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Abstract: A sound synthetic procedure for the preparation of trans-

[PtBr(μ-Br)(PPh3)]2 is described. The species was fully characterized 

and used to obtain [PtBr2(PPh3)(L)] complexes (L = DMSO, p-

toluidine, pyridine) by a bridge-splitting reaction. All products were 

fully characterized by NMR spectroscopy, together with cis-

[PtBr2(PPh3)(NCCH3)], obtained as an intermediate in the synthesis of 

the dinuclear precursor. Cis-[PtBr2(PPh3)(NCCH3)] was also studied 

by x-ray diffraction.  

Introduction 

Phosphane complexes of platinum find application in many fields 

of inorganic chemistry, from catalysis1 to bioactive compounds.2 

Among the last compounds, dichlorotriphenylphosphino 

derivatives [PtCl2(PPh3)(L)] have found interesting applications in 

the field of anticancer compounds.2a-g,j Since anticancer 

properties can be modulated changing the coordination sphere of 

the metal, besides varying L, we have been interested in varying 

the nature of the coordinating halide from chloride to bromide. In 

general, [PtX2(L)(PR3)] complexes (X = Cl, Br can be readily 

obtained by bridge splitting reactions of the suitable dinuclear 

precursors [PtX(μ-X)(PR3)])2.3 Some years ago a convenient 

synthetic procedure for trans-[PtCl(μ-Cl)(PPh3)]2 was described, 

making this chlorinated dinuclear derivative formally accessible 

from commercial K2PtCl4 aqueous solution.4 For the 

corresponding bromoderivative, trans-[PtBr(μ-Br)(PPh3)]2, there 

is a lack of data in the literature and its molecular structure was 

determined only recently5 by single-crystal X-ray diffraction. In this 

literature paper, the complex formed from PtBr2 and PPh3 in the 

presence of an excess of Bu4PBr, a system catalyzing a 

hydroamination reaction, but its isolated yield was not reported. 

From a synthetic point of view, literature usually refers6 to the 

reaction of PtX2 with [PtX2(PR3)2] in high boiling solvents, mostly 

for chlorinated dinuclear complexes.7 Moreover these reactions 

usually report good isolated yields but long purification workups 

to eliminate byproducts formed at high temperature. As an 

alternative route, [PtBr(μ-Br)(C2H4)]2 has been proposed as 

precursor in exchange reactions with PR3,8 but sterically 

demanding phosphines often afford mononuclear bridge-splitting 

products. Moreover, Gilchrist et al.9 observed the formation of 

[PtBr(μ-Br)(PPh3)]2 by decomposition of a reaction intermediate, 

but the compound was not characterized. Considering the 

existing literature and the importance of the product as precursor 

in the high yield synthesis of mixed ligand dibromide platinum(II) 

complexes, we describe here a high yield convenient preparation 

of trans-[PtBr(μ-Br)(PPh3)]2  from [PtBr2(NCMe)2] and 

triphenylphosphine, in solvothermal conditions. The synthetic 

sequence is described starting from commercial K2PtCl4. 

Furthermore, in this text, considerable attention has been paid to 

differences in the reactivity of bromide/chloride analogues. 

Results and Discussion 

The synthesis of the brominated dinuclear complex (Scheme 1) 

has been optimized exploiting the consolidated procedure4,10 

employed for the analogous chlorinated derivative.  

 

Scheme 1. Synthesis of Pt2Br4(PPh3)2. 

Step1: K2PtBr4 can be prepared by an exchange reaction from the 

commercially available K2PtCl4. Since the commonly used 

preparation11,12 that involves the treatment of aqueous solutions 

of K2PtCl4 with excess KBr, often yields an anionic bromo complex 

contaminated with KBr, we preferred to follow another 

procedure,13 where the exchange reaction is carried out using 

aqueous HBr (48%). Since experimental details were not 

previously reported, we have to mention here that although the 

procedure is very simple, consisting in mixing two aqueous 

solutions, great care has to be taken in excluding atmospheric O2, 

which can oxidize the bromide ion to bromine, leading to non-

negligible amounts of K2PtBr6. The oxidation byproduct is 

recognizable by 195Pt-NMR, affording a singlet signal at -1860 

ppm (solvent: H2O)14. Anyway, if the reaction is carried out under 

nitrogen with deoxygenated reagents, potassium 

tetrabromoplatinate(II) is obtained as a single product, affording a 

singlet signal at -2700ppm (in H2O).12 The product was recovered 

by removing the solvent under reduced pressure and further 

recrystallization from 0.5 M HBr13. 

Step 2: Preparation of [PtBr2(NCMe)2], obtained from K2PtBr4 in 

acetonitrile, has also been already described13, 15 but we would 
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like to add some important synthetic and spectroscopic details. 

Compared to the chlorinated species the product is more soluble 

in water and requires a larger excess of acetonitrile. To push the 

reaction forward after roughly 50% of the product has been 

collected the solution needs to be concentrated by removing the 

solvent and restoring the acetonitrile lost during the process. 

Collecting a few fractions of the product an overall yield of 81% 

was achieved. The complex (yellow crystalline powder) was 

characterized by spectroscopy (IR and NMR) and elemental 

analysis. As for IR (ATR) spectroscopy, coordinated nitrile 

afforded a weak, but visible absorption band at 2340 cm-1, while 
1H-NMR in CD3NO2 allowed us to detect a single singlet signal at 

2.67 ppm, with satellites (4JH-Pt = 15 Hz), which could be ascribed 

to methyl group of coordinated acetonitrile. This data indicates the 

preferential formation of one isomer as confirmed by a single 

signal registered in the 195Pt-NMR spectrum (-2800 ppm). 

[PtBr2(NCMe)2] could also be obtained by halogen exchange 

reaction between the corresponding chlorinated compound and a 

tenfold excess of tBuBr in acetonitrile solution (eq. 1) The reaction 

is quite slow and solvothermal conditions are required (120 °C in 

Carius tube, 24h). 

 

[PtCl2(NCMe)2] + tBuBr(exc) → [PtBr2(NCMe)2] + tBuCl  (1) 

When prepared by this method, the product was recovered as a 

poorly soluble orange powder, which turned yellow when it was 

washed with water. Its elemental analysis, IR and 1H NMR spectra 

were in good agreement with those shown by the product 

recovered from the aqueous synthesis, for an overall yield of 67 

%. 

Step 3: For the synthesis of [PtBr2(PPh3)(NCMe)], [PtBr2(NCMe)2] 

was reacted with a stoichiometric amount of PPh3, in acetonitrile 

solution and in solvothermal conditions (150 °C in a Carius tube) 

(Scheme 1). Compared to the analogous chlorinated species4 this 

reaction is much faster requiring only 3 hours to react 

[PtBr2(NCMe)2] with PPh3, compared to the 120 hours required by 

[PtCl2(NCMe)2].  

31P-NMR analysis was carried out on the solution, showing no 

residual PPh3 and two new signals at 5.34 (1JP-Pt = 3457Hz) and 

1.73 (1JP-Pt = 3944Hz) ppm. The two signals were assigned to cis 

and trans isomers respectively by comparison with the chlorinated 

species4. In the 195Pt-NMR spectrum of the mixture, two 

resonances were observed at -3924 (1JP-Pt = 3467Hz) and -4143 

(1JP-Pt = 3944Hz) for cis and trans isomers respectively, with an 

expected upfield shift14 due to the Br/Cl substitution. The 

crystalline cis product forms by slowly cooling the solution to room 

temperature. Its molecular structure was confirmed by single 

crystal X-ray diffraction (Figure 1).  

