Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

3D right ventricular endocardium segmentation in cardiac magnetic resonance images by using a new inter-modality statistical shape modelling method

Piazzese, Concetta, Carminati, M. Chiara, Krause, Rolf, Auricchio, Angelo, Weinert, Lynn, Gripari, Paola, Tamborini, Gloria, Pontone, Gianluca, Andreini, Daniele, Lang, Roberto M., Pepi, Mauro and Caiani, Enrico G. 2020. 3D right ventricular endocardium segmentation in cardiac magnetic resonance images by using a new inter-modality statistical shape modelling method. Biomedical Signal Processing and Control 58 , 101866. 10.1016/j.bspc.2020.101866
Item availability restricted.

[img] PDF - Accepted Post-Print Version
Restricted to Repository staff only until 25 January 2021 due to copyright restrictions.

Download (5MB)

Abstract

Objective Statistical shape modelling (SSM) has established as a powerful method for segmenting the left ventricle in cardiac magnetic resonance (CMR) images However, applying them to segment the right ventricle (RV) is not straightforward because of the complex structure of this chamber. Our aim was to develop a new inter-modality SSM-based approach to detect the RV endocardium in CMR data. Methods Real-time transthoracic 3D echocardiographic (3DE) images of 219 retrospective patients were used to populate a large database containing 4347 3D RV surfaces and train a model. The initial position, orientation and scale of the model in the CMR stack were semi-automatically derived. The detection process consisted in iteratively deforming the model to match endocardial borders in each CMR plane until convergence was reached. Clinical values obtained with the presented SSM method were compared with gold-standard (GS) corresponding parameters. Results CMR images of 50 patients with different pathologies were used to test the proposed segmentation method. Average processing time was 2 min (including manual initialization) per patient. High correlations (r2 > 0.76) and not significant bias (Bland-Altman analysis) were observed when evaluating clinical parameters. Quantitative analysis showed high values of Dice coefficient (0.87 ± 0.03), acceptable Hausdorff distance (9.35 ± 1.51 mm) and small point-to-surface distance (1.91 ± 0.26 mm). Conclusion A novel SSM-based approach to segment the RV endocardium in CMR scans by using a model trained on 3DE-derived RV endocardial surfaces, was proposed. This inter-modality technique proved to be rapid when segmenting the RV endocardium with an accurate anatomical delineation, in particular in apical and basal regions.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Engineering
Publisher: Elsevier
ISSN: 1746-8094
Date of First Compliant Deposit: 24 January 2020
Date of Acceptance: 20 January 2020
Last Modified: 10 Mar 2020 21:57
URI: http://orca.cf.ac.uk/id/eprint/129005

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics