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Abstract:  

This paper addresses the novel three stage food grain distribution problem of Public 
Distribution System (PDS) in India which comprises of farmers, procurement centers, base 
silos and field silos. The Indian food grain supply chain consists of various activities such as 
procurement, storage, transportation and distribution of food grain. In order to curb 
transportation and storage losses of food grain, the Food Corporation of India (FCI) is moving 
towards the modernized bulk food grain supply chain system. This paper develops a Mixed 
Integer Non-Linear Programming (MINLP) model for planning the movement and storage of 
food grain from surplus states to deficit states considering the seasonal procurement, silo 
capacity, demand satisfaction and vehicle capacity constraints. The objective function of the 
model seeks to minimize the bulk food grain transportation, inventory holding, and operational 
cost. Therein, shipment cost contains the fixed and variable cost, inventory holding and 
operational cost considered at the procurement centers and base silos. The developed 
mathematical model is computationally complex in nature due to nonlinearity, the presence of 
numerous binary and integer variables along with a huge number of constraints, thus, it is very 
difficult to solve it using exact methods. Therefore, recently developed, Hybrid Particle-
Chemical Reaction Optimization (HP-CRO) algorithm has been employed to solve the MINLP 
model. Different problem instances with growing complexities are solved using HP-CRO and 
the results are compared with basic Chemical Reaction Optimization (CRO) and Particle 
Swarm Optimization (PSO) algorithms. The results of computational experiments illustrate 
that the HP-CRO algorithm is competent enough to obtain the better quality solutions within 
reasonable computational time.  

Keywords: Food grain distribution problem, Transportation, Inventory, Mixed Integer Non-
Linear Programming, Chemical reaction optimization,  

 

1. Introduction  

Recently, the Government of India (GOI) has implemented the National Food Security Act 
(NFSA), 2013 across the country including all states and Union Territories for providing the 
food and nutritional security. This act is the key initiative for ensuring the food security which 
can be defined as economic access to the adequate quality food. Under this act, the targeted 
beneficiaries can get the highly subsidized food grains, i.e. wheat, rice, and cereals through 
PDS. The NFSA includes the 75% rural population and 50% urban population which makes 
the overall coverage of two third (67%) population of India (http://dfpd.nic.in/nfsa-act.htm). In 
order to provide the food grains to the large volume of the population, India has to increase its 
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production, procurement and reduce the losses during transportation and storage. The major 
food grain supply chain related activities including procurement, storage, movement and 
distribution are taken care by the Central nodal agency called FCI. The procurement is carried 
out in the procurement centers of surplus states by FCI and State Government Agencies (SGAs) 
at the rate of Minimum Support Price (MSP). Normally, the different food grains procured in 
different seasons such as in Rabi season (April to June) wheat is procured and in Kharif season 
(October to February) Rice procures. FCI takes over the procured stock of food grain from 
SGAs and stores in its own warehouses of producing states. Next, GOI allocates the food grains 
to various deficit states and Union Territories based on their demand and offtake of the previous 
period. In consuming states, food grain stock is moved from regional warehouses to block level 
and block level to Fair Price Shops (FPS). Generally, FCI prefers the road mode for intra-state 
transportation and rail mode for inter-state transportation. All these major food grain supply 
chain activities are depicted in Fig. 1. 

 

 

Fig. 1. Major activities of FCI 

 

 The Indian PDS is world’s largest distribution system and its management is a complex 
issue due to the involvement of many entities such as FCI, SGAs, Railways, transporters and 
private contractors. In the conventional method, food grain is stored in godowns and 
transported using the gunny bags which has several flaws. The first and paramount important 
shortcoming is the huge amount of transportation and storage cost. FCI transports the 40 to 50 
million tons of food grains across the country in a year through rail, road and waterways which 
incurred the average expenditure of 47.2737 billion (Comptroller and General of India (CAG), 
2013). The FCIs total storage capacity including hired one was 336.04 Lakh Metric Tonne 
(LMT) as against the central pool stock of 667.89 LMT at the end of the March 2012 thus 
leaving a huge gap of 331.85 LMT. Next, the inadequate storage management practices and 
unclear norms of operational and buffer stock maintenance of deficit state leads to increase of 
food grains holding cost. In addition to the above inadequacies, FCI is also facing the problem 
of food grain losses which mainly occurred from post-harvest to distribution stage of food grain 
supply chain, i.e. during storage and transit. The shortages of labours and their huge salaries 
(handling cost), shortages of different capacitated vehicles (rakes and trucks), demurrage 
payment, carry over charges, and loading and unloading time are some of the other major 
challenges.  
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To tackle the aforementioned challenges, GOI is moving towards the modernized food 
grain supply chain system of bulk grain handling, transportation and storage. In this 
modernized system, food grain (wheat) is transported in bulk form using the truck as well as 
specially designed wagons and stored in steel silos. The silos located in the surplus and deficit 
states are known as Base silo and Field silo, respectively. Proper planning and coordination 
among all the entities of the food grain supply chain network can reduce the transportation as 
well as inventory cost and helps to take the various timely decisions such as “how much 
quantity to be transferred from which origin node to which base silo and from which base silo 
to which field silo.” Similarly, the determination of each type of capacitated vehicles used for 
shipment between different entities is also the crucial aspect of food grain supply chain problem 
because the sufficient availability of capacitated vehicles helps for quick transfer of food grain 
from producing states to consuming states.  Furthermore, FCI has to maintain the optimal level 
of operational and buffer stock in each silo for food security purpose. This paper considers the 
initial three stages of food grain supply chain network, including the origin nodes (farmers), 
procurement centers, base silos and field silos. An MINLP model is formulated after the critical 
analysis of Indian food grain supply chain network and various reports on PDS. The solution 
of the model will be helpful to FCI for taking the timely intra-state as well as inter-state 
movement and storage-related decisions. This paper extends the work carried out by the 
Mogale et al. (2016) and differ in following aspects. Here, 1. Three stage food grain distribution 
network is considered where food grain can be shipped from an origin node to procurement 
centers or base silos, 2. Inventory and operational costs considered at procurement centers and 
base silos, 3. Included the new vehicle capacity related constraints, 4. Different problem 
instances of the formulated MINLP model are solved using the recently developed HP-CRO 
algorithm and attained results compared with the CRO and PSO results. 5. Furthermore, the 
convergence behavior and movement along with storage activities of few selected instances 
are analyzed in detailed.  

The remaining article is organized as follows. Section 2 presents the critical review of 
related work. In Section 3, the detailed delineation of considered problem is provided. The 
mathematical model with notations, objective function and constraints are illustrated in Section 
4. Section 5 discusses the solution approach employed for solving the mathematical model. 
Section 6 depicts the results and analysis of computational experiments. Conclusion and future 
scope of the study is given in Section 7.  

2. Related work 
 
The supply chain distribution problem in the context of manufacturing industries has been 

widely addressed by several researchers in the past. The existing relevant works focusing on 
food supply chain related problems including inventory-transportation, post-harvest loss 
minimization, food distribution system and their solution methodologies, review papers along 
with advanced control techniques in agricultural systems have been described in this section. 
Recently, the real-world optimization problem of wheat transportation and storage in Iran has 
been effectively addressed by Asgari et al. (2013) by formulating the problem as a linear integer 
programming (LIP) model. The LINGO optimization software was used to solve LIP model 
and obtained results compared with the Genetic Algorithm (GA) which takes reasonable 
computational time for solving large size problems. Authors have not taken into account the 
different capacity and availability of transportation vehicles. An MINLP model has been 
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formulated considering rail road flexibility by Maiyar et al. (2015) to optimize food grain 
transportation problem of Indian PDS. The food grain storage cost and capacity constraints of 
transportation vehicles are absent in their model. In the same domain of Indian food grain 
supply chain, Mogale et al. (2016) developed the two stage MINLP model for efficient 
transportation and storage of food grain from surplus states to deficit states. They have tested 
the model on single small size problem instance and results were not compared with other 
evolutionary algorithms. A deterministic mathematical model was proposed by Reis and Leal 
(2015) for optimization of tactical decisions of soybean supply chain in Brazil. Lamsal, Jones 
and Thomas (2016) dealt with the problem of minimization of a number of trucks entailed for 
transportation of harvested crops from field to storage point under the scenario of several 
independent farmers and absence of on-farm storage. In two-phase solution approach, initially, 
they fixed harvest starting time, then find out the number of trucks and their allocation to load. 
Ma et al. (2011) worked on the shipment consolidation problem of distribution network which 
involves manufacturers, cross docks and customers. They tried to minimize the trade-offs 
among movement cost, storage cost and scheduling requirements.     

