Subfactors and unitary R-matrices

Gandalf Lechner

November 11, 2019

Abstract

This is an extended abstract from a talk at the Oberwolfach workshop “Subfactors and Applications” in October 2019. It summarizes some results from [2] (joint work with Roberto Conti) and [5, 4].

The Yang-Baxter equation is a cubic equation for a linear map \(R \in V \otimes V \to V \otimes V \) on the tensor square of a vector space \(V \), namely

\[(R \otimes 1)(1 \otimes R)(R \otimes 1) = (1 \otimes R)(R \otimes 1)(1 \otimes R), \quad (\text{YBE})\]

where 1 is the identity on \(V \). This equation and its variants come from quantum physics, but also play a central role in various branches of mathematics, for instance in knot theory, quantum groups/Hopf algebras, and braid groups. Further recent interest in the solutions of the YBE stems from topological quantum computing [6].

Despite this widespread interest in the YBE, no satisfactory understanding of its solutions has been reached. In this talk, a new approach to the YBE was presented, based on operator algebras and subfactors [2]. We restrict to the case of most interest in applications, namely the case where \(V \) is a finite-dimensional Hilbert space and \(R \) is unitary. Such “R-matrices” exist in any dimension \(d = \dim V \), simple examples being the identity 1 on \(V \otimes V \), the tensor flip \(F(v \otimes w) = w \otimes v \), diagonal R-matrices, and Gaussian R-matrices. The (unknown) set of all R-matrices of dimension \(d \) is denoted \(R(d) \).

The general strategy of our approach is to start from an arbitrary R-matrix \(R \in R(d) \) with base space \(V \) and derive operator-algebraic data (such as endomorphisms, subfactors, indices) from it that inform us about \(R \). The main structural elements of our approach can be summarized in the following diagram:

\[
\begin{align*}
\varphi(N) & \subset \mathcal{N} \\
\cup & \cup \\
\varphi(\mathcal{L}_R) & \subset \mathcal{L}_R \\
\cap & \cap \\
\lambda_R(N) & \subset \mathcal{N}
\end{align*}
\]

Starting at the top of the diagram, \(N \) is the hyperfinite II\(_1\) factor realised as an infinite tensor product \(N = \bigotimes_{n \geq 1} \text{End}V \), weakly closed w.r.t. the normalised trace \(\tau = \bigotimes_{n \geq 1} \frac{\text{Tr}_V}{d} \),

*Cardiff University, School of Mathematics, Cardiff, CF24 4AG, UK. E-mail: LechnerG@Cardiff.ac.uk
and equipped with the shift \(\varphi : \mathcal{N} \to \mathcal{N}, \varphi(x) = 1 \otimes x \). We identify finite tensor powers \(\text{End} V^\otimes n \) with their natural embeddings into \(\mathcal{N} \), so that \(R \in \mathcal{N} \) and the YBE reads \(\varphi(R) R \varphi(R) = R \varphi(R) R \).

The second line of the diagram is about the braid group structure: As is well known, any \(R \in \mathcal{R}(d) \) defines a group homomorphism \(\rho_R \) from the infinite braid group \(B_{\infty} \) into the unitary group of \(\mathcal{N} \) by mapping the standard generators \(b_n, n \in \mathbb{N} \), of \(B_{\infty} \) to \(\varphi^{n-1}(R) \in \mathcal{N} \). The von Neumann algebra generated by this representation is denoted \(\mathcal{L}_R \).

The third line of the diagram introduces the Yang-Baxter endomorphism \(\lambda_R \in \text{End} \mathcal{N} \). It is defined in such a way that it restricts to the shift \(\varphi \) on \(\mathcal{N} \). Explicitly,

\[
\lambda_R : \mathcal{N} \to \mathcal{N}, \quad \lambda_R(x) := w\lim_{n \to \infty} R \cdots \varphi^n(R) x \varphi^n(R^*) \cdots R^*.
\]

This definition is natural also from the point of view of the Cuntz algebra\(^1\). As particular examples, we note that the identity \(R \)-matrix gives the identity endomorphism, \(\lambda_1 = \text{id}_\mathcal{N} \), and the flip \(F \) gives the canonical endomorphism, \(\lambda_F = \varphi \).

Let us list a few results from [2] (joint work with Roberto Conti):

1. \(\mathcal{L}_R \) is a factor (II\(_1\) for non-trivial \(R \)). This provides us with three subfactors (I) \(\lambda_R(\mathcal{N}) \subset \mathcal{N} \), (II) \(\varphi(\mathcal{L}_R) \subset \mathcal{L}_R \), and (III) \(\mathcal{L}_R \subset \mathcal{N} \) derived from \(R \).

2. Subfactors (I),(II) have always finite index \(\leq d^2 \), but (III) may have infinite index. Its relative commutant coincides with the fixed point algebra \(\mathcal{N}^{\lambda_R} \).

3. The subfactors (I), (II) can be iterated by taking powers of \(\lambda_R \) and \(\varphi \), respectively. One has \(R \in \varphi^2(\mathcal{L}_R)' \cap \mathcal{L}_R \subset \lambda_R^2(\mathcal{N})' \cap \mathcal{N} \). Hence, for any non-trivial \(R \)-matrix, \(\lambda_R^2 \) is reducible and \(\lambda_R \) is not an automorphism [1].

4. Both squares in (**) are commuting squares. Denoting the \(\tau \)-preserving conditional expectation \(\mathcal{N} \to \lambda_R(\mathcal{N}) \) by \(E_R \), and the associated left inverse of \(\lambda_R \) by \(\phi_R := \lambda_R^{-1} \circ E_R \), this implies \(\phi_R(x) = \phi_F(x) \), \(x \in \mathcal{L}_R \).

