N})] \leq d^2$ [Lon89, CP96], and the preceding commuting squares result implies $[\mathcal{L}_R : \varphi(\mathcal{L}_R)] \leq [\mathcal{N} : \lambda_R(\mathcal{N})]$ by a Pimsner-Popa inequality [PP86]. We thus have

$$[\mathcal{L}_R : \varphi(\mathcal{L}_R)] \leq [\mathcal{N} : \lambda_R(\mathcal{N})] = \text{Ind}_{E_R}(\mathcal{M}) \leq d^2 < \infty.$$

New results on indices will be presented in Section 6.

We close this section by presenting a large family of R-matrices that can be built with the flip and partitions of unity.

Definition and Lemma 2.10.

a) Let $\{p_i\}_{i=1}^N$ be a partition of unity in \mathcal{F}_{d}^{1}, i.e. the p_i are orthogonal projections in \mathcal{F}_{d}^{1} such that $p_i p_j = \delta_{ij} p_i$ and $\sum_{i=1}^N p_i = 1$. Let $c_{ij} \in \mathbb{T}$, $i,j \in \{1, \ldots, N\}$, be arbitrary parameters. Then

$$R := \sum_{i=1}^N c_{ii} p_i \varphi(p_i) + \sum_{i \neq j}^N c_{ij} p_i \varphi(p_j)F$$

is an R-matrix. Such R-matrices will be referred to as simple.
b) If $R \in \mathcal{R}(d)$ is a simple R-matrix with only one-dimensional projections, i.e. $\tau(p_i) = 1/d$ for all i, then there exists a unitary $u \in \mathcal{U}(\mathcal{F}_d^1)$ such that $p_i = u S_i S_i^* u^*$, and

\begin{equation}
R = \lambda_u(DF), \quad D = \sum_{i,j=1}^{d} c_{ij} S_i S_j^* S_j^* S_i^*.
\end{equation}

Such R-matrices will be referred to as diagonal.

Proof. a) It is clear that (2.24) defines a unitary in \mathcal{F}_d^2. The verification of the Yang-Baxter equation (2.2) is a tedious but straightforward calculation that we omit here. In Section 4.3 we will see a more conceptual argument for $R \in \mathcal{R}(d)$.

b) The statement about the existence of u such that $p_i = u S_i S_i^* u^* = \lambda_u(S_i S_i^*)$ is clear, and we then also have $\varphi(p_i) = \lambda_u(\varphi(S_i S_i^*))$. We have to verify that (2.24) simplifies to (2.25) if all p_i are one-dimensional. To this end, note that $\lambda_u(F) = F$ and $S_i S_i^* \varphi(S_i S_i^*) F = S_i S_i^* \varphi(S_i S_i^*)$. We get

\begin{align*}
R &= \sum_i c_{ii} \lambda_u(S_i S_i^* \varphi(S_i S_i^*) F) + \sum_{i \neq j} c_{ij} \lambda_u(S_i S_i^* \varphi(S_j S_j^*) F) \\
&= \sum_{i,j} c_{ij} \lambda_u(S_i S_i^* \varphi(S_j S_j^*) F) = \lambda_u(DF),
\end{align*}

as claimed. \qed

We will frequently use simple R-matrices as examples. Note that trivial R-matrices are simple (choose $N = 1$, $p_1 = 1$) and the flip is diagonal (choose $N = d$, $p_i = S_i S_i^*$, $c_{ij} = 1$ for all i, j). The term “simple” should not be understood in a mathematical sense – in fact, all non-trivial simple R-matrices define reducible endomorphisms and can be decomposed into smaller R-matrices, as we shall explain later. There exist (more interesting) R-matrices that are not simple.

3. TOWERS OF ALGEBRAS ASSOCIATED WITH R-MATRICES

Having established the basic subfactors associated with R-matrices, we now turn to their analysis, in particular of their relative commutants. As the basis of our following arguments, we recall some known facts about relative commutants of localized endomorphisms (i.e., endomorphisms of the form λ_u, $u \in \mathcal{F}_d$) of Cuntz algebras.

For any two endomorphisms λ, μ of \mathcal{M}, we write

\[(\lambda, \mu) := \{ T \in \mathcal{M} : T \lambda(x) = \mu(x)T \quad \forall x \in \mathcal{M} \}\]

for the space of intertwiners from λ to μ. In particular, $(\lambda, \lambda) = (\lambda(\mathcal{M}))' \cap \mathcal{M}$ is the relative commutant of $\lambda(\mathcal{M}) \subseteq \mathcal{M}$.

For an arbitrary unitary $u \in \mathcal{U}(\mathcal{O}_d)$, one has [Lon94, Prop. 2.5]

\begin{equation}
(\lambda_u, \lambda_u) = \{ x \in \mathcal{M} : \varphi(x) = u^* x u \} = \mathcal{M}^{ad u \circ \varphi}.
\end{equation}
If, more specifically, \(u \in \mathcal{U}(\mathcal{F}_d^n) \) for some \(n \in \mathbb{N} \), one furthermore has [CP96, Prop. 4.2]

\[
(3.2) \quad (\lambda_n, \lambda_n) = \bigoplus_{k=-n+2}^{n-2} (\lambda_k, \lambda_k)^{(k)},
\]

\[
(3.3) \quad (\lambda_n, \lambda_n)^{(k)} \subset \begin{cases} (\varphi^{n-1}, \varphi^{n-1+k}) & k \geq 0 \\ (\varphi^{n-1-k}, \varphi^{n-1}) & k < 0 \end{cases}.
\]

From this we see in particular

\[
(3.4) \quad (\lambda_n, \lambda_n)^{(0)} = \lambda_n(\mathcal{M})' \cap \mathcal{N} \subset (\varphi^{n-1}, \varphi^{n-1}) = \mathcal{F}_d^{n-1},
\]

\[
(3.5) \quad (\lambda_n, \lambda_n) \subset \mathcal{F}_d^1, \quad u \in \mathcal{U}(\mathcal{F}_d^2),
\]

and note that (3.5) occurs in particular for R-matrices \(u = R \in \mathcal{U}(\mathcal{F}_d^2) \).

Having recalled these facts, we now turn to study the subfactors given by \(\lambda_R \) and introduce their relative commutants, \(n \in \mathbb{N}_0 \),

\[
\mathcal{M}_{R,n} := \lambda_R^n(\mathcal{M})' \cap \mathcal{M}, \quad \mathcal{N}_{R,n} := \lambda_R^n(\mathcal{N})' \cap \mathcal{N}, \quad \mathcal{L}_{R,n} := \varphi^n(\mathcal{L}_R)' \cap \mathcal{L}_R.
\]

Thus \(\mathcal{M}_{R,n} = (\lambda^n_R, \lambda^n_R) \), but we prefer the notation \(\mathcal{M}_{R,n} \) in order to distinguish the three different levels of relative commutants \(\mathcal{M}_{R,n}, \mathcal{N}_{R,n}, \mathcal{L}_{R,n} \).

We clearly have three ascending towers of algebras:

\[
(3.6) \quad \mathcal{C} = \mathcal{M}_{R,0} \subset \mathcal{M}_{R,1} \subset \ldots \subset \mathcal{M}_{R,n} \subset \mathcal{M}_{R,n+1} \subset \ldots \subset \mathcal{M}
\]

\[
\mathcal{C} = \mathcal{N}_{R,0} \subset \mathcal{N}_{R,1} \subset \ldots \subset \mathcal{N}_{R,n} \subset \mathcal{N}_{R,n+1} \subset \ldots \subset \mathcal{N}
\]

\[
\mathcal{C} = \mathcal{L}_{R,0} \subset \mathcal{L}_{R,1} \subset \ldots \subset \mathcal{L}_{R,n} \subset \mathcal{L}_{R,n+1} \subset \ldots \subset \mathcal{L}_R
\]

In the following, we will derive various relations/inclusions between these algebras, and realise them as fixed point algebras for certain endomorphisms. In particular, it is not clear from the outset if there are inclusions one way or the other between \(\mathcal{M}_{R,n}, \mathcal{N}_{R,n}, \mathcal{L}_{R,n} \).

We begin with the relative commutants at the highest level, i.e. the \(\mathcal{M}_{R,n} \).

Proposition 3.1. Let \(R \in \mathcal{R}(d) \) and \(n \in \mathbb{N} \). Then

\[
(3.7) \quad \mathcal{M}_{R,n} = \mathcal{M}_{R,n}^{\text{ad}_n R \varphi} = \bigoplus_{k=-n+1}^{n-1} (\mathcal{M}^{(k)})^{\text{ad}_n R \varphi},
\]

\[
(3.8) \quad \mathcal{M}_{R,n}^{(0)} = \lambda^n_R(\mathcal{M})' \cap \mathcal{N} = (\mathcal{F}_d^n)^{\text{ad}_n R \varphi} = \{ x \in \mathcal{F}_d^n : \varphi(x) = \lambda_{R^n}(x) \},
\]

and in particular for \(n = 1 \),

\[
(3.9) \quad \mathcal{M}_{R,1} = \mathcal{M}_{R,1}^{(0)} = \{ x \in \mathcal{F}_d^1 : \varphi(x) = R^* x R \}.
\]

Proof. Recall that \(\lambda^n_R = \lambda_{nR} (2.11) \) and \(nR = \varphi^{n-1}(R) \cdots \varphi(R)R \in \mathcal{F}_d^{n+1} \). Then the two equalities in the first line immediately follow from (3.1) and (3.2).

In the second line, the first equality is the definition of \(\mathcal{M}_{R,n}^{(0)} \) and the second equality follows by combining (3.1) with (3.4) and \(nR \in \mathcal{F}_d^{n+1} \). To get the last equality, note that for \(x \in \mathcal{F}_d^n \):

\[
\lambda_{R^n}(x) = \text{ad}(R^*)_n(x) = \text{ad}(nR^*)^n(x),
\]

and therefore \(x \in (\mathcal{F}_d^n)^{\text{ad}_n R \varphi} \) is equivalent to \(x \in \mathcal{F}_d^n \) with \(\varphi(x) = \text{ad}(nR^*)^n(x) = \lambda_{R^n}(x) \). The special case \(n = 1 \) now follows from the previous statements. □
As an example, we determine the structure of $\mathcal{M}_{R,1}$ for a class of simple R-matrices.

Proposition 3.2. Let R be a simple R-matrix (Def. 2.10 a)) with projections $p_1, \ldots, p_N \in \mathcal{F}_d^1$ and parameters c_{ij}, $i,j \in \{1, \ldots, N\}$, such that $c_{ij} = 1$ for $i \neq j$. Define

$$m := \{|i \in \{1, \ldots, N\} : \tau(p_i) = 1/d, \ c_{ii} = 1\|.$$

Then

$$\mathcal{M}_{R,1} \cong \mathbb{C} \oplus \ldots \oplus \mathbb{C} \oplus M_m.$$ \hspace{1cm} (3.10)

Proof. Let $x \in \mathcal{F}_d^1$. We claim that $x \in \mathcal{M}_{R,1}$ is equivalent to x satisfying the following two conditions:

a) $p_ixp_i \in \mathbb{C}p_i$ for all i.

b) Let $i \neq j$. If $\tau(p_i) > d^{-1}$ or $\tau(p_j) > d^{-1}$ or $c_{ii} \neq 1$ or $c_{jj} \neq 1$, then $p_ixp_j = 0$.

To verify this, we first calculate from the definition of R (2.24)

$$y := (\text{ad } R \circ \varphi)(x) - x$$

$$= \sum_i p_i\varphi(p_i)p_ixp_i + \sum_{i \neq j} c_{ij} p_i\varphi(p_j)p_ixp_j F + \sum_j \overline{c_{ij}} p_jxp_i\varphi(p_i)F$$

$$- \sum_i p_ixp_i\varphi(p_i) - \sum_{i \neq j} p_jxp_i\varphi(p_i) - \sum_{i \neq j} p_ixp_j\varphi(p_i).$$

Vanishing of y is equivalent to $x \in \mathcal{M}_{R,1}$. We observe that if $y = 0$, then for any i

$$0 = p_i\varphi(p_i)yp_i\varphi(p_i) = p_i\varphi(p_i)p_ixp_i - p_ixp_i\varphi(p_i).$$

Thus $x \in \mathcal{M}_{R,1}$ implies condition a).

We next consider $i \neq j$. If $y = 0$, then

$$0 = p_i\varphi(p_i)yp_j\varphi(p_i) = c_{ij} p_i\varphi(p_j)p_ixp_j F - p_ixp_j\varphi(p_i),$$

$$0 = p_j\varphi(p_j)yp_i\varphi(p_i) = \overline{c_{ij}} p_jxp_i\varphi(p_i)F - p_jxp_i\varphi(p_i).$$

It follows that if either p_i or p_j has dimension greater than 1, then $p_ixp_j = 0$. Furthermore, if p_i and p_j are one-dimensional (i.e. $\tau(p_i) = \tau(p_j) = 1/d$) and $c_{ii} \neq 1$ or $c_{jj} \neq 1$, then $p_ixp_j = 0$. That is, $x \in \mathcal{M}_{R,1}$ implies condition b).

Conversely, if a) and b) hold, it is easy to check that the above sum vanishes (term 1 cancels term 4, term 2 cancels term 6, and term 3 cancels term 5). Thus $x \in \mathcal{M}_{R,1}$ is equivalent to x satisfying a) and b).

With $I := \{i \in \{1, \ldots, N\} : \tau(p_i) = 1/d, \ c_{ii} = 1\}$ and $p := \sum_{i \in I} p_i$, we then have $x \in \mathcal{M}_{R,1}$ if and only if x is of the form

$$x = \sum_{i \in I} \alpha_i p_i + px, \quad \alpha_i \in \mathbb{C}.$$

As $|I| = m$ and $|\{1, \ldots, N\}\setminus I| = N - m$ this gives the claimed result. \hfill \Box
We see from this result that the R-matrices considered are all reducible in the sense that $\mathcal{M}_{R,1} \neq \mathbb{C}$; unless $R \in \mathbb{C}$ ($N = 1$).

In [CRS10, Prop. 2.3], it was shown that for a unitary $u \in \mathcal{U}(\mathcal{O}_d)$, one has $\lambda_u(\mathcal{F}_d) \cap \mathcal{O}_d = \bigcap_{n \in \mathbb{N}} (\text{ad } u \circ \varphi)^n(\mathcal{O}_d)$. We now present a variation of this argument which is also stated in [Ake97] to characterize the relative commutants $\mathcal{N}_{R,n}$. As [Ake97] is not published, we give most details of the proof.

Proposition 3.3. Let $R \in \mathcal{R}(d)$ and $n \in \mathbb{N}$. Then

\[
N_{R,n} = \bigcap_{k \geq 0} (\text{ad } n R \circ \varphi)^k(\mathcal{F}_d^n)
\]

is the largest subalgebra of \mathcal{F}_d^n that is globally stable under $\text{ad } n R \circ \varphi$. In particular,

\[
M_R^{(0)} \subset N_{R,n}, \quad n \in \mathbb{N}, \quad M_{R,1} \subset N_{R,1} \subset F_1.
\]

Proof. The $*$-algebra $\bigcup_{k \in \mathbb{N}} \mathcal{F}_d^k$ is weakly dense in \mathcal{N}. This implies that an element $x \in \mathcal{N}$ commutes with $\lambda_n(\mathcal{N})$ if and only if

\[
0 = [x, \lambda_n(y)] = [x, (n R)_k y (n R)_k^*] \quad \forall k \in \mathbb{N}, y \in \mathcal{F}_d^k
\]

\[
\iff 0 = [(n R)_k^* x (n R)_k, y] \quad \forall k \in \mathbb{N}, y \in \mathcal{F}_d^k
\]

\[
\iff (n R)_k^* x (n R)_k \in \mathcal{N} \cap (\mathcal{F}_d^k)' = \varphi^k(\mathcal{F}_d)
\]

\[
\iff x \in (\text{ad}(n R)_k \circ \varphi^k)(\mathcal{N}) = (\text{ad } n R \circ \varphi)^k(\mathcal{N}) \quad \forall k \in \mathbb{N}.
\]

This proves $N_{R,n} = \bigcap_{k \in \mathbb{N}} (\text{ad } n R \circ \varphi)^k(\mathcal{N})$. We next show $N_{R,n} \subset \mathcal{F}_d^n$, following [Ake97, Thm. 3.16]. Namely, we consider the isometry T on $L^2(\mathcal{N})$ that is defined by continuous extension of $\mathcal{N} \ni x \mapsto n R \varphi(x)(n R)^* \in \mathcal{N}$. Then T restricts to a unitary on $K := \bigcap_{k \geq 1} T^k L^2(\mathcal{N}) \supseteq N_{R,n}$ and we have to show $K \subset F_{d}^n$. This follows by taking into account that for $x \in \mathcal{F}_d^n$, $m \in \mathbb{N}$, one has $T^{*k} x = (\phi_F \circ \text{ad}(n R^*)^k)(x) \in \mathcal{F}_d^n$ for $k \geq m$, and the finite dimensionality of \mathcal{F}_d^n [Ake97, Lemma 3.15].

Having established $N_{R,n} \subset \mathcal{F}_d^n$, we get together with the previous result

$$N_{R,n} = \bigcap_{k \in \mathbb{N}} (\text{ad } n R \circ \varphi^k)(\mathcal{N}) \cap \mathcal{F}_d^n = \bigcap_{k \in \mathbb{N}} (\text{ad}(n R)_k \circ \varphi^k)(\mathcal{N}) \cap \mathcal{F}_d^n.$$

But inserting the definitions, one sees $(n R)_k \in \mathcal{F}_d^{n+k}$. Thus $(n R)_k \varphi^k(x)(n R)_k^* = y$ for some $y \in \mathcal{F}_d^n$ and $x \in \mathcal{N}$ implies $x \in \mathcal{F}_d^n$. That is, $(\text{ad}(n R)_k \circ \varphi^k)(\mathcal{N}) \cap \mathcal{F}_d^n = (\text{ad}(n R)_k \circ \varphi^k)(\mathcal{F}_d^n)$, and we arrive at the claimed formula (3.11).

To also get the characterization of $N_{R,n}$ as the largest subalgebra of \mathcal{F}_d^n globally invariant under $T = \text{ad } n R \circ \varphi$, it remains to show $T(N_{R,n}) = N_{R,n}$. Note that since \mathcal{F}_d^n is finite-dimensional, the sequence $\bigcap_{k=0}^m T^k(\mathcal{F}_d^n)$ stabilizes, i.e. there exists $m_0 \in \mathbb{N}$ such that $N_{R,n} = \bigcap_{k=m_0}^m T^k(\mathcal{F}_d^n)$ for all $m \geq m_0$. Thus

\[
T(N_{R,n}) = \bigcap_{k=0}^{m_0} T^{k+1}(\mathcal{F}_d^n) \supset \bigcap_{k=0}^{m_0+1} T^k(\mathcal{F}_d^n) = \bigcap_{k=0}^{m_0} T^k(\mathcal{F}_d^n) = N_{R,n},
\]

i.e. the finite-dimensional space $N_{R,n}$ is contained in its image under T. This implies $T(N_{R,n}) = N_{R,n}$.

YANG-BAXTER ENDOMORPHISMS 15
From this characterization of $N_{R,n}$, it is now obvious that it contains the fixed points $(F_d^R)^T = M_{R,n}^{(0)}$. In the special case $n = 1$, we have $M_{R,1} = M_{R,1}^{(0)}$ by (3.9).

Remark 3.4. Let us give an example showing that in general, $M_{R,1} \neq N_{R,1}$. For later use, we actually give two similar examples, both based on the flip F and a unitary $u \in F_d^1$, namely

$$ R := uF, \quad S := uFu^* = u\varphi(u^*)F. $$

Both R and S are R-matrices, as can be checked by direct verification of the Yang-Baxter equation, or by realizing that they are diagonal (Def. 2.10). For $x \in F_d^1$, we have

$$ (adR \circ \varphi)(x) = RFxR^* = uFx, $$

$$ (adS \circ \varphi)(x) = SFxS^* = u\varphi(u^*)x\varphi(u)u^* = uFx. $$

Thus F_d^1 is globally invariant under ad $R \circ \varphi$ and ad $S \circ \varphi$, and therefore $N_{R,1} = N_{S,1} = F_d^1$. But for $u \notin \mathbb{C}$, the above formula shows that not every $x \in F_d^1$ is a fixed point of ad $R \circ \varphi$ or ad $S \circ \varphi$ i.e. $M_{R,1} = M_{S,1}$ is a proper subalgebra of F_d^1.

We now move on to the relative commutants $L_{R,n}$ on the level of the von Neumann algebra L_R generated by the B_∞-representation ρ_R. In this representation, R represents the first generator $b_1 \in B_\infty$; in particular, $L_R = L_{R^*}$.

The following proposition contains in particular the fixed point characterization $L_{R,n} = L_{R}^{\lambda_{\varphi^n(R)}}$ which is similar to the work of Gohm and Köstler [GK09], where analogues of $\lambda_{\varphi^n(R)}$ are called “partial shifts”.

Proposition 3.5. Let $R \in \mathcal{R}(d)$ and $n \in \mathbb{N}_0$. Then

a) $L_{R,n} = F_d^1 \cap L_R = L_{R}^{\lambda_{\varphi^n(R)}} = M_{R,n} \cap L_R$, and all these algebras are invariant under exchanging R and R^*.

b) $C^*(\rho_R(\mathfrak{B}_n)) \subset L_{R,n}, n \geq 1$.

Proof. a) We will demonstrate the inclusions

$$ L_{R,n} \subset L_{R}^{\lambda_{\varphi^n(R)}} \subset M_{R,n} \subset L_{R^*} \subset F_d^n \cap L_{R} \subset L_{R,n}. $$

Note the appearance of R^* instead of R in the third algebra. Nonetheless, this chain of inclusions implies the claimed equalities because we have $L_R = L_{R^*}$ and may thus run through the chain of inclusions once more with R and R^* interchanged, realizing that all algebras are invariant under replacing R with R^*.

To begin with, we note that $\lambda_{\varphi^n(R)}(x), x \in \mathcal{N}$, can be written as

$$ \lambda_{\varphi^n(R)}(x) = \lim_{k \to \infty} \varphi^n(R) \cdots \varphi^{n+k}(R)x\varphi^{n+k}(R^*) \cdots \varphi^n(R^*) $$

$$ = \varphi^{n-1}(R^*) \cdots R' \lambda_R(x)R \cdots \varphi^{n-1}(R) $$

$$ = n(R^*)^\lambda_R(x)n(R^*)^*.$$

It is apparent from the first line that any $x \in \varphi^n(L_R)'$ is a fixed point of $\lambda_{\varphi^n(R)}$, i.e. we have inclusion (i).
Any \(x \in \mathcal{L}_R \) satisfies \(\lambda_R(x) = \varphi(x) \), and thus the above calculation yields
\[
\mathcal{L}_R^{\lambda_n(R)} \subset \{ x \in \mathcal{L}_R : x = (\text{ad}_n(R^*) \circ \varphi)(x) \} = \mathcal{M}_{R, n} \cap \mathcal{L}_R,
\]
where we have used Prop. 3.1. This shows the inclusion (ii).