In order to reduce the post-harvest loss (PHL), Nourbakhsh et al. (2016) presented a 
mathematical model with the objective function of minimizing infrastructure investment and 
economic cost from PHL of food grain supply chain network. The main aim of this study was 
to determine the optimum new pre-processing facilities locations and transportation network 
capacity growth. Liu et al. (2016) critically analyzed the macro-level trends of food waste in 
Japan from 1960-2012 for additional prevention and mitigation of food waste. In this analysis, 
they have determined the mismatch between calorie/protein supply and consumption, 
elucidated the present status of waste in Japanese food supply chain and recommended the 
policies. Furthermore, An and Ouyang (2016) developed the bi-level robust optimization 
model with objective functions of profit maximization and PHL minimization of a food 
company. They have modelled a three stage food supply chain network considering the 
farmers, storage facilities, and export markets. The decomposed single-level problem has been 
solved using the Lagrangian relaxation algorithm and applied to Illinois and Brazil case studies. 
To compare the conventional rail service accompanied by country elevators with shuttle service 
accompanied by terminal elevators of U.S., Hyland, Mahmassani and Mjahed (2016) 
developed three models of domestic grain transportation including trucking, elevator storage, 
and rail shipment. These three models determine the travel time, variable cost and rail network 
capacity, respectively. 

Rancourt et al. (2015) solved the distribution center location problem in the perspective of 
the food aid delivery system in Kenya with the help of Geographic Information System (GIS) 
data, need assessment and population data. They designed last-mile food supply chain network 
using real-time data of Garissa region in Kenya. A novel discrete/continuous time mixed 
integer programming (MIP) model is proposed by Kopanos et al. (2012) considering the 
families of products for simultaneous production and logistics operations planning in semi-
continuous food industries. Furthermore, two industrial case studies of Greek dairy industry 
have been effectively solved using proposed approach. Moreover, Etemadnia et al. (2015) 
developed the mixed integer linear programming (MILP) model for minimization of total 
network cost containing transportation and facility location cost with two potential shipment 
modes for the design of the optimal hub logistic network for efficient transfer of food from 
production region to consumption region. To minimize the handling cost of Canadian wheat 
supply chain under the new declaration system, Ge, Gray and Nolan (2015) developed the 
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analytic and agent-based simulation models assuming individual behavior and farmers as well 
as handlers as rational and learning individual, respectively.  

In the domain of fresh food supply chain, Soto-Silva et al. (2016) critically reviewed the 
existing literature focusing on the operational research models employed to the fresh fruit 
supply chain problems. They identified some of the major challenges of fresh fruit supply chain 
problem such as long supply lead time, the disparity in supply and demand. An extensive 
review of state of the art in the domain of production and distribution of crops has been carried 
out by Ahumada and Villalobos (2009). They have divided the existing literature into three 
contexts based on storability of products (perishable and non-perishable), scope (strategic, 
tactical and operational) and modeling uncertainty (deterministic and stochastic). 

In recent years, many solution methodologies like metaheuristics, optimization solver and 
two stage approach, etc. have been employed in the literature to solve the different food supply 
chain related problems depending on the problem complexities. A strategic vehicle routing and 
assignment problem of the dairy industry in Canada has been effectively solved by Masson, 
Lahrichi and Rousseau (2016) using the two-stage approach which depends on adaptive large 
neighboured search (ALNS). The primary and secondary stage solves the transportation and 
processing plant allocation problem, respectively. Jawahar and Balaji (2009) proposed a GA 
based heuristic method to solve the mathematical model of fixed charge distribution problem 
in the two-stage supply chain. The performance of proposed GA was compared with 
approximate and lower bound solutions.  Furthermore, a two-stage fixed charge transportation 
problem (FCTP) was addressed under two situations by Antony Arokia Durai Raj and 
Rajendran (2012). They have considered the fixed cost, variable cost and unlimited 
Distribution Centres (DC) capacity in the first situation and variable cost from plant to DC, 
from DC to customers and DC opening cost in the second situation. Therein, they used the 
paired comparison t-test to evaluate the performance of proposed GA with best existing 
algorithms. Mousavi et al. (2015) examined the two-echelon distributor-retailer supply chain 
network design problem considering various seasonal products and shortage as an integration 
of the backorders and lost sales. They have implemented the modified fruit fly optimization 
algorithm (MFOA) to solve the developed mixed binary integer programming model and 
results were compared with other two algorithms namely PSO and Simulated Annealing (SA). 
A CRO inspired from the chemical reaction was established by Lam and Li in 2010 and 
effectively implemented to solve the real life Non-deterministic polynomial (NP) hard 
problems such as Quadratic assignment problem (QAP), resource-constrained project 
scheduling problem (RCPSP) and channel assignment problem (CAP). Truong, Li and Xu 
(2013) efficiently solved the 0–1 knapsack problem (KP01) using the chemical reaction with 
greedy strategy (CROG) algorithm which based on CRO structure and a greedy strategy. Also, 
Li and Pan (2013) studied the flexible job shop scheduling problem considering flexible 
preventive maintenance activities and suggested the hybrid chemical reaction optimization 
(HCRO) as a solution approach. In order to solve continuous optimization problems, Lam, Li  
and Xu (2012) proposed the new variant of CRO called real coded chemical reaction 
optimization (RCCRO) considering the Gaussian distribution. 