It is also possible to prepare [PtBr2(PPh3)(NCMe)] using 1 

equivalent of [PtBr2(NCMe)2] and 1 equivalent of 

[PtBr2(PPh3)2]15a. The last compound is readily accessible by the 

synthetic sequence depicted in eq 2-3 and it involves: preliminary 

extraction of platinum into dichoromethane solution as 

[TBA]2[PtBr4] (TBA = tetrabutylammonium; DCM = 

dichloromethane)16 followed by a reaction with PPh3 

(phosphine/Pt = 2 in moles)  

 

K2PtCl4aq + 4TBABr(DCM) → [TBA]2[PtBr4](DCM) + 2TBACl + 2KCl 

 (2) 

 

[TBA]2[PtBr4] + 2PPh3 → [PtBr2(PPh3)2] + 2TBABr  

  (3) 

 

When a sample of pure cis-[PtBr2(PPh3)(NCMe)] (0.100g) was 
dissolved in CH3CN (10 mL) equilibrium was reached in 24 h (31P 
NMR) and the mixture contained 68% of cis- and 32% of trans 

isomers. [PtBr2(PPh3)(NCMe)] is stable in CH3CN diluted solution, 
while it rapidly releases acetonitrile and affords an orange solid 
identified as trans-[PtBr(μ-Br)(PPh3)]2 when dissolved in other 

solvents or when heated (60 °C) under vacuum. 

As already described for the acetonitrile complex [PtBr2(NCMe)2], 
the formation of [PtBr2(PPh3)(NCMe)] was observed when the 

corresponding chlorinated compound was reacted with an excess 
of tBuBr in acetonitrile solution (eq. 4, 150 °C in Carius tube, 72h). 

 [PtCl2(PPh3)(NCMe)] + tBuBr(exc) →  [PtBr2(PPh3)(NCMe)]+ tBuCl (4) 

Nevertheless, in this case it was not possible to isolate the cis 

isomer and the product was obtained as a mixture of cis,trans-

[PtBr2(PPh3)(NCMe)] and trans-[PtBr(μ-Br)(PPh3)]2. 

 

Step 4: 

The final dinuclear product trans-[PtBr(μ-Br)(PPh3)]2 was formed 

refluxing the toluene solution of [PtBr2(PPh3)(NCMe)] (Scheme 1). 

The brominated dinuclear derivative was obtained in high yield 

(90%) as a light orange solid, sparingly soluble in chlorinated 

solvents and was characterized by IR (ATR), 31P-NMR and 

elemental analysis. Due to the scarce solubility of the species, a 

complete spectroscopic characterization of the dinuclear species 

was not carried out. Nevertheless, its prompt reactivity towards 

coordinating solvents could be used to confirm indirectly its 

nature; as a matter of fact, when a sample of the orange solid was 

dissolved in acetonitrile, a pale yellow solution was obtained, 

showing the 31P NMR signals of cis- and trans-

[PtBr2(PPh3)(NCMe)] (Table 1). Analogously, the dissolution of 

the sample in DMSO afforded a colourless solution, showing a 

single 31P NMR signal, ascribed to cis-[PtBr2(PPh3)(DMSO)], on 

the basis of the comparison with the signal of known cis-

[PtCl2(PPh3)(DMSO)]2d (Table 1). Comparison with the reactivity 

and the spectroscopic data of trans-[PtCl(μ-Cl)(PPh3)]2 allowed to 

assign a trans configuration to the present brominated system. 

 

As already mentioned for coordinating solvents, the reactivity 

displayed by trans-[PtBr(μ-Br)(PPh3)]2 towards nucleophiles was 

also remarkably similar to its chlorine bearing counterpart. In all 

cases tested, a suspension of the dinuclear precursor in 

chloroform, when treated with a suitable ligand, afforded a clear 

solution of the product of the bridge-splitting reaction (Scheme 2). 

As expected, the reaction is directed by the strong trans-effect 

exerted by the phosphine ligand, with the fast formation of the 

kinetic trans product, sometimes followed by isomerization in 

solution. 

Specifically, the product obtained by reaction with p-toluidine was 

trans with no trace of isomerization (31P NMR), while DMSO 

afforded a stereochemically pure cis complex and pyridine yielded 

a mixture of isomers. 31P- and 195Pt-NMR signals were assigned 

by comparison with the analogous chlorinated complexes.10 

 



 

Scheme 2. Synthesis of [PtBr2(PPh3)(L)] 

For ease of comparison, the most significant 31P NMR signals 

in CDCl3 (except for [PtX2(PPh3)(NCMe)] and 

[PtX2(PPh3)(DMSO)] which were registered in MeCN and 

DMSO respectively) are reported in Table 1 for chlorinated and 

brominated complexes. 