As \(\mathcal{L}_R \subset \mathcal{N} \), we also have \(\mathcal{M}_{R, n} \cap \mathcal{L}_R = \mathcal{M}_{R, n}^{(0)} \cap \mathcal{L}_R \subset \mathcal{F}_d^n \cap \mathcal{L}_R \) by Prop. 3.1, showing inclusion (iii). Inclusion (iv) is evident because \(\mathcal{F}_d^n \) and \(\varphi^n(\mathcal{L}_R) \) commute in \(\mathcal{N} \).

b) By definition of \(\rho_R \), we have \(C^*(\rho_R(B_n)) \subset \mathcal{F}_d^n \cap \mathcal{L}_R = \mathcal{L}_{R, n} \). \(\square \)

Having clarified some of the relations of the relative commutants, in particular
\[
(3.13) \quad \mathcal{L}_{R, n} \subset \mathcal{M}_{R, n}^{(0)} \subset \mathcal{N}_{R, n} \subset \mathcal{F}_d^n, \quad n \in \mathbb{N},
\]
we comment on the action of \(\lambda_R \) and \(\phi_R \) on these three towers.

Lemma 3.6. Let \(R \in \mathcal{R}(d) \) and \(n \in \mathbb{N}_0 \). Then
\[
(3.14) \quad \lambda_R(\mathcal{M}_{R, n}) \subset \mathcal{M}_{R, n+1}, \quad \lambda_R(\mathcal{N}_{R, n}) \subset \mathcal{N}_{R, n+1}, \quad \lambda_R(\mathcal{L}_{R, n}) \subset \mathcal{L}_{R, n+1},
\]
\[
(3.15) \quad \phi_R(\mathcal{M}_{R, n+1}) = \mathcal{M}_{R, n}, \quad \phi_R(\mathcal{N}_{R, n+1}) = \mathcal{N}_{R, n}, \quad \phi_R(\mathcal{L}_{R, n+1}) = \mathcal{L}_{R, n},
\]
and
\[
(3.16) \quad R \in \mathcal{L}_{R, 2} \subset \mathcal{M}_{R, 2}^{(0)} \subset \mathcal{M}_{R, 2} \cap \mathcal{N}_{R, 2},
\]
\[
(3.17) \quad \phi_R(R) \in \mathcal{L}_{R, 1} \subset \mathcal{M}_{R, 1} \subset \mathcal{N}_{R, 1}.
\]

Proof. Since \(\mathcal{M}_{R, n} = (\lambda_R^n, \lambda_R^n) \), we clearly have \(\lambda_R(\mathcal{M}_{R, n}) \subset \mathcal{M}_{R, n+1} \), and since \(\lambda_R \) preserves the subalgebras \(\mathcal{N} \) and \(\mathcal{L}_R \) of \(\mathcal{M} \), we also have the other inclusions in (3.14). Applying the left inverse \(\phi_R \) then gives \(\mathcal{M}_{R, n} \subset \phi_R(\mathcal{M}_{R, n+1}) \), etc. Taking into account that \(\phi_R \) preserves \(\mathcal{N} \) and \(\mathcal{L}_R \) (2.20), and its bimodule property (2.18), we even get the equalities (3.15).

By Prop. 2.3 c), we have \(R \in \mathcal{M}_{R, 2} \). Since \(R \in \mathcal{L}_R \), (3.16) follows. The second equality (3.17) is then a consequence of \(\phi_R(\mathcal{L}_{R, 2}) \subset \mathcal{L}_{R, 1} \). \(\square \)

We can now conclude that the inclusion \(C^*(\rho_R(B_n)) \subset \mathcal{L}_{R, n} \) in Prop. 3.5 b) is proper in general. For example, for \(n = 1 \) the group \(B_n \) is trivial, i.e. \(C^*(\rho_R(B_1)) = \mathbb{C} \), but \(\mathcal{L}_{R, 1} \) contains \(\phi_R(R) \) which is non-trivial in general.

As an aside, we mention that it frequently happens that the braid group representations \(\rho_{R|B_n} \) factor through a finite quotient of \(B_n \) [GR14]. The most prominent example of such a quotient is the symmetric group \(S_n \); note that \(\rho_R \) factors through the symmetric groups if and only if \(R \) is involutive, i.e. \(R^2 = 1 \).

We record the following characterization of R-matrices with trivial square.

Lemma 3.7.

a) Let \(u \in \mathcal{U}(\mathcal{O}_d) \). Then \(u^2 \in \mathbb{C} \) if and only if \(u \in (\lambda_u, \varphi(u)) \).

b) Let \(R \in \mathcal{R}(d) \). Then the following conditions are equivalent:
- \(R^2 \in \mathbb{C} \);
- \(R \in (\lambda_R, \varphi(R)) \);
- \(\lambda_R \) and \(\lambda_{R^*} \) commute.
Proof. a) One has $\text{ad}(u)\lambda_n = \lambda_n^2 \varphi(u)^*$, so that it coincides with $\lambda_\varphi(u)$ if and only if $u^2 \varphi(u)^* = \varphi(u)$, i.e. $u^2 = \varphi(u^2)$. However, it is well known that φ admits no nontrivial fixed points.

b) We have $\lambda_R \circ \lambda_{R'} = \lambda_{(R')R}$ and $\lambda_{R'} \circ \lambda_R = \lambda_{(R)R'}$, hence the two endomorphisms commute if and only if $R^2 = \varphi(R^2)$. Since φ has only trivial fixed points, the conclusion follows. □

Our main results concerning the relative positions of the subalgebras $\varphi^n(L_R)$ and $L_{R,n}$ in \mathcal{N} are contained in the following theorem. The τ-preserving conditional expectation $\mathcal{N} \rightarrow \mathcal{F}_d^n$ will be denoted E_n.

Theorem 3.8. Let $R \in \mathcal{R}$ and $n \in \mathbb{N}$. Then the squares

\[
\begin{align*}
\mathcal{F}_d^n & \subset \mathcal{N} \\
\cup & \\
\mathcal{L}_{R,n} & \subset \mathcal{L}_R \\
\cup & \\
\varphi^n(\mathcal{N}) & \subset \mathcal{N} \\
\cup & \\
\varphi^n(\mathcal{L}_R) & \subset \mathcal{L}_R
\end{align*}
\]

(3.18)

commute, i.e. $E_n(L_R) = L_{R,n}$ and $\phi_R(x) = \phi_F(x)$, $x \in \mathcal{L}_R$.

The proof splits naturally into two parts, one for each diagram. The proof of the first part (left diagram) is given below. The proof of the second part (right diagram) requires more work and is best done after more structure has been introduced. It is therefore postponed to Section 5 (p. 28).

Proof (first half). Let $H_{R,n}$ denote the τ-preserving conditional expectation of $\mathcal{N}^{\lambda_{\varphi^n(R)}} \subset \mathcal{N}$. As $\mathcal{L}_R \subset \mathcal{N}$ is invariant under $\lambda_{\varphi^n(R)}$ by Prop. 3.5, the map $H_{R,n}$ restricts to the τ-preserving conditional expectation from \mathcal{L}_R onto $\mathcal{L}_{R,n} = \mathcal{L}_{R,n} = \mathcal{F}_d^n \cap \mathcal{L}_R$.

Given $x \in \mathcal{L}_R$, we want to show that $H_{R,n}(x)$ coincides with $E_n(x)$. Indeed, both $H_{R,n}(x)$ and $E_n(x)$ lie in \mathcal{F}_d^n, so we only have to show $\tau(yH_{R,n}(x)) = \tau(yE_n(x))$ for all $y \in \mathcal{F}_d^n$. But \mathcal{F}_d^n is clearly contained in the fixed point algebra $\mathcal{N}^{\lambda_{\varphi^n(R)}}$. Thus, for $x \in \mathcal{L}_R$, $y \in \mathcal{F}_d^n$,

$$\tau(yH_{R,n}(x)) = \tau(yE_n(x)) = \tau(y) = \tau(E_n(yx)) = \tau(yE_n(x)).$$

This shows $E_n(x) = H_{R,n}(x) \in \mathcal{L}_{R,n}$, which is equivalent to the left diagram being a commuting square. □

So far, we have concentrated on the “horizontal inclusions” in (3.6) and not mentioned $\mathcal{L}_R \subset \mathcal{N}$, $\mathcal{L}_R \subset \mathcal{M}$. These “vertical inclusions” are closely connected to fixed points of λ_R and will be discussed in Section 7.

4. **Algebraic operations on \mathcal{R}**

Although the structure of the set $\mathcal{R}(d)$ of all R-matrices of dimension d is not known, a number of symmetries of $\mathcal{R}(d)$ are known. For example, $R \mapsto R^*$, $R \mapsto c \cdot R$, $c \in \mathbb{T}$, $R \mapsto (u \otimes u)R(u \otimes u)^*$, $u \in \mathcal{U}(\mathcal{F}_d^1)$, and $R \mapsto FRF$ with the flip $F \in \mathcal{R}(d)$, are all bijections$^4 \mathcal{R}(d) \rightarrow \mathcal{R}(d)$.

However, it is often more interesting to consider algebraic operations that exist only on $\mathcal{R} = \bigcup_d \mathcal{R}(d)$ and do not preserve the spaces $\mathcal{R}(d)$ of R-matrices.

4The maps $R \mapsto (u \otimes u)R(u \otimes u)^*$ and $R \mapsto FRF$ will be discussed in more detail in Section 5.
of fixed dimension d. In this section, we will discuss three such structures: A tensor product $R \boxtimes S$ (with $\dim(R \boxtimes S) = \dim R \cdot \dim S$), Wenzl’s cabling powers $R^{(n)}$ (with $\dim(R^{(n)}) = (\dim R)^n$), and a sum operation $R \oplus S$ (with $\dim(R \oplus S) = \dim R + \dim S$).

On the level of R-matrices, all these operations are known. What is new in our approach is that we relate them to natural operations on the corresponding Yang-Baxter endomorphisms.

In the following, the dimension d will be explicitly indicated in our notation, i.e. we write N_d for the infinite tensor product of matrix algebras M_d, and τ_d, φ_d for its canonical trace and shift, $F_d \in \mathcal{U}(F_d^d)$ for the flip in dimension d, etc.

4.1. Tensor products of R-matrices.

Let $R \in \mathcal{R}(d) \subset \text{End}(\mathbb{C}^d \otimes \mathbb{C}^d)$, $\tilde{R} \in \mathcal{R}(d) \subset \text{End}(\mathbb{C}^d \otimes \mathbb{C}^d)$ be R-matrices. The tensor product of R, \tilde{R} is defined as

\begin{equation}
R \boxtimes \tilde{R} := F_{23}(R \otimes \tilde{R}) F_{23} \in \text{End}((\mathbb{C}^d \otimes \mathbb{C}^d) \otimes (\mathbb{C}^d \otimes \mathbb{C}^d)),
\end{equation}

where $F_{23} : \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d \rightarrow \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$ is the flip unitary exchanging the two middle factors. Evidently $R \boxtimes \tilde{R}$ is a unital R-matrix of dimension dd, i.e. $R \boxtimes \tilde{R} \in \mathcal{R}(dd)$. We will refer to $R \boxtimes \tilde{R}$ as the tensor product of R and \tilde{R} (although it slightly differs from the actual tensor product $R \otimes \tilde{R}$). It is also clear that $(R \boxtimes \tilde{R})^* = R^* \boxtimes \tilde{R}^*$, and that if both R and \tilde{R} are involutive, then so is $R \boxtimes \tilde{R}$.

From the point of view of the Cuntz algebras, we may consider $R \in \mathcal{F}_d^d$, $S \in \mathcal{F}_d^d$, and $R \boxtimes \tilde{R} \in \mathcal{F}_d^d$. The following discussion will allow us to get a precise relation between the associated subfactors.

Let \mathcal{O}_d and $\mathcal{O}_\tilde{d}$ be Cuntz algebras with canonical generators S_i, $1 \leq i \leq d$ and \tilde{S}_j, $1 \leq j \leq \tilde{d}$, respectively. Namely, all the S_i’s and \tilde{S}_j’s are isometries such that $\sum_{i=1}^d S_i S_i^* = 1$, $\sum_{j=1}^{\tilde{d}} \tilde{S}_j \tilde{S}_j^* = 1$, and $\mathcal{O}_d = C^*(S_1, \ldots, S_d)$, $\mathcal{O}_\tilde{d} = C^*(\tilde{S}_1, \ldots, \tilde{S}_\tilde{d})$.

The tensor product C^*-algebra $\mathcal{O}_d \otimes \mathcal{O}_\tilde{d}$ is generated by the elements $S_i \otimes 1$ and $1 \otimes \tilde{S}_j$, $1 \leq i \leq d$, $1 \leq j \leq \tilde{d}$. In general, $\mathcal{O}_d \otimes \mathcal{O}_\tilde{d}$ is not a Cuntz algebra.

Consider also the Cuntz algebra \mathcal{O}_{dd}, with canonical generating isometries U_{ij}, $1 \leq i \leq d, 1 \leq j \leq \tilde{d}$ such that $\sum_{i,j} U_{ij} U_{ij}^* = 1$. Since, for every $1 \leq i \leq d$ and $1 \leq j \leq \tilde{d}$, $S_i \otimes \tilde{S}_j$ is an isometry in $\mathcal{O}_d \otimes \mathcal{O}_\tilde{d}$ and, moreover, $\sum_{i,j} S_i \otimes \tilde{S}_j (S_i \otimes \tilde{S}_j)^* = \left(\sum_i S_i S_i^* \right) \otimes \left(\sum_j \tilde{S}_j \tilde{S}_j^* \right) = 1 \otimes 1$, there is an injective $*$-homomorphism

\begin{equation}
t_{dd} : \mathcal{O}_{dd} \rightarrow \mathcal{O}_d \otimes \mathcal{O}_\tilde{d},
\end{equation}

such that $t_{dd}(U_{ij}) = S_i \otimes \tilde{S}_j$.

In order to simplify the notation, in the sequel we will often drop the symbol t_{dd} and identify accordingly U_{ij} with $S_i \otimes \tilde{S}_j$. All in all, we have thus identified a copy of \mathcal{O}_{dd} inside $\mathcal{O}_d \otimes \mathcal{O}_\tilde{d}$ as the C^*-subalgebra of the tensor product generated by the isometries $S_i \otimes \tilde{S}_j$. Moreover, it is not difficult to see that

5Since \mathcal{O}_d is nuclear there is no ambiguity on the choice of the cross-norm on the algebraic tensor product.

6However, it is well known that $\mathcal{O}_2 \otimes \mathcal{O}_d \simeq \mathcal{O}_2$, for all $d \geq 2$, although none of these isomorphisms has been concretely exhibited.
$O_{\dd} = (O_d \otimes O_{\dd})^\beta$, where β denotes the 2π-periodic “twisted” \mathbb{R}-action $\beta' := \alpha_{d}^t \otimes \alpha_{\dd}^t = \lambda_{e_{d,t,1_d}} \otimes \lambda_{e_{\dd,t,1_d}}$ [Cha14, Mor17], and there exists a faithful conditional expectation $O_d \otimes O_{\dd} \rightarrow O_{\dd}$ obtained by averaging β.

Under the identification of O_{\dd} with $(O_d \otimes O_{\dd})^\beta$, there are coherent identifications of F_{\dd}^n with $F_d^n \otimes F_{\dd}^n$, $n \in \mathbb{N}$, such that

$$U_{i,j}, U_{i,j}^*, U_{i,j}^*, \ldots U_{i,j}^*, U_{i,j}^* = (S_{i_1} \otimes \tilde{S}_{j_1})(S_{i_2} \otimes \tilde{S}_{j_2}) \cdots (S_{i_n} \otimes \tilde{S}_{j_n}) (S_{i_{n'}}^* \otimes \tilde{S}_{j_{n'}}^*) \cdots (S_{i_{n''}}^* \otimes \tilde{S}_{j_{n''}}^*)^*,$$

and thus of F_{\dd}^n with $F_d^n \otimes F_{\dd}^n = O_d^n \otimes O_{\dd}^n$. For the following lemma, the Yang-Baxter equation is not needed.

Lemma 4.1.

a) Let $R \in \mathcal{U}(O_d)$ and $\tilde{R} \in \mathcal{U}(O_{\dd})$. Then $\lambda_R \otimes \lambda_{\tilde{R}} \in \text{End}(O_d \otimes O_{\dd})$ restricts to an endomorphism of O_{\dd} if and only if $R \in F_d$ and $\tilde{R} \in F_{\dd}$.

b) Let $R \in \mathcal{U}(F_\dd^2)$, $\tilde{R} \in \mathcal{U}(F_d^2)$. Then $i_{d,\dd}(R \otimes \tilde{R}) = R \otimes \tilde{R}$, and

$$\lambda R \otimes \lambda \tilde{R} |_{O_{\dd}} = \lambda_{R \otimes \tilde{R}}.$$

Proof. a) On generators, the endomorphism $\lambda_R \otimes \lambda_{\tilde{R}} \in \text{End}(O_d \otimes O_{\dd})$ acts according to $(\lambda_R \otimes \lambda_{\tilde{R}})(S_i \otimes \tilde{S}_j) = (R \otimes \tilde{R})(S_i \otimes \tilde{S}_j)$ for all i, j. Thus $\lambda_R \otimes \lambda_{\tilde{R}}$ restricts to O_{\dd}, that is $(\lambda_R \otimes \lambda_{\tilde{R}})(O_d) \subset O_{\dd}$, precisely when $R \otimes \tilde{R} \in O_{\dd}$, i.e. precisely when $\alpha_{d}^t(R) \otimes \alpha_{\dd}^t(\tilde{R}) = R \otimes \tilde{R}$ for all $t \in \mathbb{R}$. This latter condition is satisfied if and only if both R and \tilde{R} are eigenvectors for α_d and α_{\dd}, respectively, i.e. $R \in O_d^{(n)}$, $\tilde{R} \in O_{\dd}^{(n)}$ for some $n \in \mathbb{Z}$. But this is easily seen to be in conflict with the KMS condition for ω if $n \neq 0$. Thus $R \in O_d^{(0)} = F_d$, $\tilde{R} \in O_{\dd}^{(0)} = F_{\dd}$.

b) Note that the matrix elements of $R \otimes \tilde{R}$ are $(R \otimes \tilde{R})_{(\gamma,\delta)(\alpha,\beta)} = R_{\gamma,\delta}^{\alpha,\beta} R_{\gamma,\delta}^{\beta,\gamma}$, where $\alpha, \beta, \gamma, \delta \in \{1, \ldots, d\}$ and $i, j, k, l \in \{1, \ldots, d\}$. Thus

$$R \otimes \tilde{R} = \sum R_{\gamma,\delta}^{\alpha,\beta} R_{\gamma,\delta}^{\beta,\gamma} U_{\alpha,\beta} U_{\gamma,\delta}^* U_{\alpha,\beta}^* U_{\gamma,\delta} = \sum R_{\gamma,\delta}^{\alpha,\beta} R_{\gamma,\delta}^{\beta,\gamma} S_i S_j S_i^* S_j^* = R \otimes \tilde{R},$$

and the calculation in a) shows $(\lambda_R \otimes \lambda_{\tilde{R}})|_{O_{\dd}} = \lambda_{R \otimes \tilde{R}}$. \hfill \qed

Let us look at two special cases, the identity $1_d \in O_d$ and the flip $F_d \in O_{\dd}$. Then $1_d \otimes 1_{\dd} = 1_{\dd}$ and $F_d \otimes F_{\dd} = F_{\dd}$. For the canonical 2π-periodic actions of \mathbb{R}, this implies that $\lambda_{e_{d,t,1_d}} \otimes \lambda_{e_{\dd,t,1_d}} \in \text{Aut}(O_d \otimes O_{\dd})$ restricts to $\lambda_{e_{d,t,1_d}}$ on O_{\dd}, and for the canonical shifts, this implies that $\varphi_d \otimes \varphi_{\dd}$ restricts to φ_{\dd}. Indeed, for all i and j,

$$\varphi_{\dd}(S_i \otimes \tilde{S}_j) = \sum_{i', j'} (S_{i'} \otimes \tilde{S}_{j'})(S_i \otimes \tilde{S}_j)(S_{i'} \otimes \tilde{S}_{j'}),$$

Notice that the index of $\varphi_{\dd}(N_d) \subset N_{\dd}$ is d^2, so that in this example we see immediately that the index of the endomorphism associated to the tensor product $F_d \otimes F_{\dd}$ is the product of the indices of the endomorphisms given by F_d and F_{\dd}.

This is an instance of a general fact. Since \mathcal{F}_{dd} is identified with $\mathcal{F}_{d} \otimes \mathcal{F}_{d}$, the same holds on the level of the weak closures, and

\[\lambda_{R^{\otimes R}}(\mathcal{N}_{dd}) = (\lambda_{R} \otimes \lambda_{R})(\mathcal{N}_{d} \otimes \mathcal{N}_{d}) = \lambda_{R}(\mathcal{N}_{d}) \otimes \lambda_{R}(\mathcal{N}_{d}).\]

From here we readily get the multiplicativity of the Jones index under the tensor product.

Theorem 4.2. Let $R \in \mathcal{U}(\mathcal{F}_{d}^{2})$, $\tilde{R} \in \mathcal{U}(\mathcal{F}_{d}^{2})$. Then the Jones indices of the type II subfactors associated to R, \tilde{R} and $R \otimes \tilde{R}$ are related by

\[(4.5) \quad [\mathcal{N}_{dd} : \lambda_{R^{\otimes R}}(\mathcal{N}_{dd})] = [\mathcal{N}_{d} : \lambda_{R}(\mathcal{N}_{d})] \cdot [\mathcal{N}_{d} : \lambda_{\tilde{R}}(\mathcal{N}_{d})].\]

Since this result applies in particular to R-matrices, we see that the subset of the positive real line \mathbb{R}_{+} of all Jones indices arising from unitary solutions of the YBE (in any dimension) is closed under taking ordinary products.

Concerning the relative commutants associated to the tensor product, we record the following result.

