Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity

Comesaña-Gándara, Bibiana, Chen, Jie, Bezzu, C. Grazia, Carta, Mariolino, Rose, Ian, Ferrari, Maria-Chiara, Esposito, Elisa, Fuoco, Alessio, Jansen, Johannes C. and McKeown, Neil B. 2019. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy and Environmental Science 12 (9) , pp. 2733-2740. 10.1039/C9EE01384A

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

Membranes composed of Polymers of Intrinsic Microporosity (PIMs) have the potential for energy efficient industrial gas separations. Here we report the synthesis and gas permeability data of a series of ultrapermeable PIMs, of two-dimensional chain conformation and based on benzotriptycene structural units, that demonstrate remarkable ideal selectivity for most gas pairs of importance. In particular, the CO2 ultrapermeability and high selectivity for CO2 over CH4, of key importance for the upgrading of natural gas and biogas, and for CO2 over N2, of importance for cost-effective carbon capture from power plants, exceed the performance of the current state-of-the-art polymers. All of the gas permeability data from this series of benzotriptycene-based PIMs are placed well above the current 2008 Robeson upper bounds for CO2/CH4 and CO2/N2. Indeed, the data for some of these polymers fall into a linear correlation on the benchmark Robeson plots [i.e. log(PCO2/PCH4) versus log PCO2 and log(PCO2/PN2) versus log PCO2], which are parallel to, but significantly above, that of the 2008 CO2/CH4 and CO2/N2 upper bounds, allowing their revision. The redefinition of these upper bounds sets new aspirational targets for polymer chemists to aim for and will result in more attractive parametric estimates of energy and cost efficiencies for carbon capture and natural/bio gas upgrading using state-of-the-art CO2 separation membranes.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Chemistry
Publisher: Royal Society of Chemistry
ISSN: 1754-5692
Date of First Compliant Deposit: 3 February 2020
Date of Acceptance: 23 July 2019
Last Modified: 31 Mar 2020 14:53
URI: http://orca.cf.ac.uk/id/eprint/129261

Citation Data

Cited 45 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics