Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Authentication scheme for flexible charging and discharging of mobile vehicles in the V2G networks

Saxena, Neetesh and Choi, Bong Jun 2016. Authentication scheme for flexible charging and discharging of mobile vehicles in the V2G networks. IEEE Transactions on Information Forensics and Security 11 (7) , pp. 1438-1452. 10.1109/TIFS.2016.2532840

Full text not available from this repository.

Abstract

Navigating security and privacy challenges is one of the crucial requirements in the vehicle-to-grid (V2G) network. Since electric vehicles (EVs) need to provide their private information to aggregators/servers when charging/discharging at different charging stations, privacy of the vehicle owners can be compromised if the information is misused, traced, or revealed. In a wide V2G network, where vehicles can move outside of their home network to visiting networks, security and privacy become even more challenging due to untrusted entities in the visiting networks. Although some privacy-preserving solutions were proposed in the literature to tackle this problem, they do not protect against well-known security attacks and generate a huge overhead. Therefore, we propose a mutual authentication scheme to preserve privacy of the EV's information from aggregators/servers in the home as well as distributed visiting V2G networks. Our scheme, based on a bilinear pairing technique with an accumulator performing batch verification, yields higher system efficiency, defeats various security attacks, and maintains untraceability, forward privacy, and identity anonymity. A performance analysis shows that our scheme, in comparison with the existing solutions, significantly generates lower communication and computation overheads in the home and centralized V2G networks, and comparable overheads in the distributed visiting V2G networks.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Computer Science & Informatics
Publisher: Institute of Electrical and Electronics Engineers (IEEE)
ISSN: 1556-6013
Date of Acceptance: 16 February 2016
Last Modified: 02 Jul 2020 20:00
URI: http://orca.cf.ac.uk/id/eprint/126908

Citation Data

Cited 20 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item