Proposition 4.3. Let $R \in \mathcal{R}(d)$, $\tilde{R} \in \mathcal{R}(\tilde{d})$. Then

\[(4.6) \quad \mathcal{M}_{R,1} \otimes \mathcal{M}_{\tilde{R},1} \subseteq \mathcal{M}_{R^{\otimes R},1} \subseteq \mathcal{N}_{R^{\otimes R},1} = \mathcal{N}_{R,1} \otimes \mathcal{N}_{\tilde{R},1}.\]

Proof. On the one hand,

\[
\mathcal{M}_{R,1} \otimes \mathcal{M}_{\tilde{R},1} = \{ x \in \mathcal{F}_{d}^{1} : \lambda_{R^{\ast}}(x) = \varphi_{d}(x) \} \otimes \{ y \in \mathcal{F}_{\tilde{d}}^{1} : \lambda_{\tilde{R}^{\ast}}(y) = \varphi_{\tilde{d}}(y) \} \\
\subseteq \{ T \in \mathcal{F}_{d}^{1} \otimes \mathcal{F}_{\tilde{d}}^{1} : (\lambda_{R^{\ast}} \otimes \lambda_{\tilde{R}^{\ast}})(T) = (\varphi_{d} \otimes \varphi_{\tilde{d}})(T) \} \\
= \{ T \in \mathcal{F}_{dd}^{1} : \lambda_{(R_{R^{\otimes R})}}(T) = \varphi_{dd}(T) \} \\
= \mathcal{M}_{R^{\otimes R},1}.
\]

On the other hand,

\[
\mathcal{M}_{R^{\otimes R},1} \subseteq \mathcal{N}_{R^{\otimes R},1} = \{ T \in \mathcal{F}_{dd}^{1} : [T, \lambda_{R^{\otimes R}}(x)] = 0, \ x \in \mathcal{F}_{dd} \} \\
= \{ T \in \mathcal{F}_{d}^{1} \otimes \mathcal{F}_{\tilde{d}}^{1} : [T, (\lambda_{R} \otimes \lambda_{R})(x)] = 0, \ x \in \mathcal{F}_{d} \otimes \mathcal{F}_{\tilde{d}} \} \\
= (\lambda_{R}(\mathcal{F}_{d}) \otimes \lambda_{R}(\mathcal{F}_{d}))^{\ast} \cap (\mathcal{F}_{d}^{1} \otimes \mathcal{F}_{\tilde{d}}^{1}) \\
= (\lambda_{R}(\mathcal{N}_{d})^{\ast} \otimes \lambda_{R}(\mathcal{N}_{d})^{\ast}) \cap (\mathcal{F}_{d}^{1} \otimes \mathcal{F}_{\tilde{d}}^{1}) \\
= \mathcal{N}_{R,1} \otimes \mathcal{N}_{\tilde{R},1}.
\]

\[\square\]

4.2. Cabling powers of R-matrices. The second algebraic operation on \mathcal{R} that we want to discuss are cabling powers [RS89, Wen90]. Given $d, n \in \mathbb{N}$, we define “cabling maps” between type II$_1$-factors, $c_{n} : \mathcal{N}_{d} \to \mathcal{N}_{d^{\otimes n}}$, such that $c_{n}(\bigotimes_{i=1}^{m} M_{d}) = \bigotimes_{i=1}^{m} M_{d^{n}}$ for all $m \geq 1$, by linear and weakly continuous extension from algebraic tensor products,

\[(4.7) \quad c_{n}(\bigotimes_{i=1}^{m} x_{i}) := (\bigotimes_{i=1}^{n} x_{i}) \otimes (\bigotimes_{i=n+1}^{2n} x_{i}) \otimes \ldots \otimes (\bigotimes_{i=(m-1)n+1}^{nm} x_{i}), \quad x_{i} \in M_{d}.\]

It follows that c_{n} is an isomorphism with the properties

\[c_{n}(1) = 1, \quad \tau_{d^{\otimes n}} \circ c_{n} = \tau_{d}, \quad \varphi_{d^{\otimes n}} \circ c_{n} = c_{n} \circ \varphi_{d}, \quad c_{n}(F_{d}^{kn}) = F_{d^{k}}^{n}, \quad k \in \mathbb{N}.\]
To define the \(n \)-th cabling power of \(R \in \mathcal{R}(d) \), we also introduce

\[
_nR_n := (nR)_n = nR \cdots \varphi^{n-1}(nR) = \varphi^{n-1}(R) \cdots R \cdot \varphi^n(R) \cdots \varphi(R) \cdots \varphi^{2n-2}(R) \cdots \varphi^{n-1}(R) = n(R_n).
\]

Note that \(_nR_n \) is a unitary in \(\mathcal{F}_d^{2n} \) which satisfies \((nR_n)^* = n(R_n^*)^n\). For low \(n \), we have \(_1R_1 = R \) and \(_2R_2 = \varphi_3(R)R\varphi^2(R)\varphi(R) \). A graphical illustration of \(_3R_3 \) is given in Fig. 1.

\[\text{Figure 1. Illustration of } _3R_3 = \varphi^2(R)\varphi(R)R \cdot \varphi^3(R)\varphi^2(R)\varphi(R) \cdot \varphi^4(R)\varphi^3(R)\varphi^2(R)\]

Wenzl’s cabling powers of an \(R \)-matrix take in our setting the following form.

Definition 4.4. Let \(R \in \mathcal{R}(d) \) and \(n \in \mathbb{N} \). The \(n \)-th cabling power of \(R \) is

\[R^{(n)} := c_n(R_n) \in \mathcal{U}(\mathcal{F}_d^{2n}) \]

\(R^{(n)} \) is an \(R \)-matrix in \(\mathcal{R}(d^n) \), and \((R^{(n)})^* = (R^*)^{(n)}\).

The proof that \(R^{(n)} \in \mathcal{R}(d^n) \) can be found in [Wen90].

We now show that at least on the level of the type II factor \(\mathcal{N} \), cabling powers of \(R \)-matrices correspond to ordinary powers of their corresponding Yang-Baxter endomorphisms.

Proposition 4.5. Let \(R \in \mathcal{R}(d) \) and \(n \in \mathbb{N} \). Then

\[c_n^{-1}\lambda_{R^{(n)}}c_n)(x) = \lambda_R^n(x), \quad x \in \mathcal{N}_d.\]

In particular,

\[\mathcal{N}_d^n : \lambda_{R^{(n)}}(\mathcal{N}_d^n) = [\mathcal{N}_d : \lambda_R^{(n)}(\mathcal{N}_d^n)]^n.\]

Proof. We calculate, \(k \in \mathbb{N} \),

\[
c_n^{-1}((R^{(n)})_k) = c_n^{-1}(R^{(n)} \cdots \varphi^{k-1}(R^{(n)})) = nR_n \cdot \varphi^n(R_n) \cdots \varphi^{n(k-1)}(R_n) = nR \cdots \varphi^{-1}(R) \cdot \varphi^n(R) \cdots \varphi^{2n-1}(R) \cdots \varphi^{n(k-1)}(R) \cdots \varphi^{nk-1}(R) = (nR)_k.
\]

Hence, for any \(x \in \mathcal{N}_d \),

\[
(c_n^{-1}\lambda_{R^{(n)}}c_n)(x) = \lim_{k \to \infty} \text{ad} c_n^{-1}((R^{(n)})_k)(x) = \lim_{k \to \infty} \text{ad}((nR)_k)(x) = \lambda_nR(x) = \lambda_R^n(x).
\]

As all the subfactors \(\lambda_R^{k+1}(\mathcal{N}) \subset \lambda_R^k(\mathcal{N}) \), \(k \in \mathbb{N}_0 \), are isomorphic, this implies the index formula (4.10).
Remark 4.6. Let $R \not\in \mathbb{C}$ be non-trivial, and recall that λ_R^n is reducible for $n \geq 2$ in the sense that $\mathcal{M}_{R,n} \neq \mathbb{C}$; namely $R \in \mathcal{M}_{R,2} \subset \mathcal{N}_{R,2}$. Thus Prop. 4.5 immediately implies that λ_{R^n} is reducible as an endomorphism of \mathcal{N}_{R^n}. This remains true on the level of the III$_{1/d^n}$-factor because $c_n(R) \in \mathcal{M}_{R^n,1}$.

Our two elementary standard examples, the identity and the flip, reproduce themselves under taking cabling powers, i.e. $1^{(n)} = 1$ and $F^{(n)} = F$. For later reference, we note that this implies in particular

$$\varphi_{d^n} = \lambda_{F(n)} \in \text{End} \mathcal{N}_{d^n}, \quad \phi_{F(n)} = c_n \circ \phi_F \circ c_n^{-1}.$$

4.3. Sums of R-matrices. The third operation on \mathcal{R} that we want to discuss is additive on dimension. Given $R \in \mathcal{R}(d)$, $\hat{R} \in \mathcal{R}(\hat{d})$, we define $R \oplus \hat{R} \in \text{End}((\mathbb{C}^d \oplus \mathbb{C}^d) \otimes (\mathbb{C}^\hat{d} \oplus \mathbb{C}^\hat{d}))$ by [LPW19]

$$R \oplus \hat{R} := R \oplus \hat{R} \oplus F,$$

(4.12)

where F acts on $\mathbb{C}^d \otimes \mathbb{C}^d$, as \hat{R} on $\mathbb{C}^\hat{d} \otimes \mathbb{C}^\hat{d}$, and as the flip on the mixed tensors involving factors from both, \mathbb{C}^d and $\mathbb{C}^\hat{d}$.

If R, \hat{R} are R-matrices, then so is $R \oplus \hat{R}$ [LPW19]. We also mention that we clearly have $(R \oplus \hat{R})^* = R^* \oplus \hat{R}^*$, and $F \oplus F_{\hat{d}} = F_{d+\hat{d}}$. The identity is however not preserved under this sum. For example, we have $1 \oplus 1 = F_2$.

Given $R \in \mathcal{R}(d)$, $\hat{R} \in \mathcal{R}(\hat{d})$, we get an endomorphism $\lambda_{R \oplus \hat{R}} \in \text{End}(\mathcal{O}_{d+\hat{d}})$. We currently have no detailed picture of $\lambda_{R \oplus \hat{R}}$. However, it is clear that $\lambda_{R \oplus \hat{R}}$ is always reducible, as follows from the following result.

Proposition 4.7. Let $R \in \mathcal{R}(d), \hat{R} \in \mathcal{R}(\hat{d})$. Then

$$\mathcal{M}_{R,1} \oplus \mathcal{M}_{\hat{R},1} \subset \mathcal{M}_{R \oplus \hat{R},1};$$

in particular $\lambda_{R \oplus \hat{R}}$ is always reducible. The inclusion (4.13) is proper in general. We also have

$$\phi_{R \oplus \hat{R}}(R \oplus \hat{R}) = \frac{d}{d + \hat{d}} \phi_R(R) \oplus \frac{\hat{d}}{d + \hat{d}} \phi_{\hat{R}}(\hat{R}).$$

(4.14)

Proof. Let $x \in \mathcal{M}_{R,1} \subset \mathcal{F}_R^1$ and $\hat{x} \in \mathcal{M}_{\hat{R},1} \subset \mathcal{F}_{\hat{R}}^1$, i.e. $R^* x R = \varphi_d(x)$ and $\hat{R}^* \hat{x} \hat{R} = \varphi_{\hat{d}}(\hat{x})$. We may view $\mathcal{F}^1_{d+\hat{d}}$ as $\text{End}(\mathbb{C}^d \oplus \mathbb{C}^{\hat{d}})$, and define $p := 1 \oplus 0, p^\perp := 1 - p = 0 \oplus 1$ to be the orthogonal projections onto the two summands. Then

$$(R^* \oplus \hat{R}^*)(x \oplus \hat{x})(R \oplus \hat{R}) = (R^* \oplus \hat{R}^*)(pxp + p^\perp \hat{x} p^\perp)\varphi_{d+\hat{d}}(p + p^\perp)(R \oplus \hat{R})$$

$$= p \varphi_d(p) R^* x R p \varphi_d(p) + p^\perp \varphi_{\hat{d}}(p^\perp) \hat{R}^* \hat{x} \hat{R} p^\perp \varphi_{\hat{d}}(p^\perp)$$

$$+ \varphi_d(px p) p^\perp + \varphi_{\hat{d}}(p^\perp \hat{x} p^\perp) p$$

$$= p \varphi_d(px p) + p^\perp \varphi_{\hat{d}}(p^\perp \hat{x} p^\perp) + \varphi_d(px p) p^\perp + \varphi_{\hat{d}}(p^\perp \hat{x} p^\perp) p$$

$$= \varphi_d(px p) + \varphi_{\hat{d}}(p^\perp \hat{x} p^\perp)$$

$$= \varphi_{d+\hat{d}}(x \oplus \hat{x}).$$

This proves $x \oplus \hat{x} \in \mathcal{M}_{R \oplus \hat{R},1}$.
The second statement follows from Thm. 3.8: For each R-matrix \(R \in \mathcal{R}(d) \), we have \(\phi_R(R) = \phi_F(R) \) with \(F \in \mathcal{R}(d) \) the flip, i.e. \(\phi_R(R) \) coincides with the normalized left partial trace of \(R \). The claim then follows from the fact that the non-normalized partial trace maps \(\boxdot \) sums to direct sums [LPW19, Lemma 4.2 iv].

Remark 4.8. The sum operation \(\boxdot \) allows us to write down many examples of R-matrices and is the concept behind the definition of simple R-matrices (Def. 2.10). Namely, we can start from trivial R-matrices \(R = c \cdot 1_d \in \mathcal{R}(d) \), \(c \in \mathbb{T} \), and build non-trivial ones by summation, i.e.

\[
R = c_1 1_{d_1} \boxdot c_2 1_{d_2} \boxdot \ldots \boxdot c_N 1_{d_N} \in \mathcal{R}(d_1 + \ldots + d_N), \quad c_1, \ldots, c_N \in \mathbb{T}.
\]

Note that we may describe such R-matrices equivalently as follows: There is a partition of unity in \(\mathcal{F}_d \), i.e. pairwise orthogonal projections \(p_1, \ldots, p_N \in \mathcal{F}_d \) such that \(p_1 + \ldots + p_N = 1 \). To each projection \(p_i \), we have associated a phase factor \(c_i \in \mathbb{T} \). Then

\[
R = \sum_{i=1}^{N} c_i (p_i \otimes p_i) + F \sum_{i,j=1 \atop i \neq j}^{N} (p_i \otimes p_j),
\]

which we realize to be a special form of simple R-matrix (Def. 2.10). The more general form (2.24) is obtained by a slightly more general form of sum \(\boxdot \), involving the parameters \(c_{ij}, i \neq j \).

5. Equivalences of R-matrices

In the last section, we related natural operations on R-matrices to operations on their endomorphisms. Conversely, one can start from a natural operation/relation on endomorphisms and relate it to structure on the level of the underlying R-matrices. The most obvious operation, namely composition of endomorphisms, does however not preserve the YBE, i.e. the product of two Yang-Baxter endomorphisms is usually not Yang-Baxter. Instead, we will consider equivalence relations given by conjugation with automorphisms, and define corresponding equivalence relations on \(\mathcal{R}(d) \).

Definition 5.1. Let \(R, S \in \mathcal{R}(d) \).

a) \(R, S \) are \(\mathcal{M} \)-equivalent iff there exists an automorphism \(\alpha \in \text{Aut } \mathcal{M} \) such that \(\lambda_R = \alpha \circ \lambda_S \circ \alpha^{-1} \), and we write \(R \sim S \) in this case.

b) \(R, S \) are \(\mathcal{N} \)-equivalent iff there exists an automorphism \(\beta \in \text{Aut } \mathcal{N} \) such that \(\lambda_R|_{\mathcal{N}} = \beta \circ \lambda_S|_{\mathcal{N}} \circ \beta^{-1} \), and we write \(R \sim S \) in this case.

c) \(R, S \) are equivalent iff there exists an isomorphism \(\gamma_{R,S} : \mathcal{L}_R \rightarrow \mathcal{L}_S \) such that \(\gamma_{R,S}(R) = S \) and \(\varphi(\gamma_{R,S}(x)) = \gamma_{R,S}(\varphi(x)) \) for all \(x \in \mathcal{L}_R \), and we write \(R \sim S \) in this case.

d) \(R, S \) have equivalent representations iff for each \(n \in \mathbb{N} \), the representations \(\rho_R^{(n)} \) and \(\rho_S^{(n)} \) of the braid group \(B_n \) on \(n \) strands are unitarily equivalent.

It is clear that the subfactors \(\lambda_R(\mathcal{M}) \subset \mathcal{M} \), \(\lambda_R(\mathcal{N}) \subset \mathcal{N} \), and \(\varphi(\mathcal{L}_R) \subset \mathcal{L}_R \) are equivalent to \(\lambda_S(\mathcal{M}) \subset \mathcal{M} \), \(\lambda_S(\mathcal{N}) \subset \mathcal{N} \), and \(\varphi(\mathcal{L}_S) \subset \mathcal{L}_S \) if \(R \sim S \), \(R \sim S \).
and \(R \sim S \), respectively. It is also clear that the relations \(\cong, \approx, \sim \) are different from each other.

The last equivalence relation (equivalence of representations) was originally introduced in [AL17] and played a prominent role in the classification of involutive R-matrices [LPW19]. It essentially captures the character of an R-matrix, defined as the positive definite normalized class function

\[
\gamma(R) = \lim_{n \to \infty} Y_n x Y_n^*.
\]

Equivalence of representations turns out to be the same as equivalence (\(\sim \)):

Proposition 5.2. Let \(R, S \in \mathcal{R}(d) \). The following are equivalent:

a) \(R \) and \(S \) have equivalent representations.

b) \(R \sim S \).

c) \(R \) and \(S \) have the same character \(\tau_R = \tau_S \).

Proof.

a) \(\implies \) b) If \(R \) and \(S \) have equivalent representations, there exist unitaries \(Y_n \in \mathcal{U}(\mathcal{F}_d^2) \) such that \(Y_n \varphi^k(R) Y_n^* = \varphi^k(S) \), \(k \in \{0, 1, \ldots, n - 2\} \). This implies that for any \(x \in \rho_R(\mathbb{C}B_\infty) \),

\[
\gamma_{R,S}(x) := \lim_{n \to \infty} Y_n x Y_n^*
\]

exists, and the so defined map \(\gamma_{R,S} \) is an isomorphism \(\rho_R(\mathbb{C}B_\infty) \to \rho_S(\mathbb{C}B_\infty) \) with \(\gamma_{R,S}(\varphi^k(R)) = \varphi^k(S) \), \(k \in \mathbb{N}_0 \). Obviously \(\gamma_{R,S} \) preserves \(\tau \) and extends to an isomorphism \(\mathcal{L}_R \to \mathcal{L}_S \) (denoted by the same symbol).

It remains to show \(\varphi(\gamma_{R,S}(x)) = \gamma_{R,S}(\varphi(x)) \) for all \(x \in \mathcal{L}_R \). Indeed,

\[
\gamma_{R,S}(\varphi(x)) = \gamma_{R,S}(\lambda_R(x)) = w-lim_n \gamma_{R,S}(\text{ad } R_n(x))
= w-lim_n (\text{ad } S_n)(\gamma_{R,S}(x)) = \lambda_S(\gamma_{R,S}(x)) = \varphi(\gamma_{R,S}(x)).
\]

Hence \(R \sim S \).

b) \(\implies \) c) Let \(R \sim S \). From the definition of this equivalence relation, we have an isomorphism \(\gamma_{R,S} : \mathcal{L}_R \to \mathcal{L}_S \) such that \(\gamma_{R,S} \circ \rho_R = \rho_S \), and the uniqueness of the trace implies that \(\gamma_{R,S} \) preserves \(\tau \). Hence, for any \(b \in \mathbb{B}_\infty \),

\[
\tau_S(b) = \tau(\rho_S(b)) = \tau(\gamma_{R,S}(\rho_R(b))) = \tau(\rho_R(b)) = \tau_R(b).
\]

c) \(\implies \) a) Let \(R, S \) have coinciding characters \(\tau_R = \tau_S \), and pick \(n \in \mathbb{N} \), \(x \in \mathbb{C}B_n \). Then

\[
\tau(\rho_R^{(n)}(x)^* \rho_R^{(n)}(x)) = \tau_R(x^* x) = \tau_S(x^* x) = \tau(\rho_S^{(n)}(x)^* \rho_S^{(n)}(x)),
\]

and the faithfulness of \(\tau \) yields \(\ker \rho_R^{(n)} = \ker \rho_S^{(n)} \). So \(\alpha : \rho_R^{(n)}(\mathbb{C}B_n) \to \rho_S^{(n)}(\mathbb{C}B_n) \), \(\rho_R^{(n)}(x) \mapsto \rho_S^{(n)}(x) \), is an isomorphism of finite-dimensional \(C^* \)-algebras. Furthermore, equality of characters \(\tau_R = \tau_S \) implies \(\tau \circ \alpha = \tau \) on \(\rho_R^{(n)}(\mathbb{C}B_n) \).

But a trace-preserving isomorphism of finite-dimensional \(C^* \)-algebras represented on Hilbert spaces of the same dimension is always implemented by a unitary between these Hilbert spaces, i.e. there exists a unitary \(Y_n \in \mathcal{F}_d^2 \) such that \(Y_n \rho_R(x) Y_n^{-1} = \rho_S(x) \), \(x \in \mathbb{C}B_n \). This shows that \(R \) and \(S \) have equivalent representations. \(\square \)
Let us mention as an aside that we may view τ_R as a state on $\mathbb{C}B_\infty$, and that the von Neumann algebra generated by the GNS construction of $(\mathbb{C}B_\infty, \tau_R)$ is naturally isomorphic to the factor \mathcal{L}_R. Thus we see that τ_R is an extremal (or indecomposable) character, i.e., an extreme point in the convex set of positive normalized class functions, generalizing a result from [LPW19] to non-involutive R-matrices.

In general, the character equivalence relation \sim does not imply the “higher” equivalences \approx, \cong but sometimes $\gamma_{R,S} : \mathcal{L}_R \to \mathcal{L}_S$ extends to appropriate automorphisms of \mathcal{N} or \mathcal{M}. In the following, we discuss three example scenarios that we will subsequently refer to as “type 1–3”.

Type 1: Let $R \in \mathcal{R}(d)$ and $u \in \mathcal{U}(\mathcal{F}_d^1)$. Then $S := u\varphi(u)R\varphi(u)^*u^* = \lambda_u(R) \in \mathcal{R}(d)$ and $R \sim S$. One can choose the intertwiners as $Y_n := u_n$, and easily verifies that λ_u is an automorphism satisfying $\lambda_S = \lambda_u \circ \lambda_R \circ \lambda_u^{-1}$. Since λ_u leaves \mathcal{N} invariant, we have $R \cong S$ and $R \approx S$ in this case, with the isomorphisms $\alpha, \beta, \gamma_{R,S}$ from the various equivalence relations all being given by (restrictions of) λ_u.

Type 2: Let $R \in \mathcal{R}(d)$ and $u \in \mathcal{U}(\mathcal{F}_d^1)$ such that $\lambda_u(R) = R$ (i.e., R commutes with $u\varphi(u)$). Then $S := \varphi(u)R\varphi(u)^* \in \mathcal{R}(d)$ and $R \sim S$. One can choose the intertwiners as $Y_n := u\varphi(u^2)\cdots \varphi^{n-1}(u^n)$. Hence in this case, $\gamma_{R,S}$ is given by

$$\Lambda_u := \lim_{n \to \infty} \text{ad}(u\varphi(u^2)\cdots \varphi^{n-1}(u^n)),$$

which trivially exists as an automorphism of $\bigcup_n \mathcal{F}_d^n \subset \mathcal{N}$ and extends to \mathcal{N}. Clearly Λ_u restricts to an isomorphism $\mathcal{L}_R \to \mathcal{L}_S$ matching the representations ρ_R and $\rho_S = \lambda_u \circ \rho_R$. For $x \in \mathcal{F}_d^1$, we therefore have

$$\Lambda_u(\lambda_R(x)) = \Lambda_u(R_n x R_n^*) = S_n \Lambda_u(x) S_n^* = \lambda_S(\Lambda_u(x)).$$

Hence in this case, we also have $R \approx S$.

Note that in this case, we have $\varphi(u)R\varphi(u)^* = u^* Ru$, so exchanging u with u^* we also have the \mathcal{N}-equivalence $R \sim uRu^*$, with isomorphism Λ_u^*. We give an example to show that Λ_u does in general not extend to \mathcal{M}, i.e., to an \mathcal{M}-equivalence $R \cong S$.