 

Figure 1. Crystal structure of cis-[PtBr2(PPh3)(NCMe)]. Selected bond 

lengths (Å): Pt(1)-N(1) 1.986(3); Pt(1)-P(1) 2.2485(9); Pt(1)-Br(1) 2.4096(4); 

Pt(1)-Br(2) 2.4780(5). Selected bond angles ( °): N(1)-Pt(1)-P(1) 92.92(9); 

N(1)-Pt(1)-Br(1) 174.41(9); P(1)-Pt(1)-Br(1) 90.01(2); N(1)-Pt(1)-Br(2) 

87.14(9); P(1)-Pt(1)-Br(2) 174.35(3); Br(1)-Pt(1)-Br(2) 90.412(17).  

 

Table 1. 31P NMR signals in CDCl3 for [PtX2(PPh3)(L)]: δ ppm (1JP-Pt Hz) 

L  X = Cl X= Br[b] 

PPh3 Cis 16.9 (3660) 

Trans 21.1 (2615) 

Cis 13.7 (3610) 

Trans 18.7 (2573) 

MeCNa Cis 4.8 (3530) 

Trans 1.6 (4100) 

Cis 5.3 (3467) 

Trans 1.7 (3944) 

p-Tol Trans 4.05 (3590) Trans 3.0 (3653) 

Py Cis 7.2 (3907) 

Trans 2.6 (3582) 

Cis 7.8 (3810) 

Trans 0.8 (3458) 

DMSOb Cis 16.2 (3720) Cis 17.2 (3730) 

[a] Solvent: MeCN. [b] Solvent: DMSO 

 

 

When the preparation of [PtBr2(PPh3)(amine)] (amine = Py, p-

Tol) complexes was attempted by exchange reaction between 

[PtCl2(PPh3)(amine)] and excess tBuBr, under the same 

experimental conditions affording [PtBr2(NCMe)2] (Carius tube, 

120 °C), decomposition was observed. In the 1H-NMR 

spectrum main signals were attributed to amine∙HX species. 

These data suggest that in the experimental conditions used, 

tBuBr is partially converted into isobutene and HBr. While in 

the previously discussed cases the presence of hydrogen 

bromide does not prevent the formation of the desired 

brominated products, This route cannot be used with acid 

sensitive complexes. 

 

Conclusions 

A stepwise synthetic sequence to prepare trans-[PtBr(μ-

Br)(PPh3)]2 was described. Solvothermal conditions (Carius tube, 

acetonitrile at 150 °C) were conveniently used, but in this case the 

reaction was much faster respect to the analogous chlorinated 

system. Since cis,trans-[PtBr2(PPh3)(NCMe)] is an intermediate in 

the formation of the dinuclear compound, it can be reasonably 

assumed that acetonitrile elimination in the last step proceeds 

from the trans isomer, which is easily formed due to bromide ion 

steric hindrance. As a matter of fact, [PtBr2(NCMe)(PPh3)] is 

present, in acetonitrile solution, as a mixture of geometric 

isomers, where the concentration of trans complex is much higher 

than in the chlorinated counterpart (32% vs 5% at room 

temperature, respectively). The possible use of tButyl bromide as 

exchange brominating agent in non aqueous environment was 

explored, but its use appears limited to non acid-sensitive 

complexes. Thus, as exemplified by the reported reactivity, trans-

[PtBr(μ-Br)(PPh3)]2 is an important precursor to a series of 

structural analogues of known antiproliferative platinum 

compounds.  

Experimental Section 

Reactions were performed under dinitrogen atmosphere. Unless otherwise 

specified all solvents were previously purified according to reported 

procedures.17 Elemental analyses were collected with an Elementar ‘‘vario 

MICRO CUBE” CHNOS elemental analyzer. Solid state IR spectra were 

collected with Perkin Elmer “Spectrum One” spectrometer outfitted with an 

Attenuated Total Reflectance (ATR) accessory. Abbreviations used to 

describe signal shape and intensity: w = weak; m = medium; s = strong; br 

= broad band. NMR spectra were collected with a Bruker “Avance DRX 

400” spectrometer with a 400MHz 1H frequency and with a Varian “Gemini 

200” spectrometer with a 200MHz 1H frequency. CDCl3 was used, unless 

otherwise stated. 31P-and 195Pt-NMR spectra were also acquired without 

deuterated solvents, using a capillary containing C6D6 to allow for locking 

by the spectrometer. Chemical Shifts (ppm) are referenced to Si(CH3)4 for 
1H and 13C, H3PO4 (85% in D2O) and H2PtCl6 were employed for 31P- and 

for 195Pt-, respectively. Abbreviations used to describe signal multiplicity: s 

= singlet; d = doublet; t = triplet; td = triple doublet; m = multiplet. 

Synthesis of K2PtBr4 



A sample (1.00 g) of K2PtCl4 (2.41 mmol) was dissolved in 250mL of 

deoxygenated 48%HBraq. After 24h reaction progress was tested via 195Pt-

NMR and found complete (195Pt-NMR: -266212). Solvent was removed 

under reduced pressure at 40°C and a dark brown solid was obtained, 

which was recrystallized from aqueous HBr (1.23g, 86% yield). 

Synthesis of [PtBr2(NCMe)2]: 

Method A. A sample (1.23 g, 2.08 mmol) of K2PtBr4 was dissolved in 80 

ml of deoxygenated water and 4 ml of deoxygenated acetonitrile were 

added, maintaining the system in nitrogen atmosphere. The first 

greenish/black precipitate was discarded. From the bright red filtrate 

yellow crystals formed over the course of several days. More crystalline 

product was collected, through fractional crystallization. The overall yield 

(0.708 g) was 81%. El. Anal. Calcd. for [PtBr2(NCMe)2], C4H6Br2N2Pt, %: 

C=11.0; H=1.4; N=6.4. Found: C=11.3; H=1.4; N=6.6. IR (ATR, cm-1): 

2920 w, 2340 m, 1354 m, 1351 m, 1012 m. 1H NMR (CD3NO2): 2.67 (s, 

3H, 4JH-Pt = 15 Hz, CH3). 13C-NMR (CD3NO2):122.0, 5.0. 195Pt-NMR 

(CD3NO2): -2805.  

Method B. A sample (0.267 g, 0.77 mmol) of [PtCl2(NCMe)2]18 was 

introduced into a Carius tube, suspended in acetonitrile (5 ml) and tButyl 

bromide (2 ml) was added. The mixture was stirred at 120 °C (5h), then 

cooled. An orange precipitate was obtained, which turned yellow upon 

washing with water. IR (ATR) and elemental analyses were in good 

agreement with those collected for Method A samples. (0.210 g, 67 %) 

Synthesis of cis-[PtBr2(PPh3)(NCMe)]: 