An interesting object to consider is \(\phi_R(R) \). This is an element of \(\varphi(\mathcal{L}_R)' \cap \mathcal{L}_R \), which thanks to (4) coincides with the (normalised) left partial trace \(\phi_F(R) \) of \(R \). We therefore have explicit elements of the relative commutant, and a connection from operator-algebraic structures to concrete properties of \(R \). One finds [2]:

5. Let \(R \in \mathcal{R} \). Then the left and right partial traces of \(R \) coincide and are normal elements of \(\text{End} V \).

6. Define the character \(\tau_R \) of an \(R \)-matrix as the map \(\tau_R : B_{\infty} \to \mathbb{C}, \tau_R := \tau \circ \rho_R \). If two \(R \)-matrices \(R, S \in \mathcal{R}(d) \) have the same character, then \(\phi_R(R) \) and \(\phi_S(S) \) are unitarily equivalent.

7. Any \(R \)-matrix with spectrum contained in a disc of radius less than \(1 - 2^{-1/4} \) is trivial\(^2\).

1 Viewing \(R \in \mathcal{R}(d) \) as a unitary in \(\mathcal{O}_d \) yields a canonically associated endomorphism \(\lambda_R \) of \(\mathcal{O}_d \). This endomorphism gives (**) by extension to a type III\(_1/d\) factor \(\mathcal{M} \supset \mathcal{N} \) and restriction.

2 This result has its origin in an estimate on the Jones index \([\mathcal{N} : \lambda_R(\mathcal{N})]\) in terms of \(\phi_R(R) \).
Item (6) suggests to consider R-matrices up to the natural equivalence relation $R \sim S$ given by coinciding characters and dimensions of R-matrices. Then $\phi_R(R)$ is an invariant for \sim, and in the involutive case ($R^2 = 1$), it is even a complete invariant: $R \sim S \iff \phi_R(R) \equiv \phi_S(S)$ [4]. In the general non-involutive case, the partial trace is not a complete invariant.

As the last section in this overview, let us consider the problem of classifying all R-matrices up to the equivalence \sim and announce some results from the upcoming article [5]. We consider here the case that the spectrum of R has cardinality 2, and normalise it to $\sigma(R) = \{-1, q\}$, $|q| = 1$, $q \neq -1$. In this situation, the representation ρ_R factors through the Hecke algebra $H_\infty(q)$, and we moreover have [5]:

(8) If $R \in \mathcal{R}(d)$ has no two opposite eigenvalues $\mu, -\mu$ in its spectrum, then $\varphi(\mathcal{L}_R) \subset \mathcal{L}_R$ is irreducible and τ_R is a (positive) Markov trace.

Hence for $q \neq 1$, any R-matrix gives a positive Markov trace on $H_\infty(q)$. We may therefore use Wenzl’s classification of positive Markov traces on $H_\infty(q)$ [7]. Recall that his results state in particular that for a positive Markov trace to exist, one must have $q \in \{1, e^{2\pi i / \ell} : \ell \in \{4, 5, \ldots\}\}$, and at fixed ℓ, there exist finitely many possible Markov traces. In our Yang-Baxter setting, these possibilities are severely restricted [5]:

(9) Let R be an R-matrix with spectrum $\{-1, q\}$, $q \neq 1$, and eigen projection P for the eigenvalue -1. Then $q \in \{\pm i, e^{i\pi/3}\}$. If $q = \pm i$, then $\tau(P) = \frac{1}{2}$, and if $q = e^{\pm i\pi/3}$, then $\tau(P) = \{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\}$. Two such R-matrices, R, S are equivalent (in the sense of \sim) if they have the same spectrum (q), dimension (d), and trace $(\tau(P))$.

The above result does not imply that all the possible combinations of eigenvalues q and traces $\tau(P)$ are indeed realised. We have found explicit R-matrices realising the combinations $(q = \pm i, \tau(P) = \frac{1}{2})$, $(q = e^{i\pi/3}, \tau(P) = \frac{1}{3})$, $(q = e^{i\pi/3}, \tau(P) = \frac{2}{3})$ and conjecture that the last possibility, $(q = e^{i\pi/3}, \tau(P) = \frac{1}{2})$, is not realised by any R-matrix. This is in line with observations made by Galindo, Hong, and Rowell [3], but so far no proof of this conjecture exists.

It is instructive to compare these findings with the situation at $q = 1$, which is completely different. For $q \neq 1$, we always have irreducible $\varphi(\mathcal{L}_R) \subset \mathcal{L}_R$, and the equivalence takes a simple form (it is given by the three parameters $d, q, \tau(P)$). For $q = 1$, on the other hand, $\varphi(\mathcal{L}_R) \subset \mathcal{L}_R$ is reducible except for the special cases $R \sim \pm 1, \pm F$, and the equivalence is more involved (it is given by the unitary equivalence class of $\phi_R(R)$). The case $q = 1$ corresponds to R being involutive and ρ_R factoring through the infinite symmetric group. In that case, a complete and explicit classification of R-matrices up to equivalence exists: R-matrices are parameterised by pairs of Young diagrams with d boxes in total, corresponding to the positive and negative eigenvalues of $\phi_R(R)$ [4]. We also mention that in this case, the index $[\mathcal{L}_R : \varphi(\mathcal{L}_R)]$ is a rational typically non-integer number.
References