Example 5.3. Let $u \in \mathcal{F}_d^1$ and $R := uFu^*$. Since the flip F commutes with $u\varphi(u)$, we have $R \approx F$, and now show $R \not\cong F$. In fact, if we had $R \cong F$, then the type III subfactors given by R and F would be equivalent, and in particular their relative commutants $\mathcal{M}_{R,1}$ and $\mathcal{M}_{F,1}$ would have the same dimension. Recalling $\mathcal{M}_{R,1} = \{x \in \mathcal{F}_d^1 : \varphi(x) = R^* x R\}$ (3.9), we have $\mathcal{M}_{F,1} = \mathcal{F}_d^1$. But as shown in Remark 3.4, $\mathcal{M}_{R,1} = \mathcal{M}_{S,1} \neq \mathcal{F}_d^1$ if $u \not\in \mathbb{C}$. Hence $R \not\cong F$.

Type 3: The third type of equivalence is given by an R-matrix R and its “flipped” version FRF, where F is the flip [LPW19]. The corresponding intertwiners are best described in terms of the so-called fundamental braids
\(\Delta_n \in B_n \) \cite{Gar69}, defined recursively by

\[\Delta_1 := e, \quad \Delta_2 := b_1, \quad \Delta_{n+1} := b_1 \cdots b_n \cdot \Delta_n. \]

The fundamental braids satisfy \cite{KT08}

\[\Delta_n b_k = b_{n-k} \Delta_n, \quad k \in \{1, \ldots, n-1\}. \]

Moreover, \(\Delta_n \) generates the center of \(B_n \). In particular, \(\Delta_n b \Delta_{n-1} = \Delta_{n-1} b \Delta_n \)

for all \(b \in B_n \).

Lemma 5.4. Let \(R \in \mathcal{R}(d) \). Then \(FRF \in \mathcal{R}(d) \) and \(R \sim FRF \), and the intertwiners can be chosen as

\[Y_n := \rho_{FRF} (\Delta_n) \rho_F (\Delta_n), \quad n \in \mathbb{N}. \]

Proof. We skip the straightforward proof of \(FRF \in \mathcal{R}(d) \).

The representative \(\rho_F (\Delta_n) \in \text{End}((\mathbb{C}^d)^{\otimes n}) \) of the fundamental braid given by the involutive R-matrix \(F \) acts by total inversion permutation of the \(n \) tensor factors. In view of the tensor product structure of the representation \(\rho_R \),

\[\rho_F (\Delta_n) \varphi^{k-1} (R) \rho_F (\Delta_n)^{-1} = \varphi^{n-k-1} (FRF), \quad k \in \{1, \ldots, n-1\}. \]

Using (5.5), this implies

\[
Y_n \rho_R (b_k) Y_n^{-1} = \rho_{FRF} (\Delta_n) \rho_F (\Delta_n) \varphi^{k-1} (R) \rho_F (\Delta_n)^{-1} \rho_{FRF} (\Delta_n)^{-1} \\
= \rho_{FRF} (\Delta_n) \rho_{FRF} (b_{n-k}) \rho_{FRF} (\Delta_n)^{-1} \\
= \rho_{FRF} (b_k).
\]

As \(b_1, \ldots, b_{n-1} \) generate \(B_n \), this establishes the intertwiner property of \(Y_n \). \(\square \)

We add two more remarks that are special to the type 3 equivalence \(R \sim FRF \). On the one hand, we note that given \(R \in \mathcal{R} \) and \(x \in \mathcal{F}^1_d \), the equation \(\varphi (x) = R x R^* \) is equivalent to \(\varphi (x) = FRF x FRF \). In view of (3.9), this gives an identification of relative commutants,

\[\mathcal{M}_{FRF,1} = \{ x \in \mathcal{F}^1_d : \varphi (x) = FRF x \} = \mathcal{M}_{R^*,1}. \]

Our second remark concerns the isomorphism \(\gamma_{R,FRF} : \mathcal{L}_R \to \mathcal{L}_{FRF} \), which extends to an algebra closely related to the \(C^* \)-algebra \(A_R^{(0)} \) introduced in (2.9).

Lemma 5.5. Let \(R \in \mathcal{R}(d), n \in \mathbb{N}, \) and \(x \in \mathcal{F}^n_d \) such that \(\varphi (x) = \lambda_R (x) \) (this is satisfied in particular by any \(x \in \mathcal{L}_{R,n} \)). Then

\[Y_m x Y_m^* = Y_n x Y_n^*, \quad m \geq n, \]

where \(Y_m \) is the intertwiner (5.6). In particular, \(\gamma_{R,FRF} = \lim_m \text{ad} Y_m \)

extends to such elements \(x \), and \(\gamma_{R,FRF} (x) = Y_n x Y_n^* \) for all \(x \in \mathcal{L}_{R,n} \).

Proof. To prove this lemma, we first establish a recursion relation for the intertwiners \(Y_m \). We claim

\[Y_{m+1} = Y_m \cdot \rho_F (b_1 \cdots b_m)^{-1} \rho_R (b_1 \cdots b_m), \quad m \in \mathbb{N}. \]
To show this, recall that we already know the identity
\[\rho_F(\Delta_m)\rho_R(b)\rho_F(\Delta_m)^{-1} = \rho_{FRF}(\Delta_m b \Delta_m^{-1}), \quad b \in B_m; \]
this was shown in the proof of Lemma 5.4. Thus we may rewrite the intertwiners as \(Y_m = \rho_{FRF}(\Delta_m)\rho_F(\Delta_m) = \rho_F(\Delta_m)\rho_R(\Delta_m) \).

We furthermore note that \(\rho_R(\Delta_m) \in \mathcal{L}_{R,m} \) and therefore
\[
\text{ad} \rho_R(b_1 \cdots b_m)[\rho_R(\Delta_m)] = \lambda_R(\rho_R(\Delta_m)) = \varphi(\rho_R(\Delta_m)) = \text{ad}(\rho_F(b_1 \cdots b_m))[(\rho_R(\Delta_m))].
\]

Moreover, since \(F^2 = 1 \), we have \(\rho_F(\Delta_m) = \rho_F(\Delta_m^{-1}) \). Together with the recursion relation \(\Delta_{m+1} = b_1 \cdots b_m \Delta_m \), this gives
\[
Y_{m+1} = \rho_F(\Delta_m^{-1})\rho_R(\Delta_m) \rho_F(\Delta_m^{-1}) \rho_R(b_1 \cdots b_m) \rho_R(\Delta_m) = \rho_F(\Delta_m^{-1})\rho_F(b_1 \cdots b_m) \rho_F(\Delta_m^{-1}) \rho_R(b_1 \cdots b_m) = \rho_F(\Delta_m^{-1})\rho_F(\Delta_m) \rho_F(b_1 \cdots b_m) \rho_R(b_1 \cdots b_m) = \rho_F(\Delta_m^{-1}) \rho_F(b_1 \cdots b_m) \rho_R(b_1 \cdots b_m),
\]
proving (5.10).

Now let \(x \in \mathcal{F}_d^R \) such that \(\varphi(x) = \lambda_R(x) \). Then \(\text{ad}(\rho_R(b_1 \cdots b_m))[x] = \lambda_R(x) = \varphi(x) = \text{ad}(\rho_F(b_1 \cdots b_m))[x] \) for any \(m \geq n \), and therefore
\[
\text{ad}(Y_{m+1})(x) = \text{ad}(Y_n)(x).
\]

Clearly, this implies \(\text{ad} Y_m(x) = (\text{ad} Y_n)(x) \) for all \(m \geq n \).

The isomorphism \(\gamma_{R,FRF} \) is defined by the limit formula \(\lim_m \text{ad} Y_m \) on \(\rho_R(\mathbb{C}B_\infty) \) and showed that it uniquely extends to an isomorphism \(\mathcal{L}_R \rightarrow \mathcal{L}_S \). Thus, as \(\lim_m (\text{ad} Y_m)(x) \) exists and equals \(Y_n x Y_n^* \) for \(x \in \mathcal{F}_d^R \) as in the statement of the lemma, we find \(\gamma_{R,FRF}(x) = Y_n x Y_n^* \) as claimed.

Let us emphasize that in general, it is not known whether the \(\sim \) equivalence class of an \(R \)-matrix is exhausted by the three cases listed above. Furthermore, in general the equivalences \(R \approx S \) or \(R \approx S \) do not imply \(R \sim S \) (For example, \(R \approx -R \) for all \(R \in \mathcal{R} \), but usually \(R \neq -R \)).

Making use of the type 3 intertwiners, we can now also give the postponed second part of the proof of Theorem 3.8.

Proof of Theorem 3.8 (second half). Let \(R \in \mathcal{R} \) and \(S := FRF \). We want to show that \(\mathcal{L}_R \) is invariant under \(\phi_F \). As a preparation, we first show, \(n \in \mathbb{N} \),
\[
(5.11) \quad \text{ad} \rho_F(\Delta_n)(\mathcal{L}_{R,n}) = \mathcal{L}_{S,n}.
\]
In fact, we know from Lemma 5.5 that the intertwiner isomorphism \(\gamma_{R,S} \) coincides with \(\text{ad} Y_n \) on \(\mathcal{L}_{R,n} \), with the intertwiners \(Y_n = \rho_S(\Delta_n)\rho_F(\Delta_n) \) (5.6). Thus
\[
\text{ad} \rho_F(\Delta_n)(\mathcal{L}_{R,n}) = \text{ad} \rho_S(\Delta_n)^{-1}(\text{ad} Y_n(\mathcal{L}_{R,n})) = \text{ad} \rho_S(\Delta_n)^{-1}(\mathcal{L}_{S,n}) = \mathcal{L}_{S,n},
\]
where the last step follows from \(\text{ad} \rho_S(\Delta_n)^{-1} \) being an inner automorphism of \(\mathcal{L}_{S,n} \).
Now let $x \in \mathcal{L}_{R,n+1}$, $n \in \mathbb{N}_0$. As $\phi_F(x)$ acts by tracing out the first tensor factor of x (see (2.21)), and $E_n(x)$ acts by tracing out the $(n+1)$st tensor factor of x, we have

\begin{equation}
3.8 \phi_F(x) = E_n(F_n^*xF_n) = E_n(\rho_F(b_1 \cdots b_n)^{-1}x\rho_F(b_1 \cdots b_n)).
\end{equation}

Using the recursion relation $\Delta_{n+1} = b_1 \cdots b_n \cdot \Delta_n$ for the fundamental braids and $\rho_F(\Delta_n) \in \mathcal{F}^n_d$, we have

$$\phi_F(x) = E_n(\text{ad } \rho_F(\Delta_n^{-1}(x))) = \text{ad } \rho_F(\Delta_n) \left[E_n(\text{ad } \rho_F(\Delta_n^{-1}))(x) \right].$$

In this formula, $\text{ad } \rho_F(\Delta_n^{-1}(x)) \in \mathcal{L}_{S,n+1}$ by (5.11) (note $\rho_F(\Delta_n^{-1}) = \rho_F(\Delta_n^{-1})$), and thus $E_n(\text{ad } \rho_F(\Delta_n^{-1}))(x) \in \mathcal{L}_{S,n}$ by the first part of Thm. 3.8. If we now apply (5.11) once more, with the roles of R and S exchanged, we arrive at $\phi_F(x) \in \mathcal{L}_{R,n}$.

Proceeding to general $x \in \mathcal{L}_R$, we have $E_n(x) \in \mathcal{L}_{R,n}$ and $E_n(x) \to x$ weakly as $n \to \infty$. As we have just shown $\phi_F(E_n(x)) \in \mathcal{L}_R$ for all $n \in \mathbb{N}$ and ϕ_F is normal, it follows that $\phi_F(x) \in \mathcal{L}_R$.

The uniqueness of the τ-preserving conditional expectation $E_R = \lambda_R \circ \phi_R$ of $\varphi(\mathcal{L}_R) \subset \mathcal{L}_R$ now implies that for any $x \in \mathcal{L}_R$,

$$\varphi(\phi_R(x)) = E_R(x) = E_F(x) = \varphi(\phi_F(x)),$$

and thus $\phi_R(x) = \phi_F(x)$. This shows that the right diagram in (3.18) is a commuting square for $n = 1$, and the case $n > 1$ follows by composing several isomorphic commuting squares.

Applications of Thm. 3.8 will appear in the next section.

We now describe a situation in which $R \cong S$ does imply $R \sim S$.

Proposition 5.6.

a) Let $R, w \in \mathcal{U}(\mathcal{O}_d)$ such that $\alpha^{-1} := \lambda_w \in \text{Aut } \mathcal{M}$. Then

\begin{equation}
3.9 \alpha \circ \lambda_R \circ \alpha^{-1} = \lambda_{\alpha(R)} \iff w \in \mathcal{O}_d^{\lambda_{\psi(R)}}.
\end{equation}

b) In the same situation as in a), assume in addition that $R \in \mathcal{R}(d)$ and $S := \alpha(R) \in \mathcal{F}^2_d$. Then $S \in \mathcal{R}(d)$ and $S \sim R$.

Proof. a) We write $\alpha = \lambda_v$ and compute

$$\alpha \lambda_R \circ \alpha^{-1} = \lambda_w \lambda_R \lambda_w = \lambda_v \lambda_{\lambda_R(w)R} = \lambda_v \lambda_{\lambda_{\lambda_R(w)R}w},$$

which coincides with $\lambda_{\alpha(R)} = \lambda_{\lambda_v(R)}$ if and only if $\lambda_v(\lambda_R(w)R)v = \lambda_v(R)$.

Applying λ_w to both sides of this equation and observing that $\lambda_w \lambda_v = \text{id}$ implies $\lambda_w(v) = w^*$, we see that $\alpha \circ \lambda_R \circ \alpha^{-1} = \lambda_{\alpha(R)}$ is equivalent to

\begin{equation}
3.10 w = (\text{ad } R^* \circ \lambda_R)(w) = \lambda_{\psi(R)}(w),
\end{equation}

i.e. $w \in \mathcal{O}_d^{\lambda_{\psi(R)}}$.

b) We now assume that $R \in \mathcal{R}(d)$ is an R-matrix, and set $S := \alpha(R)$. Then, $n \in \mathbb{N}_0$,

$$\alpha(\varphi^n(R)) = (\alpha \lambda_R^\dagger \alpha^{-1})(S) = \lambda^n_S(S).$$

In particular, $\varphi(\alpha(R)) = \alpha(\varphi(R))$, which immediately implies $\varphi(S)S\varphi(S) = S\varphi(S)S$. Since $S \in \mathcal{F}^2_d$ as well, S is also an R-matrix. Thus $\lambda^n_S(S) = \varphi^n(S)$,
i.e. we have $\alpha(\varphi^n(R)) = \varphi^n(S)$, which shows that α restricts to an isomorphism $\mathcal{L}_R \rightarrow \mathcal{L}_S$ such that $\varphi(\alpha(x)) = \alpha(\varphi(x))$ for all $x \in \mathcal{L}_R$. This verifies the definition of $R \sim S$. \qed

We thus see that the enhanced form of \cong equivalence spelled out in (5.13) is parameterized by the fixed points of $\lambda_{\varphi(R)}$. The structure of this fixed point algebra is elucidated in the following general lemma.

Lemma 5.7. Let $R \in \mathcal{U}(\mathcal{O}_d)$. Then

\begin{align*}
 (5.15) & \quad \mathcal{F}_d^\dagger \subset \mathcal{O}_d^{\lambda_{\varphi(R)}}, \\
 (5.16) & \quad \varphi(\mathcal{O}_d^{\lambda_R}) \subset \mathcal{O}_d^{\lambda_{\varphi(R)}}, \\
 (5.17) & \quad \phi_F(\mathcal{O}_d^{\lambda_{\varphi(R)}}) = \mathcal{O}_d^{\lambda_R}, \\
 \text{and} & \quad (5.18) \quad \mathcal{O}_d^{\lambda_R} = \mathbb{C} \iff \mathcal{O}_d^{\lambda_{\varphi(R)}} = \mathcal{F}_d^\dagger.
\end{align*}

Proof. The first inclusion is trivial. Let $x \in \mathcal{O}_d^{\lambda_R}$. Then $\varphi(x) = \varphi(\lambda_R(x)) = (\text{ad}R^* \circ \lambda_R)(\varphi(x)) = \lambda_{\varphi(R)}(\varphi(x))$, proving $\varphi(\mathcal{O}_d^{\lambda_R}) \subset \mathcal{O}_d^{\lambda_{\varphi(R)}}$. Applying ϕ_F, this also gives $\mathcal{O}_d^{\lambda_R} \subset \phi_F(\mathcal{O}_d^{\lambda_{\varphi(R)}})$.

Now let $i, j \in \{1, \ldots, d\}$ and $w \in \mathcal{O}_d$. Then

\begin{equation}
 (5.19) \quad \lambda_R(S_i^*wS_j) = S_i^*R^*\lambda_R(w)RS_j = S_i^*\lambda_{\varphi(R)}(w)S_j,
\end{equation}

and setting $i = j$ and summing over i, we find in particular $\phi_F \circ \lambda_{\varphi(R)} = \lambda_R \circ \phi$. For $w \in \mathcal{O}_d^{\lambda_{\varphi(R)}}$, this implies $\phi_F(w) = \phi_F(\lambda_{\varphi(R)}(w)) = \lambda_R(\phi_F(w))$, i.e. $\phi_F(\mathcal{O}_d^{\lambda_{\varphi(R)}}) \subset \mathcal{O}_d^{\lambda_R}$.

In particular, if $\mathcal{O}_d^{\lambda_{\varphi(R)}} = \mathcal{F}_d^\dagger$, then $\mathcal{O}_d^{\lambda_R} = \phi_F(\mathcal{F}_d^\dagger) = \mathbb{C}$. It remains to show that $\mathcal{O}_d^{\lambda_R} = \mathbb{C}$ implies $\mathcal{O}_d^{\lambda_{\varphi(R)}} = \mathcal{F}_d^\dagger$. Let $w \in \mathcal{O}_d^{\lambda_{\varphi(R)}}$. In view of (5.19), we then have $S_i^*wS_j \in \mathcal{O}_d^{\lambda_R}$ for any i, j. In case $\mathcal{O}_d^{\lambda_R} = \mathbb{C}$, this implies $S_i^*wS_j \in \mathbb{C}$ for any i, j, and thus

\begin{equation}
 (5.20) \quad w = \sum_{i,j=1}^d S_i(S_i^*wS_j)S_j^* \in \text{span}\{S_iS_j^* : i, j \in \{1, \ldots, d\}\} = \mathcal{F}_d^\dagger,
\end{equation}

as claimed. \qed

The last statement of this lemma implies that for $\mathcal{O}_d^{\lambda_R} = \mathbb{C}$, the only possibility to satisfy (5.13) is by $w \in \mathcal{F}_d^\dagger$. Another source of fixed points of $\lambda_{\varphi(R)}$ is $\varphi(\mathcal{O}_d^{\lambda_{\varphi(R)}})$. In both cases, (5.13) amounts to the “type 1” equivalence:

Lemma 5.8. Let $R \in \mathcal{R}(d)$.

a) If λ_R is ergodic (i.e. $\mathcal{O}_d^{\lambda_R} = \mathbb{C}$), then $\alpha \lambda_R \alpha^{-1} = \lambda_{\alpha(R)}$ with $\alpha \in \text{Aut} \mathcal{O}_d$ if and only if $\alpha = \lambda_u$ with $u \in \mathcal{U}(\mathcal{F}_d^\dagger)$. In this case, $R \sim \alpha(R)$ is an example of the “Type 1” situation (p. 26).

b) Let $u \in \mathcal{F}_d^\dagger$ be a unitary fixed point of λ_R and $w := \varphi(u) \in \mathcal{O}_d^{\lambda_{\varphi(R)}}$. Then $\alpha \lambda_R \alpha^{-1} = \lambda_{\alpha(R)}$ with $\alpha := \lambda_w^{-1}$, and $R \sim \alpha(R)$ are again type 1 equivalent.
Proof. a) For ergodic λ_R, we have $O_{d,\lambda(R)}^\alpha = F^d_1$ by Lemma 5.7. But $\alpha \lambda_R \alpha^{-1} = \lambda_w$ is equivalent to $\alpha^{-1} = \lambda_w$ with $w \in O_{d,\lambda(R)}^\alpha$ (Prop. 5.6), so that the conjugation equation is satisfied if and only if α is quasi-free. For quasi-free α, it is clear that $\alpha(R) \in F^d_1$, which implies $\alpha(R) \in R$ and $R \sim \alpha(R)$ are type 1 equivalent.

b) Defining $\alpha := \lambda^{-1}_\varphi(u)$, we have $\alpha = \lambda_{\varphi(u^*)}$ and $S := \alpha(R) \in F^d_2$. Thus $S \in R(d)$ is an R-matrix equivalent to R. Since $u \in F^d_1$ is a fixed point of λ_R, it follows that u and R commute. Hence

\begin{equation}
S = \alpha(R) = \lambda_{\varphi(u^*)}(R) = \varphi(u^*)u^*Ru\varphi(u) = \lambda_{u^*}(R),
\end{equation}

i.e. $S \sim R$ are type 1 equivalent. \qed

These observations show that the equivalence relation (5.13) is closely related to type 1 equivalence. It is possible that both notions coincide.

The appearance of fixed points warrants a more systematic look at fixed points and ergodicity of Yang-Baxter endomorphisms. This is done in Section 7.

5.1. Equivalent R-matrices and braid group characters. Whereas a classification of all R-matrices seems out of reach, a more accessible (though still challenging) question is to classify all Yang-Baxter characters, i.e. all traces τ_R, $R \in R$, on B_∞. This amounts to classifying R-matrices up to the equivalence relation \sim.

In order to explain how our results can contribute to this problem, it is instructive to compare this situation with the special case of involutive R-matrices (i.e. $R \in R(d)$ such that $R^2 = 1$, equivalently $R = R^*$) which has been studied before. Note that for involutive R-matrices, τ_R can be viewed as a character of the infinite symmetric group S_∞ rather than the infinite braid group.

In preparation for the following, we define R-matrices of normal form to be special simple R-matrices (Def. 2.10) with parameters $c_{ij} = 1$ for $i \neq j$ and $\varepsilon_i := c_{ii} \in \{+1, -1\}$ for all i. That is, normal form R-matrices are given by a partition of unity p_1, \ldots, p_N in F^d_1 and signs $\varepsilon_1, \ldots, \varepsilon_N$ such that

\begin{equation}
R = \sum_{i=1}^N \varepsilon_i p_i \varphi(p_i) + \sum_{i,j=1}^N p_i \varphi(p_j) F = \bigoplus_{i=1}^N \varepsilon_i 1_{d_i},
\end{equation}

where $d_i = d\tau(p_i)$ are the dimensions of the projections p_i. These normal forms can be described by a pair of Young diagrams with d boxes in total.