Few authors have utilized the various advanced control techniques in agricultural 
systems and food engineering field for solving the supply chain related problems. Saint 
Germain et al. (2007) worked on supply network coordination problem and discussed a multi-
agent coordination approach with factory control to manage the outbound and inbound logistics 
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in multiple site/multiple organization topologies. To solve the Emergency Supply Chain (ESC) 
problem of supply of resources to the crisis-affected areas, Othman et al. (2017) proposed the 
Decision Support System (DSS) based on multi-agent architecture and optimization tools. A 
dynamic pickup and delivery problem with dial-a-ride service system has been addressed by 
Núñez et al. (2014) through a multi-objective model based predictive control method. The user 
and operator cost were considered the two conflicting dynamic objective functions. In order to 
improve the temperature control and curtail the electricity cost in cold storage facilities for 
agricultural produce (potatoes and onions), Lukasse et al. (2009) employed the receding 
horizon optimal control (RHOC) technology.  A brief summary of aforementioned relevant 
works with main features is given in Table 1. 
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   Table 1 A summary of relevant works in the literature   

Authors and Year 
Single/Multi 

period 
Single/Multi 

product 
Model Objective/features Solving method 

Asgari et al. (2013) Multi Single LIP Minimization of the transportation and storage cost LINGO and GA 

Maiyar et al. (2015) Single Single MINLP Minimization of the transportation cost 
Self-learning particle swarm optimization 

(SLPSO) and Particle Swarm Optimization 
with Composite Particles (PSOCP) 

Mogale et al. (2016) Multi Single MINLP 
Minimization of the transportation , storage and 

operational cost 
CRO 

Reis and Leal (2015) Single  Multi LP Maximization of profit CPLEX 12.5 

Lamsal et al. (2016) Multi Multi MIP 
Minimization of a number of trucks for crop 

transportation 
GUROBI OPTIMIZER 5.6. 

Ma et al. (2011) Multi Single Integer programming Minimization of transportation and holding cost Two-stage heuristic algorithm 

Nourbakhsh et al. 
(2016) 

Single Single MIP 
Minimization of  infrastructure investment and 

economic cost from PHL 
Case study 

Liu et al. (2016) - - - 
Critically analyzed the macro-level trends of food 

waste in Japan from 1960-2012 for additional 
prevention and mitigation of food waste 

- 

An and Ouyang 
(2016) 

Single Single MINLP 
Maximization of profit and post-harvest loss 

minimization 
Lagrangian relaxation algorithm 

Hyland et al. (2016) Multi Single Analytical model 
Determine the travel time, variable cost and rail 

network capacity 
Numerical method 

Rancourt et al. 
(2016) 

Single Single MILP Minimization of the total welfare cost CPLEX 12.5 

Kopanos et al. (2012) Multi Multi MIP 
Minimization of inventory, operating, batch 
recipes preparation, unit utilization, families 

changeover and  transportation costs 
CPLEX 11 

Etemadnia et al. 
(2015) 

Single Multi MILP 
Minimization of total network cost including 

facility location and transportation cost 
Heuristic 

Ge et al. (2015) Multi Single Analytic linear Minimization of handling cost Simulation analysis 
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 Table 1 Continue 

