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Abstract. We present a framework for P300 ERP classification on the
2019 IFMBE competition dataset using a combination of a Riemannian
geometry and ensemble learning. Covariance matrices and ERP proto-
types are extracted after the EEG is passed through a filter bank and an
ensemble of LDA classifiers is trained on subsets of channels, trials, and
frequencies. The model selects a final class based on maximum proba-
bility of evidence from all ensembles. Our pipeline achieves an average
classification accuracy of 81.2% on the test set.
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1 Introduction

The P300 is a positive deflection in the event-related potential (ERP) focused
on centro-parietal electrode sites, usually observed around 300 ms after a stimuli
was presented [10]. It typically follows the occurrence of a rare or unexpected
sensory stimulus. Unlike the mismatch negativity, it is mediated by the conscious
deployment of attention. For this reason, it has been one of the first control
paradigms to be used in brain-computer interfaces [7].

The classical approach to P300 feature extraction is the use of spatio-temporal
features [7, 11]. Recently, the Riemannian framework - originally used for oscil-
latory (e.g. motor imagery) data - has been applied to ERP classification [8].
The framework was developed as a method to directly use covariance matrices
as features for classification. Symmetric positive definite (SPD) matrices such
as non-singular covariance matrices form a Riemannian manifold in the space of
matrices. Since the space is non-linear, it has been suggested to first map the
covariance matrices into the linear tangent space with respect to a reference SPD
matrix, usually the geometric mean of the training data. The approach outper-
formed state-of-the-art methods such as the Common Spatial Patterns [3].



2 Krzemiński et al.

In this paper, we combine the Riemannian framework with the ensemble
learning approaches. A separate classifier was constructed for each subject and
session according to the following pipeline. First, the EEG is bandpass filtered
using different frequency bands in the range 1–20 Hz. Second, ERP templates
are extracted and concatenated with the covariance matrix of an individual trial.
Third, covariance matrices are mapped into tangent space using a Riemannian
approach. Fourth, an ensemble of Linear Discriminant Analysis (LDA) classifiers
with shrinkage [5] or Logistic Regression classifiers is constructed using random
subsets of features and trials.

2 Methods

The data was provided as part of the 2019 IFMBE scientific challenge compe-
tition organized by the 15th Mediterranean Conference on Medical and Biolog-
ical Engineering and Computing (Medicon 2019). The dataset represents the
8-channels EEG recordings of a feasibility clinical trial to train youngsters with
Autism Spectrum Disorder (ASD) to follow the social cues [1, 2]. It consists of
7 sessions divided into training and test subsets each. In our analysis we refer
to the test data as a set consisting of testing part of sessions 4-7 (as used in the
competition evaluation). The task of a participant was to count how many times
one out of eight objects was highlighted in a virtual environment [1].

All analyses were performed in MATLAB (Natick, USA). The code to repro-
duce our results is available on the public code repository1.

We denote the i-th trial of a multivariate N -channels dataset measured at
a set of time instants t as xi(t) = [x1(t), x2(t), ..., xn(t)]T ∈ RN , where for t =
1, 2, ..., T the data can be considered as a wide-sense static data array. Collecting
all time points for the i-th trial in a matrix Xi ∈ RN×T and assuming zero-mean
data, this process can be extensively expressed by its spatial covariance matrix
as Ci = 1/(T − 1)XXT . A scheme of the pipeline to obtain the features for the
classifier assemble is presented on Figure 1.

Several pipelines were constructed with different combinations of filter fre-
quencies and classifiers. However, they all followed the same general structure.
First, the data was bandpass filtered and segmented into seven different com-
binations (red dotted rectangle of Figure 1) to find the most discriminating
features for the classifier. Two different filters were selected (1-20 Hz or 1-8 Hz)
and two variations of trial length (whole signal or the first 600 ms after stim-
uli onset). Additionally, three subsets of electrodes were chosen (all, central or
posterior electrodes). The combination of these 3 possibilities (number of chan-
nels, window length and filter band) resulted in seven inputs. Lastly, the eighth
combination added was the raw signal where no filtering or windowing was per-
formed.