Theorem 5.9. [LPW19]

a) Let $R, S \in R(d)$ be involutive. Then $R \sim S$ if and only if $\varphi_R(R) \cong \varphi_S(S)$ are similar, i.e. $\varphi_R(R) = u\varphi_S(S)u^*$ for some $u \in U(F^d_1)$.

b) Each involutive R is equivalent to a unique R-matrix of normal form.

c) Let R be an R-matrix of normal form, with projections p_1, \ldots, p_N and signs $\varepsilon_1, \ldots, \varepsilon_N$. Define the rational numbers

\begin{align}
\alpha_i &:= \tau(p_i), & \varepsilon_i &= +1, \\
\beta_j &:= \tau(p_j), & \varepsilon_j &= -1.
\end{align}
Then the character $\tau_R(\sigma)$, $\sigma \in S_\infty$, takes the following form: If the disjoint cycle decomposition of σ is given by m_n cycles of length n, $n \in \mathbb{N}$, then

\begin{equation}
\tau_R(\sigma) = \prod_n \left(\sum_i \alpha_i^n + (-1)^n \sum_j \beta_j^n \right)^{m_n}.
\end{equation}

Furthermore, the signed parameters $\alpha_i, -\beta_j$ are exactly the eigenvalues of $\phi_R(R)$.

The proofs of these facts rely crucially on the fact that ρ_R factors through the infinite symmetric group. In particular, i) a parameterization of all extremal characters of S_∞ is known from the work of Thoma [Tho64] (in terms of the Thoma parameters $\alpha_i, \beta_j (5.23)$), ii) S_∞ allows for a disjoint cycle decomposition, iii) for involutive R-matrices, $\phi_R(R)$ is selfadjoint, and iv) for involutive R-matrices, λ_R is completely reducible in a sense to be described in Section 6.1.

The results of Thm. 5.9 do not carry over to the case of general (not necessarily involutive) R-matrices. However, certain aspects can be generalized, which is the content of the following theorem.

Theorem 5.10. Let $R, S \in \mathcal{R}(d)$.

a) $\phi_R(R) = \phi_F(R) = \phi_F(FRF)$ is a normal element of \mathcal{F}_d^1 with norm $\|\phi_R(R)\| \leq 1$. In particular, R has identical left and right partial traces\(^7\).

b) $\tau(R\varphi(R) \cdots \varphi^{n-1}(R)) = \tau(\phi_R(R)^n)$, $n \in \mathbb{N}_0$.

c) If $R \sim S$, then $\phi_R(R) \cong \phi_S(S)$ (unitary similarity).

Proof. a) By Thm. 3.8, we know $\phi_F(x) = \phi_R(x)$ for all $x \in \mathcal{L}_R$, so in particular $\phi_F(R) = \phi_R(R)$. We also know that $E_1(R) = \phi_F(FRF) \in \mathcal{L}_R$. Given arbitrary $y \in \mathcal{F}_d^1$, we compute

$$\tau(y\phi_F(FRF)) = \tau(\varphi(y)FRF) = \tau(yR) = \tau(\lambda_R(y)R) = \tau(y\phi_R(R)),$$

which shows $\phi_F(FRF) = \phi_R(R)$.

In general, left inverses/partial traces do not preserve normality, but in our situation, we can show that $\phi_R(R)$ is always normal, i.e. $\phi_R(R)\phi_R(R)^* = \phi_R(R)^*\phi_R(R)$. Since $\phi_R(R) \in \mathcal{F}_d^1$, it is enough to compare traces against arbitrary elements $x \in \mathcal{F}_d^1$.

In the following computation, we use the property (2.18) of ϕ_R and $\tau \circ \phi_R = \tau$, the fact that $\lambda_R = \text{ad} R$ on \mathcal{F}_d^1, and $\lambda_R(R^*) = \varphi(R^*)$. This yields

\begin{align*}
\tau(x\phi_R(R)\phi_R(R)^*) &= \tau(\lambda_R(x\phi_R(R))R^*) \\
&= \tau(x\phi_R(R)R^*) \\
&= \tau(\lambda_R(x)R\varphi(R^*)) \\
&= \tau(Rx\varphi(R^*)) \\
&= \tau(xR\varphi(R^*)).
\end{align*}

\(^7\)In matrix notation, $\phi_F(R) = d^{-1}((\text{Tr} \otimes \text{id})(R)$ and $\phi_F(FRF) = d^{-1}((\text{id} \otimes \text{Tr})(R)$ are the normalized left and right partial traces of R.
On the other hand, using $\phi_R(R) = \phi_F(FRF)$ and $\phi_R(R) = \phi_F(R) = \phi_{R^*}(R)$ (this follows because $R \in \mathcal{L}_R = \mathcal{L}_{R^*}$), we find
\[
\tau(x\phi_R(R)^*\phi_R(R)) = \tau(x\phi_R(FRF)\phi_R(R)) \\
= \tau(\varphi(x)FRF\varphi(\phi_R(R))) \\
= \tau(xR^*\phi_R(R)) \\
= \tau(xR^*\phi_{R^*}(R)) \\
= \tau(\lambda_R(x)\varphi(R^*)R) \\
= \tau(xR\varphi(R^*)),
\]
which coincides with the previous result. This proves that $\phi_R(R)$ is normal. The norm estimate is a standard property of the conditional expectation $E_R = \lambda_R\phi_R$.

b) For $k, m \in \mathbb{N}_0$, define
\[
(5.26) \quad t_{k,m} := \tau(\varphi^k(R)\varphi^{k-1}(R) \cdots R \cdot \phi_R(R)^m).
\]
We will prove $t_{k,m} = t_{k+1,m-1}$, which implies the claim as $t_{n,0} = t_{0,n}$.

As before, we use the four facts i) $x\phi_R(y) = \phi_R(\lambda_R(x)y)$, ii) $\lambda_R(a) = \varphi(a)$ for $a \in \mathcal{L}_R$, iii) $\tau \circ \phi_R = \tau$, iv) $\lambda_R(\phi_R(R)) = R\phi_R(R)R^*$, and compute
\[
t_{k,m} = \tau(\varphi^k(R) \cdots R\phi_R(R)^{m-1} \cdot \phi_R(R)) \\
= \tau(\varphi_R(\lambda_R(\varphi^k(R) \cdots R \cdot \phi_R(R)^{m-1})R)) \\
= \tau(\varphi^{k+1}(R) \cdots \varphi(R) \cdot R\phi_R(R)^{m-1}R^*) \\
= t_{k+1,m-1}.
\]

c) Let $R \sim S$, i.e. $\tau_R = \tau_S$. Then part b) implies that $\phi_R(R)^n$ and $\phi_S(S)^n$ have the same trace for any $n \in \mathbb{N}_0$. Thus $\phi_R(R)$ and $\phi_S(S)$ have the same characteristic polynomial, and as they are normal by part a), it follows that $\phi_R(R)$ and $\phi_S(S)$ are unitarily equivalent. \hfill \square

Remark 5.11.

a) This theorem states in particular that the spectrum of the (left or right) partial trace of an R-matrix is an invariant for \sim. Since any normal matrix can be diagonalized by conjugation with a unitary, we also see that given $R \in \mathcal{R}(d)$, there exists $u \in \mathcal{U}(\mathcal{F}_d)$ such that $\lambda_u(R) \sim R$ ("type 1", see p. 26) and $\lambda_u(R)$ has diagonal left and right partial traces.

b) Whereas it is known in the setting of involutive R-matrices that $R \sim S$ is equivalent to $\phi_R(R) \cong \phi_S(S)$, the implication \Leftarrow does not hold in general. In fact, it is not difficult to construct unitary R-matrices R, S such that $\phi_R(R) = \phi_S(S)$ (and $R \cong S$), but for example $\tau(R^2\varphi(R)) \neq \tau(S^2\varphi(S))$, i.e. $R \not\sim S$.

c) In the involutive case, it is furthermore known that $\phi_R(R)$ is always invertible and that all of its eigenvalues lie in \mathbb{Z}^d. We currently do not know whether the first statement (invertibility) holds in general, but it is easy to give examples of non-involutive R-matrices R such that $\sigma(\phi_R(R)) \not\subset \mathbb{Z}^d$.
d) Specializing to involutive R-matrices, part b) recovers Thoma’s character formula (5.25) for cycles: On an \(n \)-cycle in \(c_n \in S_\infty \), the character \(\tau_R \) gives

\[
\tau_R(c_n) = \sum_i \alpha_i^n + (-1)^{n+1} \sum_j \beta_j^n,
\]

where \(\alpha_i, \beta_j \) are the Thoma parameters of \(R \) (5.23).

6. Irreducibility, Reduction, and Index

In the following we will call an R-matrix \(R \) irreducible iff \(\lambda_R \) is irreducible as an endomorphism of \(\mathcal{M} \), i.e. iff \(\mathcal{M}_{R,1} = \lambda_R(\mathcal{M})' \cap \mathcal{M} = \mathbb{C} \). This does not necessarily mean that \(\lambda_R \) is irreducible as an endomorphism of \(\mathcal{N} \): In view of (3.13),

\[
L_{R,1} \subset \mathcal{M}_{R,1} \subset N_{R,1} \subset F^1_d, \quad R \in \mathcal{R}(d),
\]

and in general, the relative commutants \(L_{R,1}, M_{R,1} \) and \(N_{R,1} \) are all different from each other. It is therefore conceivable that there exist R-matrices such that, for instance, \(\lambda_R \) is irreducible but \(\lambda_R|\mathcal{N} \) is not, or that \(\lambda_R|\mathcal{L} \) is irreducible but \(\lambda_R \) is not. Our notion of irreducibility always refers to \(\lambda_R \in \text{End} \mathcal{M} \), and we will explicitly indicate whenever we consider \(\lambda_R \) as an endomorphism of \(\mathcal{N} \) or \(\mathcal{L} \) by restriction.

A Yang-Baxter endomorphism \(\lambda_R \) is a unital normal endomorphism of the type III factor \(\mathcal{M} \) with finite-dimensional relative commutant \(\mathcal{M}_{R,1} \subset F^1_d \) (6.1). We may therefore decompose it into finitely many irreducible endomorphisms of \(\mathcal{M} \), unique up to inner automorphisms (i.e. as sectors). In the following, we will heavily rely on results of R. Longo, see [Lon89, Lon91] for the original articles and [Izu91] for a summary, to obtain information about \(\lambda_R \) and the minimal index \(\text{Ind}(\lambda_R) \).

By a partition of unity in \(\mathcal{M}_{R,n} \) (for some \(n \in \mathbb{N} \)) we will mean a family \(\{p_i\}_{i=1}^{d_n} \subset \mathcal{M}_{R,1} \) of orthogonal projections such that \(p_ip_j = \delta_{ij}p_i \) and \(\sum_{i=1}^{d_n} p_i = 1 \).

Note that since \(\mathcal{M}_{R,n} \) is finite-dimensional, there always exist finite partitions of unity by minimal projections.

Square brackets \([\lambda]\) denote the sector of \(\lambda \), i.e. \([\lambda]\) = \{ad \ u \ | \ u \in \mathcal{U}(\mathcal{M})\}.

Proposition 6.1. Let \(R \in \mathcal{R}, n \in \mathbb{N}, \) and \(\{p_{n,i}\}_{i=1}^{d_n} \) a partition of unity in \(\mathcal{M}_{R,n} \). Then there exist isometries \(v_{n,i} \in \mathcal{M} \) such that as sectors

\[
[\lambda^n_R] = \bigoplus_{i=1}^{d_n} [\mu_{n,i}], \quad \mu_{n,i}(\cdot) = v_{n,i}^* \lambda^n_R(\cdot) v_{n,i}.
\]

The minimal index of \(\lambda_R \) is bounded below by

\[
d^{2/n}_n \leq \text{Ind} \lambda_R.
\]

In case \(v_{n,i} \in \mathcal{O}_d \), we have \(\mu_{n,i} = \lambda_{n,i} \) with \(u_{n,i} = v_{n,i}^* R \varphi(v_{n,i}). \)

Proof. As \(\mathcal{M} \) is of type III, all projections are Murray-von Neumann equivalent to the identity, i.e. there exist isometries \(v_{n,i} \in \mathcal{M} \) such that \(p_{n,i} = v_{n,i}v_{n,i}^* \) and \(v_{n,i}^* v_{n,j} = \delta_{ij}1 \). This implies that \(\mu_{n,i}(x) := v_{n,i}^* \lambda^n_R(x) v_{n,i} \) are unital normal

\^8An example for the latter situation is given by \(R = F \).
endomorphisms of M – To show that $\mu_{n,i}$ is an algebra homomorphism, note that, $x, y \in M$,
\[
\mu_{n,i}(x)\mu_{n,i}(y) = v_{n,i}^*\lambda^n_R(x)v_{n,i}\lambda^n_R(y)v_{n,i} = v_{n,i}^*\lambda^n_R(x)p_{n,i}\lambda^n_R(y)v_{n,i} = v_{n,i}^*\lambda^n_R(xy)p_{n,i}\lambda^n_R(y)v_{n,i} = v_{n,i}^*\lambda^n_R(x)yv_{n,i} = \mu_{n,i}(xy),
\]
where we have used that $p_{n,i}$ commutes with $\lambda^n_R(M)$. Analogously one shows $\lambda^n_R(x) = \sum_i v_{n,i}\mu_{n,i}(x)v_{n,i}^*$, $x \in M$. This establishes $[\lambda^n_R] = \bigoplus_{i=1}^n [\mu_{n,i}]$.

The statistical dimension $d(\lambda_R) := \sqrt{\text{Ind} \lambda_R}$ is additive w.r.t. direct sums, multiplicative w.r.t. composition of endomorphisms, and bounded below by 1. This implies

\[
d(\lambda_R) = d(\lambda^n_R)^{1/n} = \left(\sum_{i=1}^n d(\mu_{n,i})\right)^{1/n} \geq d_n^{1/n}
\]

and $\text{Ind} \lambda_R = d(\lambda_R)^2 \geq d_n^{2/n}$ as claimed.

If $v_{n,i} \in O_d$, we can easily check the equality $\mu_{n,i} = \lambda_{n,i}$ by evaluating on generators S_k, $k = 1, \ldots, d$. \hfill \Box

These estimates give concrete index bounds when applied to spectral decompositions.

Corollary 6.2. Let $R \in \mathcal{R}(d)$ and consider the spectra $\sigma(R)$ of R and $\sigma(\phi_R(R))$ of $\phi_R(R)$. Denoting cardinality by $| \cdot |$, we have

\[
|\sigma(R)| \leq \text{Ind} \lambda_R, \quad |\sigma(\phi_R(R))|^2 \leq \text{Ind} \lambda_R.
\]

Proof. The R-matrix R is a unitary in $\mathcal{M}_{R,2}$ (Prop. 2.3 c)), hence its spectral projections define a partition of unity of $d_2 = |\sigma(R)|$ many projections in $\mathcal{M}_{R,2}$. For the second bound, we recall that $\phi_R(R)$ is a normal element in $\mathcal{M}_{R,1}$ (Thm. 5.10 a)), hence its spectral projections define a partition of unity of $d_1 = |\sigma(\phi_R(R))|$ many projections in $\mathcal{M}_{R,1}$. \hfill \Box

We describe the decomposition of λ_R for two classes of simple R-matrices.

Proposition 6.3. Let $R \in \mathcal{R}(d)$ be a simple R-matrix (Def. 2.10) with projections $\{p_i\}_{i=1}^N \subset F_d^1$ and parameters $\{c_{ij}\}_{i,j=1}^N \subset T$.

a) If $c_{ij} = 1$ for all $i \neq j$, let $m := |\{i \in \{1, \ldots, N\} : \tau(p_i) = 1/d, c_{ii} = 1\}|$ and $n := |\{i \in \{1, \ldots, N\} : \tau(p_i) = 1/d, c_{ii} \neq 1\}|$. Then there exist n automorphisms $\alpha_1, \ldots, \alpha_n$ and $N - n - m$ irreducible endomorphisms $\beta_1, \ldots, \beta_{N-n-m}$ such that

\[
\lambda_R \cong \alpha_1 \oplus \ldots \oplus \alpha_n \oplus \beta_1 \oplus \ldots \oplus \beta_{N-n-m} \oplus \text{id} \oplus \ldots \oplus \text{id}.
\]

The α_i, β_j are all mutually inequivalent and non-trivial as sectors.

b) If all p_i are one-dimensional (that is, if R is diagonal), define the unitaries $u_i := \sum_{j=1}^d c_{ij} S_j S_j^* \in U(F_d^1)$, $i = 1, \ldots, d$. Then there exists a unitary $u \in F_d^1$ such that

\[
\lambda_R = \lambda_u \circ \sum_{i=1}^d S_i \lambda_u(\cdot) S_i^* \circ \lambda_u^{-1}
\]
decomposes into a sum of d automorphisms. In particular,

\begin{equation}
[\mathcal{N} : \lambda_R(\mathcal{N})] = \text{Ind}_{E_R}(\mathcal{M}) = d^2.
\end{equation}

Proof. In both cases a) and b), there exists a unitary $u \in \mathcal{F}_d^1$ such that $p_i = u S_i S_i^* u^*$ for all $i \in \{1, \ldots, N\}$ such that $\tau(p_i) = 1/d$. Since $\lambda_u \circ \lambda_R \circ \lambda_u^{-1} = \lambda_{\lambda_u(R)}$, we may assume $p_i = S_i S_i^*$ for all one-dimensional projections p_i without loss of generality.

a) For each one-dimensional projection p_i, we define the unitary $u_i := c_{ii} S_i S_i^* + \sum_{k \neq i} S_k S_k^* = 1 + (c_{ii} - 1) S_i S_i^* \in \mathcal{F}_d^1$ and claim $S_i \in (\lambda_u, \lambda_R)$. To prove this, we note that for arbitrary $j \in \{1, \ldots, d\}$, we have $p_a S_i = \delta_{ia} S_i$ and $p_i S_j = \delta_{ij} S_j$.

Then we calculate from the definition of R that,

\[\lambda_R(S_j) S_i = R S_j S_i = \sum_{a=1}^n c_{aa} p_a S_j p_a S_i + \sum_{a \neq \beta} p_a S_i p_\beta S_j = \begin{cases} c_{ii} S_i^2 & \text{if } i = j, \\ S_i S_j & \text{if } i \neq j \end{cases},\]

which is easily seen to coincide with $S_i u_i S_j = S_i \lambda_u(S_j)$.

Analogously, one shows $\lambda_R(S_j^*) S_i = S_i \lambda_u(S_j^*)$, which then shows that λ_R contains the automorphisms λ_u.

Since $u_i = 1$ if $c_{ii} = 1$, this shows that λ_R contains the identity with multiplicity m, and n further automorphisms (the λ_u with $c_{ii} \neq 1$), as claimed.

The statement about the remaining irreducible endomorphisms β_j now follows from the known structure of $\mathcal{M}_{R,1}$, namely $\mathcal{M}_{R,1} \cong \mathbb{C} \oplus \ldots \mathbb{C} \oplus \mathcal{M}_m$, where \mathbb{C} occurs with multiplicity $N - m$ (Prop. 3.2).

b) Let $i, j \in \{1, \ldots, d\}$. It is clear that λ_u is an automorphism, with $\lambda_u(S_j) = c_{ij} S_j$ and $\lambda_u(S_j^*) = \overline{c_{ij}} S_j^*$. Analogously to part a), one computes $\lambda_R(S_j) S_i = c_{ij} S_i S_j$ and $\lambda_R(S_j^*) S_i = \overline{c_{ij}} S_i S_j^*$. Hence $S_i \lambda_u(x) = \lambda_R(x) S_i$ whenever $x = S_j$ or $x = S_j^*$. This implies (6.6).

Since each automorphism has dimension 1, it follows that the minimal index is $\text{Ind}(\lambda_R) = d^2$. Since $\text{Ind}(\lambda_R) \leq \text{Ind}_{E_R}(\lambda_R) = [\mathcal{N} : \lambda_R(\mathcal{N})] \leq d^2$, (6.7) follows. \qed

We see in particular that all simple nontrivial R-matrices are reducible. Irreducible R-matrices do exist (and are in fact likely to be the most interesting ones), but a general overview over irreducible R-matrices is currently not known. In Section 8 we will see an example.

Example 6.4. The spectral index bounds from Cor. 6.2 can be fairly weak, as the following example shows. If we take $R = F$, then $\sigma(\mathcal{R}) = \{1, -1\}$ and $\phi_R(\mathcal{R}) = d^{-1} 11$. Thus in this case, the lower bounds (6.4) gives $2 \leq \text{Ind} \lambda_R$ and $1 \leq \text{Ind} \lambda_R$, respectively, to be compared with the exact result $\text{Ind} \lambda_R = d^2$.

Regarding upper bounds on the index, we have the completely general bound $[\mathcal{N} : \lambda_R(\mathcal{N})] \leq d^2$ on the Jones index [CP96] (and hence on the minimal index). In the special case that $\phi_R(\mathcal{R}) = \tau(\mathcal{R}) 1 \neq 0$, then it was also shown in [CP96] that

\begin{equation}
[\mathcal{N} : \lambda_R(\mathcal{N})] \leq |\tau(\mathcal{R})|^{-2}.
\end{equation}
More generally, if $\phi_R(R)$ is invertible\footnote{For involutive R-matrices, $\phi_R(R)$ is known to be invertible [LPW19]. We currently have no proof (but also no counterexample) that this property remains true for general $R \in R$.} but not necessarily scalar, then
\begin{equation}
[N : \lambda_R(N)] \leq \|\phi_R(R)^{-1}\|^{4}.
\end{equation}
This bound is not necessarily sharper than the general bound d^2, but has an interesting consequence for R-matrices that we record here, following [CP96, Cor. 5.5]. It states that the spectrum of a non-trivial R-matrix can not be concentrated in a disc of radius less than the universal bound $1 - 2^{-1/4} \approx 0.159$ (this value is probably not optimal).

Corollary 6.5. Let $R \in R$ and $\mu \in \mathbb{T}$ such that $\|R - \mu\| < 1 - 2^{-1/4}$. Then R is trivial.

Proof. Passing from R to $\mu^{-1}R \in R$ we may assume $\mu = 1$ without loss of generality.

By assumption, $\|\phi_R(R) - 1\| \leq \|R - 1\| < 1 - 2^{-1/4} < 1$. Hence $\phi_R(R)$ is invertible, and the inverse satisfies $\|\phi_R(R)^{-1}\| \leq (1 - \|R - 1\|)^{-1} < 2^{1/4}$. Thus (6.9) implies $[N : \lambda_R(N)] < 2$, i.e. $[N : \lambda_R(N)] = 1$ and λ_R is an automorphism. This is only possible for trivial R (Cor. 2.5). \qed

The estimates (6.4) and (6.9) rely only on the spectrum of R or $\phi_R(R)$ and fail to be sharp when multiplicities have to be taken into account. We hope to revisit this question in a future work.

Remark 6.6. Akemann showed in [Ake97] that if the inclusion diagram
\begin{equation}
\begin{align*}
\mathcal{F}_d^1 \cup \lambda_R(N) \cap \mathcal{F}_d^1 & \subset \mathcal{F}_d^2 \cup \lambda_R(N) \cap \mathcal{F}_d^2 \\
\lambda_R(N) \cap \mathcal{F}_d^1 & \subset \lambda_R(N) \cap \mathcal{F}_d^2
\end{align*}
\end{equation}
is a commuting square, then the index $[N : \lambda_R(N)]$ is an integer.