In a Carius tube under nitrogen atmosphere, 0,298 g (0.68 mmol) of 

[PtBr2(NCMe)2] were added to 3 ml of acetonitrile. The suspension was 

stirred and a stoichiometric amount of PPh3 (0.179 g, 0.68 mmol) was 

added. The tube was sealed and heated (150°C) for 2-3 hours with 

vigorous stirring. Reaction progress was monitored with 31P-NMR. Once 

the reaction was found to be complete (5.34, 1JP-Pt 3457Hz, cis; 1.72, 1JP-

Pt 3944Hz, trans), the tube was left overnight to cooldown and yellow 

crystals of [PtBr2(PPh3)(NCMe)] were recovered (0.244g, 55%). The 

crystals were collected for X-ray analysis and found to be in cis 

configuration (see Table 2 for experimental details). Correlation between 

the crystalline structure and the NMR data was established by comparing 

the product with its chlorine equivalent. Using the same solvothermal 

conditions it is possible to obtain cis-[PtBr2(PPh3)(NCMe)] from 

[PtBr2(NCMe)2] and [PtBr2(PPh3)2] in a 1:1 ratio. The bright yellow solution 

was evaporated at reduced pressure and afforded a yellow-orange residue 

(0.201 g). A sample of this solid was dissolved in CHCl3 and analysed (31P-

NMR): 5.17 (1JP-Pt 3480 Hz, 30%), 1.5 (1JP-Pt not detectable, traces), 7.61 

(1JP-Pt 3940 Hz, 69%). The signal at 7.61 progressively became the only 

observable signal and an orange solid appeared. The signal at 7.61 ppm 

was attributed to dinuclear trans-[PtBr(μ-Br)(PPh3)]2 (cfr.infra), while the 

signals at 5.17 and 1.5 were ascribed to cis- and trans-

[PtBr2(PPh3)(NCMe)] respectively.IR (ATR, cm-1): 3072 w, 3061 w, 3045 

w, 2909 w, 2355 w, 2323 w, 1588 w, 1574 w, 1482 m, 1433 s, 1357 m, 

1100 s, 993 m, 744 s, 684 s. Isomer cis: 31P-NMR (CH3CN): 5.34 (1JP-Pt 

3457Hz); 195Pt-NMR: -3924 (1JP-Pt 3457Hz). Isomer trans: 31P-NMR 

(CH3CN): 1.73 (1JP-Pt 3940Hz); 195Pt-NMR: -4143 (1JP-Pt 3940Hz). 

Synthesis of [PtBr(μ-Br)(PPh3)]2: 

A sample of cis-[PtBr2(PPh3)(NCMe)] (0.130 g 0.19 mmol) was heated in 

refluxing toluene (110 °C) for about 3 h, under stirring. The initially yellow 

suspension turned to orange. Reaction was followed by 31P-NMR, showing 

the disappearance, in the liquid phase, of the signal of precursor (5.34 (1JP-

Pt 3457Hz)). The orange precipitate was filtered and washed with pentane, 

then dried under reduced pressure. Yield: 0.109 g (90%). El. Anal. Calcd. 

for [Pt2Br4(PPh3)2], C36H30Br4P2Pt2, %: C 35.0, H 2.5. Found: C 35.4, H 

2.4%. IR (ATR, cm-1): 3077 w, 3063 w, 3041, 2913 m, 2363 w, 2322 w, 

1583 w, 1571 w, 1481 m, 1433 s, 1094 s, 1000 m, 741 s, 690 s. Due to the 

very limited solubility, only 31P-NMR is reported. 31P-NMR(CD2Cl2): 7.7 

(1JP-Pt 3906Hz). When a sample of the orange solid was dissolved in 

acetonitrile, a pale yellow solution was obtained. 31P NMR: 5.34 (1JP-Pt 

3457Hz, cis-[PtBr2(PPh3)(NCMe)], 68%); 1.73 (1JP-Pt 3940Hz, trans-

[PtBr2(PPh3)(NCMe)], 32%). 

Synthesis of [PtBr2(PPh3)2]:11 

This product was synthesized from 1.034 g (1.034x10-3 mol) of 

[TBA]2[PtBr4] [8] by adding triphenylphosphine (0.542 g, 2.066x10-3 mol) 

in dichloromethane at room temperature and with magnetic stirring 

(PPh3/Pt = 2 in moles). The system was maintained in nitrogen 

atmosphere for the duration of the synthesis. The solution changed from a 

dark reddish brown to a very pale yellow. Reaction progress was 

monitored by 31P-NMR and found to have reached completeness in 12h. 

The product was precipitated by removing most of the solvent under 

reduced pressure and adding heptane. The precipitate was then filtered 

and dried in vacuum. Yield: 0.861 g (95%) El. Anal. Calcd. for 

[PtBr2(PPh3)2], C36H30Br2PPt, %: C 51.0, H 3.6 %. Found: C 50.2, H 3.6%. 

IR (ATR, cm-1): 3045 w, 1482 m, 1433 s, 1265 m, 1091 s, 730 s, 689 s. 
31P-NMR for cis isomer: 13.7 (1JP-Pt=3610Hz).11 31P-NMR for trans isomer: 

18.7 (1JP-Pt=2573Hz).11  

Bridge-splitting examples of [Pt2Br4(PPh3)2].  

All reactions were carried out in NMR test tubes using CDCl3 as a solvent. 