Then, ERP prototypes were created by calculating the ERP for each chan-
nel [4]. For robustness, a trimmed mean discarding the 5% largest and 5% small-
est values was used. ERP prototypes were then concatenated to the single-trial

1 https://github.com/dokato/bci-challange
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Fig. 1. Depiction of the classification pipeline. The left side (red dotted rectangle) ex-
pands on the details of the pre-processing pipeline. The right side (grey rectangles)
traces all the steps of the pipeline from pre-processing and feature extraction to clas-
sifier training.

data, effectively doubling the number of channels. Regularized covariance matri-
ces were calculated using a shrinkage approach [5]. In shrinkage, the empirical
covariance matrix C is replaced by Cshrink = (1 − γ)C + γνI, where γ ∈ [0, 1]
is a regularization parameter, I is the identity matrix, and ν = trace(C). The
Ledoit-Wolf estimate was used to estimate the optimal γ [9].

The resultant covariance matrices were projected into the tangent space of
a reference matrix. The reference matrix was calculated as the Riemannian geo-
metric mean of the training covariance matrices [3, 6]. Next, Fisher Geodesic Dis-
criminant Analysis (FGDA) was used to project the matrices in tangent space to
a lower-dimensional discriminative subspace [3]. The resultant projections were
flattened to vectors and used as input features to an ensemble learning algorithm
as described in the next section.

3 Results

We tested several combinations of classifiers and ensembles. The outcomes of
classification were tested on a subset of the data from sessions 4–7. The details
of the strategies are listed below.

– Ensemble of data features - 8 different signal features were extracted as
follows: (1) All electrodes with broad band frequency spectrum (1-20 Hz); (2)
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Table 1. Ensemble models’ parameters and their accuracies on the test set.

Classifier Evidence Accuracy

LDA majority vote 73.6%

LogReg majority vote 69.8%

MDM majority vote 71.0%

LDA probability 81.2%

LogReg probability 78.8%

MDM probability 80.5%

Central electrodes (C3, Cz, C4, CPz) with broad band frequency spectrum;
(3) Posterior electrodes (P3, Pz, P4, POz) with broad band frequency spec-
trum; (4) All electrodes with low-pass filtered signal (1-8 Hz); (5) Central
electrodes with low-pass filtered signal; (6) Posterior electrodes with low-
pass filtered signal; (7) All electrodes with broad band frequency spectrum.
(8) Raw signal. In the features from (1) to (6) a time window of 0-600ms
was extracted from the signal. The final result was the combination of all
pieces of evidence from 8 classifiers.

– Ensemble of classifiers - ensemble of 400 learners was used taking 40% of
data samples and 60% of features each. The optimal number of learners was
determined using grid search.

– Classifier - type of classifier: linear discriminant analysis (LDA), logistic
regression (LogReg), or minimum distance to mean (MDM).

– Evidence accumulation - evidence for voting for a final class was either
based on majority vote per one trial in block, or based on accumulated
probability of voting for a particular class.

Fig. 2. Performance of the best model per participant of the experiment. Standard error
computed over 4 sessions from the test set. The red dashed horizontal line denotes the
average accuracy (81.2%).
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The performance of a final multi-class accuracy was computed using a ratio of
correctly predicted labels to their total number. The best classification accuracy
(81.2%) was achieved by the model utilizing ensemble of signal features and
ensemble of LDA classifiers with cumulative evidence for each of the considered
classes. The performance of the model per subject is depicted on Figure 2.

4 Discussion

In this study we tested a combination of Riemannian space features extracted
from EEG P300 time-series with ensemble approach. The best performance of
81.2% was achieved by the model combining ensemble of data features with
ensemble of LDA classifiers. This result corroborates the feasibility of the pro-
posed approach. Future work will focus on exploring a larger range of classifiers
in combination with Riemannian kernels to further increase the accuracy and
robustness of the ERP classification.
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