We remark here that one can show that for arbitrary $R \in R$,
$$\mathcal{F}_d^1 \cap \lambda_R(N) = (\mathcal{F}_d^1)^{\lambda_R}.$$

With the results of the next section, it is then easy to check that if λ_R is ergodic (that is, $N^{\lambda_R} = \mathbb{C}$), then (6.10) commutes and hence $[N : \lambda_R(N)] \in \mathbb{N}$. However, the square does not commute for general R-matrices. Any simple R-matrix containing a projection of dimension greater than 1 is a counterexample.

Presently, it is unknown whether $[N : \lambda_R(N)]$ is integer\footnote{It is known, however, that $[L_R : \varphi(L_R)]$ is typically not integer [Yam12, Tan19].} for any $R \in R$, and whether $\{[N : \lambda_R(N)] : R \in R\} = \mathbb{N}$.

6.1. Reduction of involutive R-matrices. Our considerations so far show that the decomposition of a Yang-Baxter endomorphism into irreducible endomorphisms does not preserve the Yang-Baxter equation. This can for example be seen from the decomposition of the endomorphism of a diagonal R-matrix (6.6) which yields non-trivial automorphisms λ_{U_i} – these are not R-matrices because the only R-matrices giving automorphisms are trivial.

In the context of Yang-Baxter endomorphisms, one would therefore rather like to consider a different reduction scheme that does preserve the YBE. In this
section, we present such a scheme for the subclass of involutive R-matrices (i.e. \(R^2 = 1 \)).

To begin with, we consider R-matrices with the special property that they can be restricted to certain tensor product subspaces, as defined below.

Definition 6.7. An R-matrix \(R \in \mathcal{R}(V) \) is called restrictable\(^{11}\) if there exists a non-trivial subspace \(W \subset V \) such that \(R \) leaves the two subspaces \(W \otimes W \) and \(W^\perp \otimes W^\perp \) of \(V \otimes V \) (with \(W^\perp \) the orthogonal complement of \(W \subset V \)) invariant.

Clearly \(R \) is restrictable if and only if there exists a non-trivial orthogonal projection \(p \in \mathcal{F}_d \) such that

\[
[R, p \otimes p] = 0, \quad [R, p^\perp \otimes p^\perp] = 0, \quad [R, p \otimes p^\perp + p^\perp \otimes p] = 0.
\]

(Actually the third equation is a consequence of the first two.)

It is clear that in this situation, the restrictions of \(R \) to \(W \otimes W \) and \(W^\perp \otimes W^\perp \) are again R-matrices, with base spaces \(W \) and \(W^\perp \), respectively.

We now look at the special case of involutive R-matrices.

Lemma 6.8. Let \(R \in \mathcal{R}_0(V) \) be involutive and reducible. Then \(R \) is restrictable. More precisely, there exists a nontrivial subspace \(W \subset V \) (with orthogonal complement \(W^\perp \)) such that according to the orthogonal decomposition

\[
V \otimes V = (W \otimes W) \oplus (W \otimes W^\perp) \oplus (W^\perp \otimes W) \oplus (W^\perp \otimes W^\perp),
\]

\(R \) takes the form

\[
R = \begin{pmatrix} S & U^{-1} \\ U & T \end{pmatrix}
\]

with a unitary \(U : W \otimes W^\perp \to W^\perp \otimes W \) and involutive R-matrices \(S \in \mathcal{R}_0(W) \), \(T \in \mathcal{R}_0(W^\perp) \).

Proof. Since \(\lambda_R \) is reducible, there exists a non-trivial projection \(p \in \mathcal{M}_{R,1} \subset \mathcal{F}_d \), and we define \(W := pV \). As an element of \((\lambda_R, \lambda_R)\), the projection \(p \) satisfies \(R^*(p \otimes 1)R = 1 \otimes p \). Furthermore, \(R \) is involutive and hence selfadjoint. This implies that we also have \(R(1 \otimes p)R = p \otimes 1 \) and therefore

\[
R(p \otimes p)R = R(p \otimes 1)RR(1 \otimes p) = (1 \otimes p)(p \otimes 1) = p \otimes p.
\]

We conclude that \(R \) leaves the subspaces \(W \otimes W \) and \(W^\perp \otimes W^\perp \) invariant and defines the two R-matrices \(S \) and \(T \) by restriction to these subspaces.

Moreover, we have

\[
R(p \otimes p^\perp)R = R(p \otimes 1 - p \otimes p)R = 1 \otimes p - p \otimes p = p^\perp \otimes p,
\]

and analogously \(R(p^\perp \otimes p)R = p \otimes p^\perp \). This shows that \(R \) also restricts to unitary maps \(U : W \otimes W^\perp \to W^\perp \otimes W \) and \(U' : W^\perp \otimes W \to W \otimes W^\perp \). Since \(R^2 = 1 \), we find \(U' = U^{-1} \). □

\(^{11}\)In [Hie93], such R-matrices are called “simple solutions”. Note that R-matrices that are simple according to our definition Def. 2.10 are restrictable, but not all restrictable R-matrices are simple.
This observation sheds new light onto the decomposition of involutive R-matrices: Whenever an involutive R is reducible, we can split it into two smaller R-matrices S, T and an “off-diagonal component” U. Since the restrictions S and T are still involutive, this process can be iterated until, after finitely many steps, the restricted R-matrices are irreducible. In this sense involutive R-matrices are completely reducible.

Remark 6.9.

a) We conjecture that in the involutive case, λ_R is irreducible if and only if R is a multiple of the identity. This is certainly true in dimension d = 2, but we currently have no proof in general dimension.

b) Equation (6.13) can also be read as a way of constructing R-matrices of larger dimension out of two smaller ones. If the operator U in (6.13) coincides with the flip F, then the right hand side of (6.13) equals S ⊞ T, which satisfies the YBE if and only if S and T do. For more general U, certain commutation relations between U and S, T have to be satisfied in order to ensure the YBE for R [MM96].

It is instructive to point out how this reduction scheme leads to a normal form for involutive R-matrices up to the equivalence relation ~. Recall that R-matrices of normal form were defined in (5.22) as simple R-matrices with parameters c_{ii} ∈ {±1} for all i and c_{ij} = 1 for all i ≠ j.

Proposition 6.10. Let R ∈ R(d) be involutive.

a) In the situation of Lemma 6.8, we have R ~ S ⊞ T.

b) If R is irreducible, then R = ±1 or R ~ ±F.

c) There exists an R-matrix N of normal form such that R ~ N.

Proof. a) We have to show that R and \(\tilde{R} := S \oplus T \) have the same character. It is sufficient to show that for any \(n \in \mathbb{N} \), we have \(\tau(R\varphi(R)\cdots\varphi^n(R)) = \tau(\tilde{R}\varphi(\tilde{R})\cdots\varphi^n(\tilde{R})) \) because both R-matrices are involutive and extremal characters of the infinite symmetric group are fixed by their values on cycles. For the case \(U = F \), it was shown in [LPW19, Prop. 4.4] that

\[
(d_S)^{n+1} \tau(\tilde{R} \cdots \varphi^n(\tilde{R})) = d_S^{n+1} \cdot \tau(S \cdots \varphi^n(S)) + d_T^{n+1} \cdot \tau(T \cdots \varphi^n(T)),
\]

where \(d_S = \text{dim } S \), \(d_T = \text{dim } T \). This proof carries over without changes to the case of a general unitary \(U : W \otimes W^\perp \to W^\perp \otimes W \), leading to the conclusion that \(\tau(R\varphi(R)\cdots\varphi^n(R)) = \tau(\tilde{R}\varphi(\tilde{R})\cdots\varphi^n(\tilde{R})) \) for any \(n \in \mathbb{N} \).

b) If R is irreducible, we have in particular \(\mathcal{L}_{R,1} = \mathbb{C} \) and therefore \(\phi_R(R) \in \mathbb{C} \). This implies the claim, as shown in [LPW19].

c) Applying the reduction scheme to R repeatedly yields

\[
R \sim R^1 \oplus \ldots \oplus R^n,
\]

where the \(R^i \in R(d_i) \) are involutive irreducible R-matrices – the superscript is just a label, not a power – and the off-diagonal terms U from Lemma 6.8 have been removed up to equivalence ~ with the help of part a).

Now, in view of part b), each \(R^i \) is either \(\pm 1 \) (the subscript indicates the dimension, i.e. \(\pm 1 \in R(d_i) \)) or equivalent to \(\pm F_{d_i} \) (where again, the subscript
indicates the dimension). Without loss of generality, assume the first \(m \) R-matrices are trivial (for some \(0 \leq m \leq n \)) and the remaining \(n - m \) R-matrices are flips, i.e. there are signs \(\varepsilon_1, \ldots, \varepsilon_n \in \{ \pm 1 \} \) such that \(R^1 = \varepsilon_1 1_d, \ldots, R^m = \varepsilon_m 1_d \), and \(R^{m+1} = \varepsilon_{m+1} F_{d_{m+1}}, \ldots, R^n = \varepsilon_n F_d \).

A look at (2.24) shows that the flip in dimension \(d_i \) is simple, in fact it can be written as \(F_{d_i} = 1_d \oplus \cdots \oplus 1_d \) (\(d_i \) terms). Hence we arrive at
\[
R \sim \varepsilon_1 1_d \oplus \cdots \oplus \varepsilon_m 1_d \oplus \varepsilon_{m+1} (1_d \oplus \cdots \oplus 1_d) \oplus \cdots \oplus \varepsilon_n (1_d \oplus \cdots \oplus 1_d) =: N,
\]
which shows that \(R \sim N \) with \(N \) of the claimed simple form. \(\square \)

The normal form result was already known from [LPW19], but we have now a new perspective on it from the point of view of Yang-Baxter endomorphisms. This analysis identifies two greatly simplifying features of the involutive case: On the one hand, every involutive \(R \) is completely reducible in the sense explained above, and on the other hand, there exist only very few irreducible involutive R-matrices.

For general R-matrices, neither a reduction scheme nor a classification of irreducible elements, are currently known\(^{12}\). We hope to come back to this question in a future work.

7. Ergodicity and Fixed Points

Fixed point subalgebras of automorphisms and endomorphisms of \(\mathcal{O}_d \) have not been investigated systematically but in few cases. For instance \(\mathcal{O}_2^\ast = \mathbb{C} \), but there exists an order two quasi-free automorphism \(\lambda_f \) of \(\mathcal{O}_2 \), \(f = S_1 S_2^* + S_2 S_1^* \), such that \(\mathcal{O}_2^{\lambda_f} \simeq \mathcal{O}_2 \) [CL12]. More interestingly, \(\mathcal{O}_2^{\lambda_f^{-1}} \simeq \mathcal{O}_4 \), as it is the \(C^\ast \)-subalgebra of \(\mathcal{O}_2 \) generated by \(S_i S_j \), \(1 \leq i, j \leq 2 \). This example is the fixed point algebra of the R-matrix \(R = -1 \in \mathcal{R}(2) \).

In this section, we discuss fixed point algebras of Yang-Baxter endomorphisms \(\lambda_R \) at the level of the \(C^\ast \)-algebras \(\mathcal{O}_d \), \(\mathcal{F}_d \) and the von Neumann algebras \(\mathcal{M}, \mathcal{N} \). What is special in the Yang-Baxter context is that fixed point algebras of \(\lambda_R \) are closely related to the relative commutants \(\mathcal{L}_R \subset \mathcal{N}, \mathcal{L}_R \subset \mathcal{M} \), as we demonstrate now.

Proposition 7.1. Let \(R \in \mathcal{R}(d) \).

a) \(\mathcal{M}^{\lambda_R} \subset \bigcap_{n \geq 1} \lambda_R^n(\mathcal{M}) \subset \mathcal{L}_R \cap \mathcal{M} \).

b) \(\mathcal{N}^{\lambda_R} = \bigcap_{n \geq 1} \lambda_R^n(\mathcal{N}) = \mathcal{L}_R \cap \mathcal{N} \).

c) Let \(i, j \in \{1, \ldots, d\} \). Then \(S_i^* \mathcal{M}^{\lambda_R} S_j \subset \mathcal{M}^{\lambda_R} \) and \(S_i^* \mathcal{N}^{\lambda_R} S_j \subset \mathcal{N}^{\lambda_R} \).

Proof.

a) The first inclusion is trivial. For the second one, let \(x \in \bigcap_{n \geq 1} \lambda_R^n(\mathcal{M}) \) and \(m \in \mathbb{N}_0 \). Then \(x = \lambda_R^{m+2}(y) \) for some \(y \in \mathcal{M} \), and taking into account that \(R \in \mathcal{M}_{R,2} = (\lambda_R^2, \lambda_R^3) \), we find
\[
\varphi^m(R)x = \lambda_R^m(R) \lambda_R^{m+2}(y) = \lambda_R^m(R \lambda_R^2(y)) = \lambda_R^m(\lambda_R^2(y) R) = x \varphi^m(R).
\]
Since \(m \) was arbitrary, this implies \(x \in \mathcal{L}_R \cap \mathcal{M} \).

\(^{12}\)See Section 8 for an example of a non-trivial irreducible R-matrix.
b) Exactly as in part a) we have the two “⊂” inclusions, and it remains to show $\mathcal{L}_R^* \cap \mathcal{N} \subset \mathcal{N}^{\lambda R}$. Let $x \in \mathcal{L}_R^* \cap \mathcal{N}$, i.e. $[x, \varphi^n(R)] = 0$ for all $n \in \mathbb{N}_0$. Then

$$\lambda_R(x) = \lim_{n \to \infty} R \cdots R^n(x)R^n(R)^* \cdots R^* = x,$$

i.e. $x \in \mathcal{N}^{\lambda R}$.

c) Let $x \in \mathcal{M}^{\lambda R}$. Taking into account that x commutes with R by part a), we have

$$\lambda_R(S^*_i x S_j) = S^*_i R^* \lambda_R(x) RS_j = S^*_i R^* x RS_j = S^*_i x S_j.$$

$$\square$$

Remark 7.2.

a) In standard terminology, an endomorphism λ of a von Neumann algebra \mathcal{N} is called ergodic if $\mathcal{N}^{\lambda} = \mathbb{C}$ and a shift if $\cap_{n \geq 1} \lambda^n(\mathcal{N}) = \mathbb{C}$. We have thus shown that $\lambda_R |_{\mathcal{N}}$ is ergodic if and only if $\lambda_R |_{\mathcal{N}}$ is a shift. Furthermore, the fixed point algebra coincides with the relative commutant of $\mathcal{L}_R \subset \mathcal{N}$. Hence $\lambda_R |_{\mathcal{N}}$ is ergodic if and only if $\mathcal{L}_R \subset \mathcal{N}$ is irreducible.

b) We will later discuss an example where $\mathcal{N}^{\lambda R}$ is infinite-dimensional, i.e. in particular, $\mathcal{L}_R \subset \mathcal{N}$ has infinite index.

c) All statements of this proposition hold without changes on the level of the C^*-algebras, i.e. $\mathcal{O}^\lambda_d \subset \bigcap_{n \geq 1} \lambda_R(\mathcal{O}_d) \subset \mathcal{B}_R \cap \mathcal{O}_d$ and $F_0^\lambda = \bigcap_{n \geq 1} \lambda_R(F_d) = B'_R \cap F_d$.

It is currently not clear if one has equalities in Prop. 7.1 a), or if $\mathcal{M}^{\lambda R} \subset \mathcal{N}^{\lambda R}$ for all non-trivial R. We next show that at least ergodicity of λ_R can be decided on the level of the type II factor \mathcal{N}.

For this and following results, we will make use of a (von Neumann version of) family of linear maps $E^n : \mathcal{M} \to \mathcal{N}$, $n \in \mathbb{Z}$, introduced in [Cun77], namely ($n \geq 0$)

$$E^n(x) = \int_{\mathbb{T}} \alpha_z(x S_1^*) dz, \quad E^{-n}(x) = \int_{\mathbb{T}} \alpha_z(S_1^n x),$$

where $\alpha_z = \lambda_{z^{-1}}$ are the gauge automorphisms, integration is over the circle $z \in \mathbb{T}$ w.r.t. $\frac{dz}{2\pi i}$, and the choice of S_1 as a reference generator is by convention. We also introduce the closely related spectral components $x^{(n)} \in \mathcal{M}^{(n)}$ of x as

$$x^{(n)} := \int \alpha_z(x) z^{-n} = \begin{cases} E^n(x) S_1^n & n \geq 0 \\ S_1^{-n} E^n(x) & n < 0 \end{cases}.$$

Recall that $x = 0$ is equivalent to $x^{(n)} = 0$ for all $n \in \mathbb{Z}$ [Tak73, Haa89]. Moreover, we clearly have $(x^*)^{(n)} = (x^{(-n)})^*$ for all $x \in \mathcal{M}$ and all $n \in \mathbb{Z}$.

For any unitary $U \in \mathcal{U}(F_d)$, the endomorphism λ_U commutes with the gauge action, so that the fixed point algebra \mathcal{M}^{λ_U} is globally \mathbb{T}-invariant and for any $x \in \mathcal{M}^{\lambda_U}$, also all its spectral components $x^{(n)}$ are fixed points of λ_U. This applies in particular to R-matrices $R \in \mathcal{U}(F_d^2)$.

Proposition 7.3. Let $U \in \mathcal{U}(F_d)$. If $F_d^{\lambda_U} = \mathbb{C}$ then $\mathcal{O}_d^{\lambda_U} = \mathbb{C}$, and if $\mathcal{N}^{\lambda_U} = \mathbb{C}$ then $\mathcal{M}^{\lambda_U} = \mathbb{C}$.

Proof. Let $x \in \mathcal{O}_d^{\lambda R}$. If it was nontrivial, it would not lie in \mathcal{F}_d and then it would have a nonzero spectral component. Without loss of generality, we may then assume that $x^{(n)} \neq 0$ for some $n > 0$, and as remarked above, $x^{(n)} \in \mathcal{O}_d^{\lambda U}$. Now, both $x^{(n)}(x^{(n)})^*$ and $(x^{(n)})^*x^{(n)}$ are fixed points in \mathcal{F}_d and thus positive scalars, say μ and ν. It follows immediately that ν must be equal to μ and thus $x^{(n)}$ is a multiple of a unitary. However, it is easy to see that this is in conflict with the KMS condition (recall that $\lambda_d - 1$ is the modular group w.r.t. the state $\omega = \tau \circ E^0$).

The proof for the von Neumann algebras \mathcal{M}, \mathcal{N} is identical. □

Prop. 7.3 implies that λR is ergodic if and only if $\lambda R|N$ is ergodic. In this case, we will simply say that $R \in \mathcal{R}$ is ergodic.

Remark 7.4.

a) It is clear that the equivalence relations $R \approx S$ and $R \approx S$ (Def. 5.1) provide automorphisms of \mathcal{M} and \mathcal{N} that identify the fixed point algebras of λR and λS. In particular, the “type 1” and “type 2” cases of \sim equivalences (see p. 5) preserve ergodicity.

b) R is ergodic if and only if R^* is ergodic because

$$N^{\lambda R*} = \mathcal{L}'_{R^*} \cap \mathcal{N} = \mathcal{L}'_R \cap \mathcal{N} = N^{\lambda R}, \quad (7.3)$$

c) Clearly $\mathcal{O}_d^{\lambda R}$ is stable under any endomorphism λu that commutes with λR. For example, if the unitary u is a fixed point, then $\lambda_R \lambda u = \lambda_u \lambda R$, and this coincides with $\lambda_u \lambda R$ if and only if $\varphi(u)$ commutes with R. However, in general $\mathcal{O}_d^{\lambda R}$ is not φ-invariant.

We now turn to an explicit characterization of ergodicity. Let $H_R : \mathcal{N} \to \mathcal{N}^{\lambda R}$ denote the unique τ-preserving conditional expectation onto the fixed point algebra. As λR preserves τ, the ergodic theorem allows us to write H_R as

$$H_R(x) = s-lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda_R(x), \quad x \in \mathcal{N}. \quad (7.4)$$

Also recall that E_n denotes the τ-preserving conditional expectation $\mathcal{N} \to \mathcal{F}_d^n$, which acts by tracing out all tensor factors except the first n (in particular, $E_0 = \tau$).

Theorem 7.5. Let $R \in \mathcal{R}(d)$. The following are equivalent:

a) $E_1(RxR^*) = \tau(x)$ for all $x \in \mathcal{F}_d^1$.

b) $E_n(\varphi^{n-1}(R)x\varphi^{n-1}(R^*)) = E_{n-1}(x)$ for all $n \in \mathbb{N}, x \in \mathcal{F}_d^n$.

c) $H_R(x) = \tau(x)$ for all $x \in \mathcal{F}_d^1$.

d) R is ergodic.

If R is ergodic, then so are all its cabling powers $R^{(n)}$, $n \in \mathbb{N}$.

We will refer to the condition in part a) as “the ergodicity condition” in the following.
Remark 7.6.

a) In matrix notation, the ergodicity condition reads as follows: Let \((e_k)_{k=1}^d\) be the standard basis of \(\mathbb{C}^d\), and let \(R^{ij}_{kl} := \langle e_i \otimes e_j, R(e_k \otimes e_l) \rangle\). Then the ergodicity condition is equivalent to

\[
\sum_{n,m=1}^d R^m_{kn} R^{im}_{ln} = \delta_j^i \delta_l^k \quad i, j, k, l \in \{1, \ldots, d\},
\]

as can be seen by choosing \(x\) as the matrix unit \(e_{kl} \in M_d\). In the special case of involutive \(R\)-matrices equivalent to the flip, Wassermann have a proof of an analogue of Thm. 7.5 already in [Was87], also based on the condition (7.5).

b) The ergodicity condition is best understood in graphical notation. Noting that \(E_1\) acts as a normalized right partial trace on \(\mathcal{F}_d^2\), we have the following graphical representation:

![Figure 2. The ergodicity condition in graphical notation. Note that this is trivially satisfied for \(R = F\), and trivially violated for \(R = 1\).]

We also note the graphical representation of the (equivalent) condition in part b): Since \(E_n\) acts as the normalized partial trace on the rightmost tensor factor of \(\mathcal{F}_d^{n+1}\), it is apparent that condition b) reads in graphical notation

![c) The ergodicity condition also appears in [CP96], where it was shown to imply that the left inverse \(\phi_R\) is localized in the sense that for any \(n \in \mathbb{N}\) there exists a \(k \in \mathbb{N}\) such that \(\phi_R(\mathcal{F}_d^n) \subset \mathcal{F}_d^k\).]