[Pt2Br4(PPh3)2] precursor (10-20 mg) was suspended in CDCl3 (1 ml) and 

the suitable ligand was added (Ligand /Pt = 1.0 in moles). The system 

turned clear yellow in most cases in a 5 minutes time span. A micro syringe 

was used to add the reagents as the quantities involved were in the range 

of 3 to 10µl. Products were not isolated. Spectroscopic NMR 

characterizations is reported.  

trans-[PtBr2(PPh3)(p-Toluidine)]: The reaction was complete (31P-NMR) 

after half an hour later and displayed only one signal, attributable to kinetic 

trans product. 1H-NMR: 7.72 (m, 6H, Harom), 7.41 (m, 11H, Harom), 7.14 (m, 

2H, Harom), 5.14 (m 2H, 2JH-Pt = 36Hz, NH2), 2.35 (s, 3H, CH3). 13C-NMR: 

136.7, 135.4, 135.0 (d, JC-P =10Hz), 130.8 (d, JC-P =2Hz), 129.8, 126.9 (d, 
1JC-P= 66Hz), 127.8 (d, JC-P =11Hz), 122.0, 21.0. 31P-NMR: 3.0 (1JP-Pt = 

3653Hz). 195Pt-NMR: -4106 (d, 1JP-Pt= 3653Hz). 

 [PtBr2(PPh3)(Py)]: The reaction was complete (31P-NMR) after half an 

hour later and displayed two signals, attributable to a mixture of cis and 

trans products. Configuration was assigned comparing 31P-NMR chemical 

shift and coupling constants data with those of the chlorinated isomers.10 

Isomer cis: 31P-NMR: 7.8 (1JP-P t= 3810Hz). 195Pt-NMR: -3721 (d 1JP-Pt = 

3810Hz). Isomer trans: 31P-NMR: 0.8 (1JP-Pt = 3458Hz). 195Pt-NMR: -4008 

(d 1JP-Pt = 3458Hz). 

cis-[PtBr2(PPh3)DMSO]: Pt2Br4(PPh3)2 is dissolved in d6-DMSO, the 

reaction was complete (31P-NMR) in a few minutes and displayed only one 

signal, attributable to isomer cis. Configuration was assigned comparing 
31P-NMR chemical shift and coupling constants data with those of the 

known cis-[PtCl2(PPh3)(DMSO)].2d 31P-NMR: 17.1 (1JP-Pt = 3730Hz). 195Pt-

NMR: -4162 (1JP-Pt = 3730Hz).  

 

Table 2. Crystal data and structure refinement for cis-[PtBr2(PPh3)(NCMe)]. 

 

Compound  cis-[PtBr2(PPh3)(NCMe)]  

Empirical formula  C20H18Br2NPPt  
Formula weight  658.23  
Temperature  296(2) K  
Wavelength  0.71073 Å  
Crystal system  Monoclinic  
Space group  P 21/c  
Unit cell dimensions     a = 14.8719(10) Å α= 90°. 
 b = 8.9060(5) Å β= 114.827(2)°. 
    c = 17.3852(11) Å γ = 90°. 



Volume 2089.8(2) Å3  
Z 4  
Density (calculated) 2.092 Mg/m3  
Absorption 
coefficient 

10.617 mm-1  

F(000) 1232  
Crystal size 0.155 x 0.155 x 0.095 mm3  
Theta range for data 
collection 

2.381 to 32.504°.  

Index ranges -14<=h<=22, -12<=k<=13, -
26<=l<=24 

 

Reflections collected 26438  
Independent 
reflections 

7371 [R(int) = 0.0234]  

Completeness to 
theta = 25.242° 

99.7 %  

Refinement method Full-matrix least-squares 
on F2 

 

Data / restraints / 
parameters 

7371 / 0 / 227  

Goodness-of-fit on 

F
2

 

1.094  

Final R indices 
[I>2sigma(I)] 

R1 = 0.0305, wR2 = 0.0634  

R indices (all data) R1 = 0.0469, wR2 = 0.0689  
Extinction coefficient n/a  
Largest diff. peak 
and hole 

1.549 and -1.275 e.Å-3  

 

CCDC 1937596 (for cis-[PtBr2(PPh3)(NCMe)]) contains the supplementary 

crystallographic data for this paper. These data can be obtained free of 

charge from The Cambridge Crystallographic Data Centre 
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