 

Soto-Silva et al. 
(2016) 

- - - 
Critically reviewed the existing literature focusing 
on the operational research models employed to 

the fresh fruit supply chain problems. 
- 

Ahumada and 
Villalobos (2009) 

- - - 
Extensive review of the state of the art in the 

domain of production and distribution of crops 
- 

Masson et al. (2015) Multi Single MINLP Minimization of distance Adaptive large neighboured search 

Jawahar and Balaji 
(2009) 

Single Single MINLP Minimisation of the total cost of distribution GA 

Antony Arokia Durai 
Raj and Rajendran 

(2012) 
- - MINLP Minimization of fixed, variable and opening cost Two stage Genetic algorithm 

Mousavi et al. (2015) Multi Multi 
Mixed binary integer 

programming 

Minimization of total supply chain cost including 
transportation, holding, shortage, and purchase 

costs. 
MFOA 

Germain et al. (2007) - - - 

Discussed a multi-agent coordination approach 
with factory control to manage the outbound and 

inbound logistics in multiple site/multiple 
organization topologies 

- 

Othman et al. (2017) - - MILP 
Minimization of the delivery costs of resources, 
the earliness penalty and the tardiness penalty 

Branch and Bound Algorithm 

Núñez et al. (2014) - - 
Non-linear 

programming 
Minimization of user and operator cost GA 

Lam and Li (2010) - - - 
A CRO inspired from the chemical reaction was 

developed 
- 

Truong et al. (2013) - - - Maximization of profit (0–1 knapsack problem) CROG algorithm 

Li and Pan (2013) - - - 
Minimization of the maximum fuzzy completion 

time 
HCRO 

Lam et al. (2012) - - - 
Propose a real-coded version of CRO considering 
the Gaussian distribution for solving the continues 

optimization problems 
RCCRO 
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In the past, very few researchers have focused on food grain distribution problems. Nowadays, 
due to the advances in technology, food grain is transported, handled and stored in bulk form 
rather than conventional methods. There are a limited number of studies available in bulk food 
grain supply chain domain. Therefore, the bulk food grain transportation, handling, and storage 
problem is investigated here considering deterministic procurement, demand, capacitated silos, 
and different capacitated vehicles in the finite planning horizon.  

3. Problem background 
 
In this study, the food grain supply chain problem of PDS in India is considered with the 

objective to minimize the transportation, handling and storage cost. There are several entities 
like farmers, FCI, various SGAs of surplus states, Railways, private contractors, etc. presents 
in the Indian food grain supply chain which makes it complex and unique compared with other 
food supply chain problems. The improper coordination and planning among these entities lead 
to the increase of food losses and other costs. Farmers take their food grains to nearby 
procurement centers using different capacitated vehicles such as tractors, small trucks, etc. for 
selling to FCI and SGAs at the rate of MSP. This procurement would take place in two seasons, 
i.e. Wheat is procured in Rabi marketing season (April-June) and Rice in Kharif marketing 
season (October-February). In this paper, we have considered several villages into one cluster 
and named it as origin node, so quantity available at each origin node is the sum of all the 
villages quantity considered in that cluster. The food grain from procurement centers is 
transported to base silos which are located in surplus states. The silos located in India are 
normally used for storing wheat only, therefore we considered a wheat supply chain. Recently, 
GOI has announced that the base silos will also work as procurement centers during the Rabi 
marketing season. Thus, farmers can sell their produce to either procurement centers or base 
silos depending on their requirements. Next, on the basis of deficit states demand and their 
offtakes in the previous period, GOI distributes the food grain to various deficit states. Food 
grain from base silos is transported to field silos which are located in deficit states using the 
specially designed wagons of rail rakes. Intra-state movement of food grain is mostly carried 
out by road. The overall scenario of these three stages is explained in pictorial form in Fig. 2. 

 

Origin nodes Procurement centers Base silos Field silos  

Fig. 2. The depiction of food grain supply chain network  
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The food grain movement in all three stages is mainly affected by several constraints about 
each stage. Major constraints include the food grain quantity available at each origin node, the 
capacity of procurement centers and base silos, the demand of field silos, timely availability of 
different capacitated vehicles (trucks and rakes) at each stage, fixed as well as the variable cost 
of vehicles and operational and buffer stock maintenance. This problem aims to find out the 
effective and efficient storage and movement plan of food grain supply chain which minimizes 
the transportation, handling and inventory cost. The next section presents the MINLP 
formulation of the considered problem. 