Proof. a) \(\Rightarrow\) b) We give a proof by induction in \(n\), the case \(n = 1\) being equivalent to a). For the induction step, note that the definition of \(E_n\) implies

\[
S_i^* E_n(\cdot) S_j = E_{n-1}(S_i^* \cdot S_j)
\]

for any \(i, j\). Thus we have, \(i, j \in \{1, \ldots, d\}, x \in \mathcal{F}_d^{n+1},\)

\[
S_i^* E_{n+1}(\varphi^n(R)x \varphi^n(R^*))S_j = E_n(S_i^* \varphi^n(R)x \varphi^n(R^*)S_j)
\]

\[
= E_n(\varphi^{-1}(R)S_i^* x S_j \varphi^{-1}(R^*)).
\]
As $S_i^*xS_j \in \mathcal{F}_d^n$, this simplifies by induction assumption to $E_{n-1}(S_i^*xS_j) = S_i^*E_n(x)S_j$. Since i, j were arbitrary, this finishes the proof.

b) \implies c) Let $x \in \mathcal{F}_d^n$, $n \in \mathbb{N}$ and $y \in \mathcal{F}_d^n$. Noting that $\phi^{k-1}(R)$ commutes with y for $k - 1 \geq n$, we calculate

$$
\tau(yH_R(x)) = \lim_{m \to \infty} \frac{1}{m} \sum_{k=0}^{m-1} \tau(y\lambda^k_R(x)) = \lim_{m \to \infty} \frac{1}{m} \sum_{k=0}^{m-1} \tau(y\phi^{k-1}(R) \cdots RxR^* \cdots \phi^{k-1}(R^*)) = \lim_{m \to \infty} \frac{1}{m} \sum_{k=0}^{m-1} \left\{ \sum_{k=0}^{n} \tau(y_k Rx_R(k)^*) + \sum_{k=n+1}^{m-1} \tau(y\phi^{n-1}(R) \cdots RxR^* \cdots \phi^{n-1}(R^*)) \right\} \tag{7.6}
$$

$$
= \tau(y\phi^{n-1}(R) \cdots RxR^* \cdots \phi^{n-1}(R^*)).
$$

We now insert E_n into the trace and use b) iteratively to arrive at

$$
\tau(yH_R(x)) = \tau(yE_n(\phi^{n-1}(R) \cdots RxR^* \cdots \phi^{n-1}(R^*))) = \tau(yE_{n-1}(\phi^{n-2}(R) \cdots RxR^* \cdots \phi^{n-2}(R^*))) = \tau(yE_0(x)) = \tau(y\tau(x).
$$

As n was arbitrary and the trace is faithful, this implies $H_R(x) = \tau(x)$, i.e. we have shown c).

c) \implies d) To amplify c) to ergodicity, we will use the cabling maps c_n and cabling powers $R^{(n)}$, $n \in \mathbb{N}$. The first step is to realize that if R satisfies the ergodicity condition, then so does $R^{(n)}$, i.e.

$$
E_{R^{(n)}}(R^{(n)}c_n(x)(R^{(n)}))^* = \tau(x), \quad x \in \mathcal{F}_d^n.
$$

Applying c_n^{-1}, this condition is seen to be equivalent to

$$
E_{n(R_n \cdot x \cdot n(R_n^*))} = \tau(x), \quad x \in \mathcal{F}_d^n,
$$

which can be proven by induction in n with the help of the ergodicity condition for R, expressed as in b) (and is obvious in graphical notation).

Let $n \in \mathbb{N}$ and $x \in \mathcal{F}_d^n$. Then $c_n(x) \in \mathcal{F}_d^n$, and since $R^{(n)}$ satisfies a) and thus also c), we have $H_{R^{(n)}}(c_n(x)) = \tau(c_n(x)) = \tau(x)$ and therefore

$$
\tau(x) = (c_n^{-1} \circ H_{R^{(n)}} \circ c_n)(x), \quad x \in \mathcal{F}_d^n. \tag{7.7}
$$

We now recall that $c_n^{-1} \circ \lambda_{R^{(n)}} \circ c_n = \lambda_{R}^N$ as endomorphisms of $\mathcal{N}_d (4.9)$. Expressing $H_{R^{(n)}}$ as an ergodic mean as in (7.4), we then see that $H_{R,n} := c_n^{-1} \circ H_{R^{(n)}} \circ c_n$ is the τ-preserving conditional expectation from \mathcal{N}_d onto its fixed point subalgebra \mathcal{N}_d^λ.

Eqn. (7.7) states that $H_{R,n}$ acts as the trace on \mathcal{F}_d^n. As clearly $\mathcal{N}_d^\lambda \subset \mathcal{N}_d^\lambda_N$, also the conditional expectation H_R acts as the trace on \mathcal{F}_d^n. In other words, $\tau(yH_R(x)) = \tau(y)\tau(x)$ for all $y \in \mathcal{N}_d$ and all x in the algebraic infinite tensor.
product $\bigcup_n \mathcal{F}_d^n$. By continuity, this extends to $\tau(yH_R(x)) = \tau(y)\tau(x)$ for all $x, y \in \mathcal{N}_d$, which is equivalent to ergodicity, $H_R = \tau$, by the faithfulness of τ.

d) \implies a) Let $x \in \mathcal{F}_d$. According to the calculation (7.6) in the proof of b) \implies c), specialized to $n = 1$, we have for all $y \in \mathcal{F}_d^1$
$$\tau(yH_R(x)) = \tau(yRxR^*) = \tau(yE_1(RxR^*)).$$

If λ_R is ergodic, we have $H_R(x) = \tau(x)$. As $E_1(RxR^*)$ is an element of \mathcal{F}_d^1, and $y \in \mathcal{F}_d^1$ was arbitrary, we see that $E_1(RxR^*) = \tau(x)$, i.e. a) holds.

As an application of Thm. 7.5, we show that diagonal R-matrices (Def. 2.10) are ergodic.

Corollary 7.7. Diagonal R-matrices are ergodic.

Proof. A diagonal R-matrix is of the form $R = \lambda_u(S)$ with $u \in \mathcal{U}(\mathcal{D}_d^1)$ and $S \in \mathcal{R}(d)$ of the form $S_{ik} = c_{lk} \delta_{ik}$, $i, j, k, l \in \{1, \ldots, d\}$ with parameters $c_{lk} \in \mathbb{T}$. It is a straightforward calculation to verify the ergodicity condition (7.5) for S. Since $R \cong S$ (type 1), it follows that R is ergodic as well.

Remark 7.8. Any non-trivial fixed point $x = \lambda_R(x) = RxR^* \in \mathcal{F}_d^1$ satisfies $E_1(RxR^*) = x$ and therefore violates the ergodicity condition. Conversely, if some $x \in \mathcal{F}_d^1$ violates the ergodicity condition, then the argument in the proof d) \implies a) of Thm. 7.5 shows that $H_R(x) \neq \tau(x)$. That is, we have a non-trivial fixed point $H_R(x) \in \mathcal{N}\lambda_R$ in this case. However, typically $H_R(x)$ will not lie in \mathcal{F}_d^1 or even \mathcal{F}_d, but only in its weak closure \mathcal{N}.

One might therefore expect that the condition that λ_R admits no non-trivial fixed points in \mathcal{F}_d^1, namely

$$\mathbb{C} \ni (\mathcal{F}_d^1)^{\lambda_R} = \{x \in \mathcal{F}_d^1 : RxR^* = x\},$$

is strictly weaker than the ergodicity condition for general R. We will prove this later by an example.

In order to compare the fixed point algebras on the C^*- and von Neumann level, we add another result, which shows that the fixed point algebra on the C^*-level is, in a sense, not too big when R is not a scalar. Recall that if a unital C^*-algebra A is simple and purely infinite then for every nonzero $x \in A$ there exist $y, z \in A$ such that $yxz = 1$ [Dav96, Thm. V.5.5].

Proposition 7.9. Let $R \in \mathcal{R}(d)$. If $\mathcal{O}_d^{\lambda_R}$ is simple and purely infinite then $R = \mu 1$, where $\mu \in \mathbb{T}$ is an n-th root of unity for some positive integer n.

Proof. Suppose that the fixed point algebra is simple purely infinite. Then it is not contained in \mathcal{F}_d, and thus there exists some $x \in \mathcal{O}_d^{\lambda_R}$ with $x^{(n)} \neq 0$ for some $n > 0$. Now, from the equality $\lambda_R(x^{(n)}) = x^{(n)}$, taking into account the fact that R is unitary and $x^{(n)}$ commutes with \mathcal{B}_R, we get

$$\|R\varphi(R) \cdots \varphi^{k+n-1}(R)x^{(n)}\varphi^{k-1}(R)^* \cdots \varphi(R)^*R^* - x^{(n)}\|
= \|\varphi(R) \cdots \varphi^{k+n-1}(R)x^{(n)} - \varphi^{k-1}(R)^* \cdots R^*x^{(n)}R \cdots \varphi^{k}(R)\|
= \|\varphi(R) \cdots \varphi^{k+n-1}(R)x^{(n)} - x^{(n)}\| \to 0.$$
when \(k \to \infty \). Pick \(y, z \in \mathcal{O}_d^{\lambda_R} \) such that \(yx^{(n)}z = 1 \). Then,
\[
\| \varphi^k (R \cdots \varphi^{n-1}(R)) \| - 1 = \| \varphi^k (R) \cdots \varphi^{k+n-1}(R) \| - 1 \\
\leq \| y(\varphi^k (R) \cdots \varphi^{k+n-1}(R)x^{(n)} - x^{(n)})z \| \\
\leq \| \varphi^k (R) \cdots \varphi^{k+n-1}(R)x^{(n)} - x^{(n)} \| \| y \| \| z \| \to 0
\]
as \(k \to \infty \). Since \(\varphi \) is unital and isometric, we get \(R \cdots \varphi^{n-1}(R) = 1 \). However,
\(R^* \in \mathcal{R}(d) \), implying that \(\lambda_{R^*} \) is not surjective and \(\lambda_{R^*} = \lambda_{\varphi^{n-1}(R^*) \cdots \varphi R^*} \) is not the identity, unless \(R = \mu 1 \) with \(\mu^n = 1 \).

Conversely, if \(\mu \in \mathbb{T} \) is a primitive \(n \)-th root of 1 then it is not difficult to see that \(\mathcal{O}_d^{\lambda_{\mu^n}} \) is isomorphic to \(\mathcal{O}_d^{\mu^n} \), while if \(\mu \in \mathbb{T} \) has infinite order one has \(\mathcal{O}_d^{\lambda_{\mu^n}} = \mathcal{F}_d \).

So far, we have not ruled out completely the possibility that \(\mathcal{O}_d^{\lambda_R} \not\subset \mathcal{F}_d \), but we have already restricted the isomorphism class of the fixed point algebra. The next result shows that at least there are no algebraic fixed points outside \(\mathcal{F}_d \) if \(R \) is non-trivial. It also shows that (7.8) captures precisely the absence of non-trivial algebraic fixed points.

Here and in the following, we write \(^0\mathcal{O}_d \subset \mathcal{O}_d \) for the algebraic part of \(\mathcal{O}_d \), i.e. the unital *-algebra of polynomials in the generators \(S_1, \ldots, S_n \) and their adjoints, and \(^0\mathcal{F}_d := ^0\mathcal{O}_d \cap \mathcal{F}_d \cup \bigcup_{n \in \mathbb{N}} \mathcal{F}_d^n = \mathcal{N} \) for the algebraic part of \(\mathcal{F}_d \). We also use the shorthand notations \(^0\mathcal{O}_d^{\lambda_R} := ^0\mathcal{O}_d \cap \mathcal{O}_d^{\lambda_R} \) and \(^0\mathcal{F}_d^{\lambda_R} := ^0\mathcal{F}_d \cap \mathcal{F}_d^{\lambda_R} \).

Proposition 7.10. Let \(R \in \mathcal{R}(d) \).

a) If \(R \not\in \mathbb{C} \), then all algebraic fixed points of \(\lambda_R \) are contained in \(\mathcal{F}_d \), i.e.
\[
^0\mathcal{O}_d^{\lambda_R} = ^0\mathcal{F}_d^{\lambda_R}.
\]

b) \(^0\mathcal{F}_d^{\lambda_R} = \mathbb{C} \) if and only if \((\mathcal{F}_d^1)^{\lambda_R} = \mathbb{C} \).

Proof. a) Let \(x \in ^0\mathcal{O}_d \) be an algebraic fixed point of \(\lambda_R \) that is not contained in \(\mathcal{F}_d \), without loss of generality assumed to be selfadjoint. As \(x \not\in \mathcal{F}_d = \mathcal{O}_d^{(0)} \), it has a non-zero spectral component \(x^{(n)} \), \(n > 0 \), which also lies in \(^0\mathcal{O}_d^{\lambda_R} \). We may therefore express it as \(x^{(n)} = E^n(x)S^0_\lambda \) with \(E^n(x) \in \mathcal{F}_d^n \) for some \(k \in \mathbb{N}_0 \). Then, for all multi indices \(\alpha, \beta \) of length \(|\alpha| = |\beta| = k \) we have \(t_{\alpha, \beta} := S^*\alpha E^n(x)S_\beta \in \mathbb{C} \).

Now define \(T := S^*\alpha E^n(x)S_\beta = S^*\alpha E^n(x)S_\gamma S^*\gamma S_\beta \), where we have chosen \(\alpha, \beta \) such that \(T \neq 0 \); this is possible because \(x^{(n)} \neq 0 \). By virtue of Prop. 7.1 c), \(T \) is a fixed point. Furthermore, \(T \) can be expressed as
\[
T = S^*\alpha E^n(x)S_\beta = \sum_{\gamma : |\gamma| = k} S^*\alpha E^n(x)S_\gamma S^*\gamma S_\beta = \sum_{\gamma : |\gamma| = k} t_{\alpha, \gamma} S^*\gamma S_\gamma S_\beta.
\]
As the multi indices \(\beta \) and \(\gamma \) have the same length \(k \) for all terms in the sum, we see that \(T \) is a linear combination of products of \(n \) generators \(S_{i_1} \cdots S_{i_n} \). In particular, \(T \) is a (non-zero) multiple of an isometry.

To conclude the proof, note that as a consequence of \(R \) being an element of \(\mathcal{F}_d^2 \), and in view of the form of \(T \), we have \((T^*)^2RT^2 \in \mathbb{C} \). But as a fixed point, \(T \) commutes with \(R \) (cf. Prop. 7.1 a)). Therefore
\[
\mathbb{C} \ni (T^*)^2RT^2 = (T^*)^2T^2R,
\]
and as \((T^*)^2T^2\) is a non-zero scalar, the triviality of \(R\) follows.

b) The implication \(\Rightarrow\) is trivial. For the reverse implication, let \(x \in (\mathcal{F}_d^k)^{\lambda_R}\) for some \(k \in \mathbb{N}\). Then, by Prop. 7.1 c), \(S_i^* \cdots S_{ik-1}^* x S_{jk-1} \cdots S_{ji} \in (\mathcal{F}_d^k)^{\lambda_R} = \mathbb{C}\) for all \(i, j\). Thus

\[
x = \sum_{l=1}^{k-1} \sum_{i,j=1}^d S_{li} \cdots S_{i1} \left(S_{ii}^* \cdots S_{ik-1}^* x S_{jk-1} \cdots S_{ji} \right) S_{ji}^* \cdots S_{jk-1}^* \in \mathcal{F}_d^{k-1},
\]

and inductively it follows that \(x \in (\mathcal{F}_d^1)^{\lambda_R} = \mathbb{C}\).

We now compare the ergodicity condition and the condition \((\mathcal{F}_d^1)^{\lambda_R} = \mathbb{C}\) in more detail. It turns out that they have quite different behavior with respect to taking box sums.

Lemma 7.11. Let \(R, S \in \mathcal{R}\).

a) \(R \boxplus S\) satisfies the ergodicity condition if and only if both \(R\) and \(S\) do.

b) \(\lambda_{R \boxplus S}\) has no non-trivial algebraic fixed points.

Proof. a) Let us view \(R \in \mathcal{R}(d) \subset \text{End}(V \otimes V), S \in \mathcal{R}(d') \subset \text{End}(W \otimes W)\) with \(\dim V = d, \dim W = d'\), and pick orthonormal bases \(\{e_i : i = 1, \ldots, d\}\) of \(V\) and \(\{f_j : j = 1, \ldots, d'\}\) of \(W\). We denote the orthogonal projection from \(V \oplus W\) onto \(V\) and \(W\) by \(p\) and \(p^\perp\), respectively.

Recall that \(E_1\) acts as the normalized right partial trace on \(\text{End}((V \oplus W) \otimes (V \oplus W))\). Writing \(U := R \boxplus S\) as a shorthand, we have, \(x \in \text{End}(V \oplus W),\)

\[
(d + d') \langle e_i, E_1(U x U^*) e_j \rangle
\]

\[
= \sum_{k=1}^d \langle e_i \otimes e_k, U x U^* (e_j \otimes e_k) \rangle + \sum_{l=1}^{d'} \langle e_i \otimes f_l, U x U^* (e_j \otimes f_l) \rangle
\]

\[
= \sum_{k=1}^d \langle e_i \otimes e_k, R x p x p R^* (e_j \otimes e_k) \rangle + \delta_j^l \sum_{l=1}^{d'} \langle f_l, p^\perp x p^\perp f_l \rangle.
\]

The ergodicity condition demands that for every \(x\), this equals

\[
(d + d') \langle e_i, \tau(x) e_j \rangle = \delta_j^l \sum_{k=1}^d \langle e_k, p x p^\perp e_k \rangle + \delta_j^l \sum_{l=1}^{d'} \langle f_l, p^\perp x p^\perp f_l \rangle.
\]

Comparing the expressions, we see that the ergodicity condition for \(R \boxplus S\) implies the ergodicity condition for \(R\). Analogously, one shows that ergodicity of \(S\) is necessary for ergodicity of \(R \boxplus S\).

To check that this is sufficient, we also have to consider the “mixed” expectation values of \(E_1(U x U^*)\) between vectors in \(V\) and \(W\), namely \(\langle e_i, E_1(U x U^*) f_j \rangle\). But since \(R \boxplus S\) acts as the flip on mixed tensors, it follows that these necessarily vanish, in agreement with the ergodicity condition. Hence ergodicity of \(R\) and \(S\) is also sufficient for ergodicity of \(R \boxplus S\).

b) We need to show that the only \(x \in \text{End}(V \oplus W)\) commuting with \(U = R \boxplus S\) are multiples of the identity (cf. Prop. 7.10). We have

\[
U x U^* (p \otimes p) = U(p x p \otimes p + p^\perp x p \otimes p) R^* = R(p x p \otimes p) R^* + (p \otimes p^\perp x p) F R^*,
\]

\[
x(p \otimes p) = p x p \otimes p + p^\perp x p \otimes p.
\]
As R commutes with $p \otimes p$, this implies $p^\perp xp = 0$, and analogously $pxp^\perp = 0$.

Similarly,
\[
U x U^* (p \otimes p^\perp) = U (xp^\perp \otimes p) F = U (p^\perp xp \otimes p) F = p \otimes p^\perp xp^\perp,
\]
\[
x (p \otimes p^\perp) = pxp \otimes p^\perp.
\]

Taking partial traces, we find $pxp = c \cdot p$, $p^\perp xp^\perp = c \cdot p^\perp$ with $c \in \mathbb{C}$. Thus $x = c \in \mathbb{C}$, and (7.8) is satisfied. \[\square\]

This result gives us many R-matrices that are not ergodic but do not have any non-trivial algebraic fixed points either. Consider an involutive R-matrix N of normal form, i.e.
\[
(7.10) \quad N = \bigoplus_{i=1}^n \varepsilon_i 1_{d_i}
\]
for some $n \in \mathbb{N}$, with signs $\varepsilon_i \in \{\pm 1\}$ and dimensions $d_i \in \mathbb{N}$, $\sum_{i=1}^n d_i = d$ (see Thm. 5.9 c)). Then Lemma 7.11 b) shows that N has non-trivial fixed points if and only if it is trivial, namely $n = 1$ and $N = \pm 1$. We also know if $d_1 = \ldots = d_n = 1$, then N is diagonal and hence ergodic (Cor. 7.7). But all other normal forms N, and in fact all R-matrices R equivalent to them, are not ergodic, as we show next.

Proposition 7.12. Let R be ergodic. Then
\[
(7.11) \quad \| \phi_R (R) \|_2^2 = \tau (R^* \varphi (R)) = \frac{1}{d^2}.
\]
If R is ergodic and involutive, it is of diagonal type, i.e. $R \sim N$ for a normal form (7.10) with $d_1 = \ldots = d_n = 1$.

Proof. We consider the ergodicity condition (7.5) with $i = k$ and $j = l$. Summing over i, j gives
\[
d^{-2} = d^{-3} \sum_{i,j=1}^d \delta_{ij} = d^{-3} \sum_{i,j,m=1}^d R_{im}^{*n} (R^*)_{jm} = \tau (\phi_F (R) \phi_F (R^*)).
\]
Recalling that $\phi_F (R) = \phi_R (R)$, this gives $\| \phi_R (R) \|^2_2 = d^{-2}$ as claimed. Furthermore,
\[
\tau (\phi_R (R) \phi_F (R^*)) = \tau (R \lambda_R (\phi_F (R^*))) = \tau (R \phi_F (R^*)) = \tau (\varphi (R) R^*).
\]
We now specialize to the case that $R = R^*$ is involutive. Then we may express $\tau_R (b_1b_2) = \tau (\varphi (R) R)$, the value of a three-cycle in the character τ_R, in terms of the Thoma parameters α_k, β_l of R. Recall that $d \alpha_i, d \beta_i \in \mathbb{N}$ are the dimensions d_i of the normal form of R, summing to d. Thus, by (5.27),
\[
d = d^3 \tau (\varphi (R) R) = \sum_k (d \alpha_k)^3 + \sum_l (d \beta_l)^3 = \sum_{i=1}^n d_i \geq \sum_{i=1}^n d_i = d.
\]
It follows that $d_i = 1$ for all i. \[\square\]

We now want to demonstrate the fact hinted at earlier – there exist R-matrices R such that λ_R is ergodic on the C^*-algebra O_d, but not on the von Neumann algebra M (or, analogously, ergodic on F_d but not on N). For this, we need a
result that improves the absence of non-trivial algebraic fixed points (Prop. 7.10) to absence of non-trivial fixed points in \mathcal{O}_d.

The arguments in the following proof are generalisations of arguments given in [MT93]. Note that the Yang-Baxter equation is not used here.

Proposition 7.13. Let $U \in \mathcal{U}(\mathcal{F}_d)$ and $v \in \mathcal{U}(\mathcal{F}_d^I)$ such that there exists $i \in \{1, \ldots, d\}$ with $vS_i = z \cdot S_i$ for some $z \in \mathbb{T}$. If $S_i \in (\lambda_U, \lambda_U)$, then $\mathcal{O}_d^\lambda_U = \mathbb{C}$.

Proof. In view of Prop. 7.3 it is enough to show that $\mathcal{F}_d^\lambda_U = \mathbb{C}$. Let $x \in \mathcal{F}_d^\lambda_U$ be a fixed point. Writing $T := S_i$ for the intertwiner, the assumption $T \in (\lambda_v, \lambda_U)$ implies

$$T \lambda_v(x) = \lambda_U(x)T = xT \implies x = \lambda_v^{-1}(T^* x T).$$

Since $\lambda_v^{-1}(T) = v^{-1}S_i = \frac{1}{2} T$, we see that λ_v^{-1} commutes with $\text{ad} \ T^*$. We therefore have $x = T^* \lambda_v^{-1}(x)T$, which we may iterate to

$$x = (T^*)^n \lambda_v^{-n}(x)T^n, \quad n \in \mathbb{N}.$$

We now show that this implies $x \in \mathbb{C}$. Indeed, if x lies in \mathcal{F}_d^m for some $m \in \mathbb{N}$, then so does $\lambda_v^{-n}(x)$, and thus $T^* \lambda_v^{-n}(x)T^n \in \mathbb{C}$ for all $n \geq m$. This already shows that λ_U admits no non-trivial algebraic fixed points.

If $x \in \mathcal{F}_d$ is a non-algebraic fixed point of λ_U, we consider a sequence $(x_k)_{k \in \mathbb{N}} \subset \mathcal{O}_d$ converging in norm to x. For any k, there exists $n(k) \in \mathbb{N}$ such that for all $n \geq n(k)$, we have $T^* \lambda_v^{-n}(x_k)T^n = \mu_k \cdot 1$ for an n-independent complex number μ_k. Given $k, l \in \mathbb{N}$, we then have for $n \geq \max\{n(k), n(l)\}$

$$|\mu_k - \mu_l| = \|T^* \lambda_v^{-n}(x_k - x_l)T^n\| \leq \|x_k - x_l\|,$$

and it follows that μ_k converges to a limit μ as $k \to \infty$.

To show that $x = \mu \cdot 1$, let $n, k \in \mathbb{N}$ be arbitrary. We have

$$\|x - \mu\| = \|T^* \lambda_v^{-n}(x)T^n - \mu\| \leq \|T^* \lambda_v^{-n}(x - x_k)T^n\| + \|T^* \lambda_v^{-n}(x_k)T^n - \mu_k\| + |\mu_k - \mu| \leq \|x - x_k\| + \|T^* \lambda_v^{-n}(x_k)T^n - \mu_k\| + |\mu_k - \mu|.$$

Given $\varepsilon > 0$, we can choose k large enough such that $\|x - x_k\| < \varepsilon$ and $|\mu - \mu_k| < \varepsilon$. Choosing $n > n(k)$, we also have $T^* \lambda_v^{-n}(x_k)T^n - \mu_k = 0$ and conclude $\|x - \mu\| < 2\varepsilon$.

We mention as an aside that this proposition still holds when U is an arbitrary unitary in \mathcal{O}_d. Since we will not need this stronger version, we refrain from giving the proof.

Let us now look at an explicit example.

Example 7.14. Consider the normal form R-matrix $N := 1_2 \oplus 1_1 \in \mathcal{R}(3)$. We claim that

$$\mathcal{O}_3^{\lambda_N} = \mathbb{C}, \quad N^{\lambda_N} \neq \mathbb{C}.$$

The non-ergodicity of λ_N on \mathcal{N}, i.e. $N^{\lambda_N} \neq \mathbb{C}$, follows from Prop. 7.12 because N is an involutive normal form with dimensions $d_1 = 2, d_2 = 1$.

To demonstrate ergodicity of λ_N on \mathcal{O}_3, we will verify the conditions of Prop. 7.13 with $v = 1$ and $i = 3$, i.e. show that S_3 is an intertwiner from id
to λ_N. We have to show $S_3S_i = NS_iS_3$ and $S_3S_i^* = S_i^*NS_3$ for $i = 1, 2, 3$ (note that $N = N^*$).

The R-matrix is here $N = \sum_{j,k,l,m=1}^{3} N_{lm}^{jk} S_j S_k S_m S_l^*$ and its matrix elements satisfy $N_{3d}^{kj} = \delta_{3d}^{kj} = N_{13}^{jk}$ by definition of N (note that $N = FNF$). Thus, $i = 1, 2, 3$,

$$NS_iS_3 = \sum_{j,k,l,m=1}^{3} N_{lm}^{jk} S_j S_k S_m S_l^* S_i S_3 = \sum_{j,k=1}^{3} N_{13}^{jk} S_j S_k = S_3 S_i$$

and

$$S_i^* NS_3 = S_i^* \sum_{j,k,l,m=1}^{3} N_{lm}^{jk} S_j S_k S_m S_l^* S_3 = \sum_{k,m=1}^{3} N_{3m}^{jm} S_k S_m^* = S_3 S_i^*$$

which finishes the proof. With a little more effort, one shows

$$\lambda_N(S_1) = S_1 S_1 S_1^* + S_1 S_2 S_2^* + S_3 S_1 S_3^*,$$

$$\lambda_N(S_2) = S_2 S_1 S_1^* + S_2 S_2 S_2^* + S_3 S_2 S_3^*,$$

$$\lambda_N(S_3) = S_3 S_3 S_3^* + S_2 S_3 S_2^* + S_2 S_3 S_3^*.$$

For completeness, we also mention that in this example, $\mathcal{M}_{N,1} \cong \mathbb{C} \oplus \mathbb{C}$ (Cor. 6.3), i.e. $\lambda_N \cong \mu \oplus \text{id}$ with some irreducible non-trivial endomorphism μ. Since the intertwiner T for $\mu < \lambda_N$ must generate together with S_3 a copy of \mathcal{O}_2, which does not exist within \mathcal{O}_3, this decomposition can only hold on the level of the associated von Neumann algebras, i.e. $T \in \mathcal{M} \supset \mathcal{O}_3$.

In Section 8, we discuss another example in which the algebraic part of the fixed point algebra is infinite dimensional and can be described explicitly (Prop. 8.2).

To conclude this section, we compare ergodicity and irreducibility. Note that $(\mathcal{F}_d^1)^{\lambda_R}$ and $\mathcal{M}_{R,1}$ (or $\mathcal{N}_{R,1}$) are commuting subalgebras of \mathcal{F}_d^1 because trivially $(\mathcal{F}_d^1)^{\lambda_R} \subset \lambda_R(\mathcal{F}_d^1)$. This leads to the following observation, independent of the Yang-Baxter equation.

Lemma 7.15. Let $R \in \mathcal{U}(\mathcal{F}_d^1)$ with d prime. Then either $\mathcal{M}_{R,1} = \mathbb{C}$ or $(\mathcal{F}_d^1)^{\lambda_R} = \mathbb{C}$.

Proof. Let $p \in \mathcal{M}_{R,1}$ and $q \in (\mathcal{F}_d^1)^{\lambda_R}$ be orthogonal projections. Then $R^*pR = \varphi(p)$ (3.1) and $q = \lambda_R(q) = RqR^*$, and therefore

$$pq = R\varphi(p)R^*RqR^* = R\varphi(p)qR^*.$$

As p and q commute, $pq = p \wedge q$. Evaluating in τ gives $\tau(p \wedge q) = \tau(R\varphi(p)qR^*) = \tau(p)\tau(q)$, which is equivalent to $d \text{Tr}(p \wedge q) = \text{Tr}(p)\text{Tr}(q)$ with Tr the matrix trace of $\mathcal{F}_d^1 \cong M_d$. Taking into account that as selfadjoint projections, p, q, and $p \wedge q$ have traces in $\{0, \ldots, d\}$, and that d is prime, it follows that $\text{Tr}(p) \in \{0, d\}$ or $\text{Tr}(q) \in \{0, d\}$. Thus either p or q has to be a trivial projection.

If $d = n \cdot m$ is not prime, there exist R-matrices such that λ_R is reducible and has non-trivial fixed points in \mathcal{F}_d^1. Such R-matrices can be constructed as tensor products $R = S \boxtimes T$, where $R \in \mathcal{R}(n)$ is chosen such that λ_R is reducible.
(e.g., the flip) and \(S \in \mathcal{R}(m) \) is chosen such that \(\lambda_S \) has non-trivial fixed points in \(\mathcal{T}_m \) (see Section 4.1).

So far we do not know any \(R \)-matrices that are both irreducible and ergodic. It is possible that irreducibility implies the existence of non-trivial fixed points.

8. Two-dimensional \(R \)-matrices

As a concrete family of examples, we consider in this section \(R \)-matrices in dimension \(d = 2 \). In [Hie92], all solutions to the Yang-Baxter equation have been computed, including non-unitary and non-involutive ones. In [Dye03], the unitary solutions have been singled out: \(\mathcal{R}(2) \) consists precisely of all those matrices \(R \) which are of the form \(R = (Q \otimes Q)R_i(Q \otimes Q)^{-1} \), where \(R_i, i = 1, \ldots, 4 \), is one of the following \(R \)-matrices and \(Q \in \text{End} \mathbb{C}^2 \) is invertible and satisfies certain restrictions ensuring that \(R \) is unitary\(^{13}\).

\[
\begin{align*}
R_1 &= q \cdot 1, \quad q \in \mathbb{T}, \\
R_2 &= \begin{pmatrix} p & q \\ r & s \end{pmatrix}, \quad p, q, r, s \in \mathbb{T}, \\
R_3 &= \begin{pmatrix} q & p \\ r & q \end{pmatrix}, \quad q, p \cdot r \in \mathbb{T}, \\
R_4 &= \frac{q}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \quad q \in \mathbb{T}.
\end{align*}
\]

Note that \(R_3 \) is not always unitary because only \(|pr| = 1 \) is required, and also \(Q \) is not necessarily unitary.

For our purposes, it is better to present the elements of \(\mathcal{R}(2) \) in the form \(\lambda_u(R_i) \cong (u \otimes u)R_i(u \otimes u)^{-1}, \) where both \(u \in \mathcal{F}_2^3 \) and \(R_i \in \mathcal{F}_2^2 \) are unitary.

Theorem 8.1. A matrix \(R \in \mathcal{F}_2^2 \) lies in \(\mathcal{R}(2) \) if and only if there exists \(u \in \mathcal{U}(\mathcal{F}_2^3) \) and \(i \in \{1, \ldots, 4\} \) such that \(R = \lambda_u(R_i) \), where all parameters \(p, q, r, s \) appearing in the representatives \(R_1, \ldots, R_4 \) have modulus 1.

Proof. The “if” part of the statement follows by noting that when the parameters \(p, q, r, s \) have modulus 1, then \(R_1, \ldots, R_4 \in \mathcal{R}(2) \). For the “only if” statement, we first note that for \(Q = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \) with \(a = \sqrt{|p|} \), the transformed matrix \((Q \otimes Q)R_i(Q \otimes Q)^{-1} \) is of the same form as \(R_3 \), but with all parameters having unit modulus. We may therefore without loss of generality take all parameters to have unit modulus, i.e. all representatives \(R_1, \ldots, R_4 \) to be unitary.

\(^{13}\)In this section (only), the notation \(R_i \) refers to the specific \(R \)-matrices listed here, and not to (2.4).
Let now $R = (Q \otimes Q)R_i(Q \otimes Q)^{-1}$ for some invertible $Q \in \text{End } \mathbb{C}^2$ and R_i unitary. Then $R^* = R_i^{-1}$ is equivalent to R_i commuting with $|Q|^2 \otimes |Q|^2$, where $|Q|^2 \equiv Q^*Q$. Thus R_i also commutes with $|Q| \otimes |Q|$. Proceeding to the polar decomposition $Q = U|Q|, U \in \mathcal{U}(\mathcal{F}_2^2)$, we then have

$$R = (Q \otimes Q)R_i(Q \otimes Q)^{-1} = (U \otimes U)R(|Q| \otimes |Q|)R(|Q|^{-1} \otimes |Q|^{-1})(U^{-1} \otimes U^{-1}) = (U \otimes U)R(U^{-1} \otimes U^{-1}) = \lambda_U(R_i).$$

This establishes that R is of the claimed form. \hfill \Box

In Cuntz algebra notation, the representatives R_1, \ldots, R_4 take the form

\begin{align*}
8.5 & \quad R_1 = q \cdot 1, \\
8.6 & \quad R_2 = p S_1 S_1^* S_1^* + q S_1 S_1^* S_2^* + r S_1 S_2^* S_2^* + s S_2 S_2^* S_2^*, \\
8.7 & \quad R_3 = p S_1 S_1^* S_2^* + q S_1 S_2^* S_1^* + q S_2 S_1^* S_2^* + r S_2 S_2^* S_2^*, \\
8.8 & \quad R_4 = \frac{q}{\sqrt{2}} (1 + (S_1 S_1^* - S_2 S_2^*) \varphi(-S_1 S_2^* + S_2 S_1^*)) \, .
\end{align*}

By explicit calculations, one verifies that if $R = \lambda_u(R_i)$, then also its adjoint R^* and its flipped version FRF are of this form, i.e. $R^* = \lambda_{u^*}(R_i)$ and $FRF = \lambda_{u^*}(R_i)$ for suitable $u, u^* \in \mathcal{U}(\mathcal{F}_2^2)$, and the same14 i. In particular, equivalences of type 1 and type 3 (see p. 26) leave the families $\{\lambda_u(R_i) : u \in \mathcal{U}(\mathcal{F}_2^2)\}$ invariant.

However, type 2 equivalences can change the representative R_i. Indeed, $\lambda_u(R_3) = R_3$ for $u = \begin{pmatrix} 0 & a \\ 1 & 0 \end{pmatrix}$ with $a = \sqrt{p/q}$, but $\varphi(u)R_3 \varphi(u)^*$ equals the second representative R_2 after suitable identification of parameters.

Below we give a table summarizing key features of the endomorphisms corresponding to the R-matrices $R = \lambda_u(R_i), i = 1, \ldots, 4$. Note that irreducibility and ergodicity of R do not depend on u as both properties are invariant under type 1 equivalences. The index in the third column is $[N : \lambda_R(N)] = \text{Ind}_{E_R}(\lambda_R)$.

<table>
<thead>
<tr>
<th>#</th>
<th>Representative $\mathcal{M}_{R,1}$</th>
<th>Ind.</th>
<th>Fixed point algebras $\mathcal{N} = \mathcal{N}_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$q \cdot 1$</td>
<td>1</td>
<td>$\mathcal{O}_{2}^{\lambda_R} \cong \mathcal{F}_2$ \text{ord}(q) = \infty</td>
</tr>
<tr>
<td>2</td>
<td>$\begin{pmatrix} p & q \ r & s \end{pmatrix}$</td>
<td>M_2 \text{p = r, q = s} $\mathbb{C} \oplus \mathbb{C}$ else</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>$\begin{pmatrix} q & p \ r & q \end{pmatrix}$</td>
<td>$\mathbb{C} \oplus \mathbb{C}^{q^2 = pr}$ \mathbb{C} \text{q^2 \neq pr}</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{q}{\sqrt{2}} \begin{pmatrix} 1 & 1 \ -1 & 1 \ 1 & -1 \ 1 & 1 \end{pmatrix}$</td>
<td>2</td>
<td>$\dim \mathcal{F}_2^{\lambda_R} = \infty$ see Prop. 8.2</td>
</tr>
</tbody>
</table>

14The only non-trivial thing to do is to find $u \in \mathcal{U}(\mathcal{F}_2^2)$ such that $FRF = \lambda_u(R_4)$; here $u = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ works.
Proof of the claims in the table: We go through families 1–4. The R-matrices in family 1 define automorphisms (hence Ind $\lambda_R = 1$), and the form of the fixed point algebra has been commented on before (remark after Prop. 7.9).

For the diagonal R-matrices in family 2, Prop. 6.3 b) shows that λ_R decomposes into two quasi-free automorphisms which are either equivalent (if $p = r$ and $q = s$) or inequivalent (if $p \neq r$ or $q \neq s$). This implies the claimed form of the relative commutant and shows Ind $\lambda_R = 4$ in both cases. Since R_2 is diagonal, its ergodicity follows from Cor. 7.7.

For the “anti-diagonal” R-matrices in family 2, one computes $M_{R_3,1} = \{ x \in F^1_2 : R_3^* x R_3 = \varphi(x) \} = \begin{cases} \mathbb{C} & q^2 \neq pr \\ \mathbb{C} \oplus \mathbb{C} & q^2 = pr \end{cases}$. In the second case, λ_R is equivalent to the direct sum of two inequivalent automorphisms, and Ind $\lambda_R = 4$. In the first case, λ_R is irreducible and R has the three distinct eigenvalues q, \sqrt{pr}, $-\sqrt{pr}$. As the cardinality of the spectrum is a lower bound for Ind λ_R (6.4), and in $d = 2$, the index of λ_R may only take the values 1, 2, or 4 [CP96, Prop. 9.9], we see Ind $\lambda_R = 4$ also in this case.

Each member of family 3 is type 2 equivalent to a member of family 2, i.e. $R_3 \approx R_2$, and the equivalence relation \approx preserves ergodicity (Remark 7.4). Hence family 3 is ergodic as well.

Due to the block form of the representative R_4 for the last family, $S_1 S_1^* \in F^1_2$ is seen to be a fixed point of λ_{R_4}. Its fixed point algebra will be described in more detail below. Since $d = 2$ is prime, λ_R is irreducible (Lemma 7.15).

The R-matrix R_4 (8.4) is special from various points of view: Up to applying quasi-free automorphisms, R_4 is the unique non-trivial R-matrix in $R(2)$ for which λ_R is not ergodic, and the unique R-matrix in $R(2)$ with index 2. We also mention that R_4 generates a representation of the Temperley-Lieb algebra at loop parameter $\delta = \frac{1}{2}$, and satisfies $R_4^4 \in \mathbb{C}$. Furthermore, $\lambda_{R_4}(O_2)$ is the fixed point algebra of an explicit order two automorphism $\alpha \in \text{Aut} O_2$ [CF00]. The images of the braid group representations $\rho_R(B_n)$ are described in [FRW06] in terms of extraspecial 2-groups, and its relevance for topological quantum computing is discussed in [KL04]. A variation of R_4 also appears in the exchange algebra of light-cone fields in the Ising model [RS87].

In view of this interest in R_4, it might be useful to indicate how it can be obtained systematically from the results of this article. We look for a non-trivial matrix $R \in M_2 \otimes M_2 \cong M_4$ that is a unitary solution of the Yang-Baxter equation such that λ_R is irreducible and has non-trivial fixed points in F^1_d. Then we know that a) R has trivial left and right partial traces $\phi_F(R) = \phi_F(FRF) = \tau(R)$, and b) there is a one-dimensional projection $p \in F^1_d$ that commutes with R.

Choose a basis of \mathbb{C}^2 such that $p = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ (this amounts to applying a quasi-free automorphism to R). Then a), b) imply that R is of the form

(8.9) \[
\begin{pmatrix}
 a & b \\
 c & d \\
\end{pmatrix} = \begin{pmatrix}
 d & -b \\
 -c & a \\
\end{pmatrix},
\]
with $a, b, c, d \in \mathbb{C}$. At this stage, it is not difficult to implement the requirements that R is unitary and solves the Yang-Baxter equation. One finds that non-triviality requires $b, c \neq 0$, and the YBE then implies $d = a$ and $c = -a^2/b$. Implementing unitarity yields the form (8.4).

To conclude this discussion, we now describe the fixed points of λR_4 in \mathcal{F}_2 in more detail. To this end, we use the standard Pauli matrices $\sigma_0, \ldots, \sigma_3$ as a basis for $M_2 \cong \mathcal{F}_2^1$, with $\sigma_0 = 1$.

Proposition 8.2. An element $x \in \mathcal{F}_2^n$, $n \in \mathbb{N}$, is a fixed point of λR_4 if and only if it is a linear combination of elements of the form $\sigma_{i_1} \varphi(\sigma_{i_2}) \cdots \varphi^{n-1}(\sigma_{i_n})$, where the following three conditions are satisfied:

a) $i_n \in \{0, 3\}$,

b) If $i_k \notin \{0, 2\}$ for some $k \in \{2, \ldots, n\}$, then $i_{k-1} \in \{0, 3\}$,

c) If $i_k \in \{1, 3\}$ for some $k \in \{2, \ldots, n\}$, then $i_{k-1} \in \{1, 2\}$.

We have $\dim(\mathcal{F}_2^n)^{\lambda_R} = 2^n$ and $\mathcal{N}^{\lambda_R} = (\mathcal{F}_2^2)^n$.

Proof. The first step is to realise that the R-matrix R_4 has the form

$$R_4 = \frac{q}{\sqrt{2}}(1 + i\sigma_3 \varphi(\sigma_2)).$$

Thus $x \in \mathcal{F}_2$ is a fixed point of λR_4 if and only if it commutes with $\varphi^m(S)$, $m \in \mathbb{N}_0$, where $S := \sigma_3 \varphi(\sigma_2)$ (cf. Prop. 7.1 b)). Recall that the Pauli matrices satisfy $\sigma_i = \sigma_i^* = \sigma_i^{-1}$ and

$$\sigma_i \sigma_j \sigma_i = \begin{cases} +\sigma_j & j \in \{0, i\} \\ -\sigma_j & \text{else} \end{cases}. \quad (8.10)$$

Let x be a linear combination of elements of the form $\sigma_{i_1} \varphi(\sigma_{i_2}) \cdots \varphi^{n-1}(\sigma_{i_n})$. In view of the action (8.10), it follows that x is a fixed point if and only if each term in its expansion into this basis is a fixed point, i.e. we may take

$$x = \sigma_{i_1} \varphi(\sigma_{i_2}) \cdots \varphi^{n-1}(\sigma_{i_n})$$

without loss of generality.

Since $\sigma_2^2 = 1$, we have

$$\text{ad} \varphi^{n-1}(S)(x) = \sigma_{i_1} \varphi(\sigma_{i_2}) \cdots \varphi^{n-1}(\sigma_3 \sigma_n \sigma_3),$$

which coincides with x if and only if $\sigma_3 \sigma_n \sigma_3 = \sigma_{i_n}$, i.e. if and only if $i_n \in \{0, 3\}$ as claimed in a). Similarly,

$$\text{ad} \varphi^{n-1}(S)(x) = \sigma_{i_1} \varphi(\sigma_{i_2}) \cdots \varphi^{n-1}(\sigma_3 \sigma_{i_k} \sigma_3) \varphi^k(\sigma_2 \sigma_{i_{k+1}} \sigma_2) \cdots \varphi^{n-1}(\sigma_{i_n}),$$

which coincides with x if and only if either $\sigma_2 \sigma_{i_{k+1}} \sigma_2 = \sigma_{i_{k+1}}$ and $\sigma_3 \sigma_{i_k} \sigma_3 = \sigma_{i_k}$ or $\sigma_2 \sigma_{i_{k+1}} \sigma_2 = -\sigma_{i_{k+1}}$ and $\sigma_3 \sigma_{i_k} \sigma_3 = -\sigma_{i_k}$. By (8.10) this gives the listed conditions b) and c).

A dimension count gives $\dim(\mathcal{F}_2^n)^{\lambda_R} = 2^n$.

In view of the product form of $\sigma_3 \varphi(\sigma_2)$, it is easy to see that \mathcal{N}^{λ_R} is invariant under the τ-preserving conditional expectations $E_n : \mathcal{N} \to \mathcal{F}_2^n$. This invariance implies that any $x \in \mathcal{N}^{\lambda_R}$ can be approximated weakly by the sequence of fixed points $\{E_n(x)\}_{n \in \mathbb{N}}$, and hence $\mathcal{N}^{\lambda_R} = (\mathcal{F}_2^n)^\infty$. \qed

This result implies in particular that $[\mathcal{N} : \mathcal{L}_{R_4}] = \infty$.

ACKNOWLEDGEMENTS

We gratefully acknowledge financial support by the London Mathematical Society (Research in Pairs grant 41729, awarded in 2018), Università di Roma La Sapienza, and the Simons Center for Geometry and Physics, Stony Brook University, during the 2019 programme “Operator Algebras and Applications”, where some of the research for this paper was carried out.

REFERENCES