4. Mathematical model formulation  
 
Various assumptions considered and notations used while developing the model are 
described below: 
 

4.1 Assumptions: 
1) The every origin node represents the cluster of villages. 
2) The procurement quantity, the capacity of procurement centers, base silos and 

demand are well known and deterministic.  
3) The truck and rake types along with their availability are limited at respective 

stages.  
4) The amount of food grain procured is adequate to fulfill the demand of each field 

silo.  
5) The field silos demand must be satisfied during the particular time period. 
 

4.2 Notations 
     The following notations have been used to formulate the model. 
 
     4.2.1 Sets/indices  
 
     T  Set of time periods indexed by t T   
     S  Set of origin nodes indexed by s S  
     P  Set of procurement centers indexed by p P   

     B  Set of base silos indexed by b B   
     F  Set of field silos indexed by f F  

     I Set of trucks between origin nodes, base silos and procurement centers indexed 
by i I  

      J  Set of trucks between procurement centers and base silos indexed by j J  

      K  Set of rakes between base silos and field silos indexed by k K  

   
  4.2.2 Parameters 
 

   
i
spfc              fixed cost for trucks of type i used on arc (s, p) 

   
i
sbfc              fixed cost for trucks of type i used on arc (s, b). 

   
j

bffc              fixed cost for trucks of type j used on arc (p, b) 
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k
bffc              fixed cost for rakes of type k used on arc (b, f) 

    vc             variable cost of food grain transportation by road (unit cost/km i.e. per Metric 

Tonne (MT) per km)  
    vc             variable cost of food grain transportation by rail (unit cost/km i.e. per MT per 

km)    
  pcinv             Inventory holding cost per MT quantity of food grain per time at procurement 

center p 

  bcinv             Inventory holding cost per MT quantity of food grain per time at base silo b 

  pcoper            Operational cost per MT quantity of food grain at procurement center p 

  bcoper            Operational cost per MT quantity of food grain at base silo b 

  it
sSnum           number of i types of trucks available at origin node s in time period t 

  
jt
pPnum          number of j types of trucks available at procurement center p in time period t 

  kt
bBnum          number of k types of rakes available at base silo b in time period t 

    i                capacity of i types of truck available at the origin node 

    je                 capacity of j types of truck available at procurement centers 

    kq                capacity of k types of rakes available at base silos 

    
t
fD                 demand of field silo f during time period t 

   spdist               distance from origin node s to procurement center p 

   sbdist               distance from origin node s to base silo b 

   pbdist              distance from procurement center p to base silo b 

   pbdist              distance from base silo b to field silo f  by rail 

     
t
sG                  Food grain quantity available at origin node s in period t  

   pPcap             Inventory holding capacity of procurement center p  

   bBcap             Inventory holding capacity of base silo b  

 

4.2.3 Decision Variables 

As per the present practices of the public distribution system in India, FCI has to decide that 
the, ‘‘how much quantity, from which origin node, procurement centre, base silos, or field 
silos, when and where to transport”. Therefore, in order to decide from which node-where to 
transport the food grains, allocation decisions (binary variables) needs to be taken into account 
from origin nodes to field silos. Initially, FCI takes the allocation decisions (binary variables) 
based on supply and demand of deficit states, then determines the amount of food grains to be 
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transported (continuous variables) and a number of vehicles used (integer variables). The 
similar procedure of mathematical formulation with the combination of binary and continuous 
variables used by Mousavi et al. (2014).  

Binary variables  

       
1     if origin node  is allocated to procurement centre  in period   

         
0    otherwise

t
sp

s p t
X

  

       
1     if procurement center  is allocated to base silo  in period   

         
0    otherwise

t
pb

p b t
Y

  

       
1     if origin node  is allocated to base silo  in period   

         
0    otherwise

t
sb

s b t
V

  

      
1     if base silo  is allocated to field silo  in period   

         
0    otherwise

t
bf

b f t
Z

  

Continuous variables  

    
t
spm                 Quantity of food grain transported from origin node s to procurement center p 

during time period t  

    
t
pbh                 Quantity of food grain transported from procurement center p to base silo b in 

time period t  

    
t
sbg                 Quantity of food grain transported directly from origin node s to base silo b in 

time period t  

    
t
bfw                 Quantity of food grain transported from base silo b to field silo f in time period 

t  

    
t
p                 Quantity of food grain at procurement center p in time period t  

    
t
b                 Quantity of food grain at base silo b in time period t  

 

Integer Variables  

     
it
spn                 number of i types of trucks used on arc (s, p) in time period t 

     
jt
pbv                 number of j types of trucks used on arc (p, b) in time period t  

     
it
sbu                 number of i types of trucks used on arc (s, b) during time period t 

     
kt

bfr                 number of k types of rakes used on arc (b, f) in time period t  
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4.3 Objective function 

This study aims to determine the time-dependent movement and storage plan of food 
grain supply chain of three stages starting from farmers (origin nodes), procurement centers, 
base silos and field silos such that total cost of food grain supply chain is minimized. The 
overall objective function of the model is to minimize the total cost which comprises of 
transportation cost, operational cost and inventory holding cost. Various components of the 
objective function are described as follows. In the transportation cost, first and the second term 
gives shipment costs including fixed and variable costs from origin nodes to procurement 
centers and procurement centers to base silos, respectively. The direct transportation cost 
comprises of fixed and variable costs from origin nodes to base silos is represented by the third 
term. The last term provides the inter-state food grain movement cost containing fixed as well 
as variable costs from base silos to field silos. There are two terms in operational cost, in which 
first and second term indicates the operational cost at procurement centers and base silos, 
respectively. The inventory holding costs at procurement centers and base silos are included in 
inventory holding cost component of the objective function.  
 

Minimize Total cost = Transportation Cost + Operational Cost + Inventory Holding Cost  

Components of objectives  

Transportation cost =  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1

1 1 1 1

. . . . . . . .

. . . . . . .

S P I T P B J T
i it t t j jt t t
sp sp sp sp sp pb pb pb pb pb

s p i t p b j t

S B I T
i it t t k kt t
sb sb sb sb sb bf bf bf bf

s b i t

fc n dist vc m X fc v dist vc h Y

fc u dist vc g V fc r dist vc w

 

 

= = = = = = = =

= = = =

   + + + +   
  + + +  

 


1 1 1 1

.
B F K T

t
bf

b f k t

Z
= = = =

  

 

Operational Cost =  

1 1 1 1 1 1 1 1 1 1 1 1

. .
T S P P B T S B P B B F

t t t t t
sp pb p sb pb bf b

t s p p b t s b p b b f

m h coper g h w coper
= = = = = = = = = = = =
   + + + +              

 

Inventory holding cost = 

1 1 1 1

. .
P T B T

t t
p p b b

p t b t

cinv cinv 
= = = =

+   

 

Subject to constraints  

The various constraints of the model are described as below.   
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( )
1 1

. .               ,
P B

t t t t t
sp sp sb sb s

p b

m X g V G s t
= =

+         (1) 

Constraint (1) restricts the food grain quantity transferred from an origin node to procurement 
centers and base silos, to maximum food grain quantity available at the origin node during each 
time period. 

( )
1

.                    ,
B

t t t
pb pb p

b

h Y p t
=

         (2) 

( )
1

.                   ,
F

t t t
bf bf b

f

w Z b t
=

         (3) 

Constraint (2) limits the food grain quantity transferred from procurement centers to the base 
silo, to maximum available inventory at given procurement center in given time period. 
Similarly, Constraint (3) shows the supply constraint of the base silo.  
   

 
1 = 0                  ,t

p p t =                                                                                         (4)  

 

 1 = 0                  ,t
b b t =                                                                                            (5)  

 
The initial inventory at starting period in each procurement center and base silos is zero and 
represented by constraints (4) and (5), respectively.  
 

( )1

1

+ .                    ,
S

t t t
p sp sp p

s

m X Pcap p t −
=

                             (6) 

   

( )1

1 1

 + . .                      ,
S P

t t t t t
b sb sb pb ob b

s p

g V h Y Bcap b t −
= =

+                   (7) 

Constraints (6) and (7) ensures that inventory at procurement center and base silo does not 
exceed the inventory holding capacity of procurement center and base silo, respectively. 
  

( )
1

.               ,
B

t t t
bf bf f

b

w Z D f t
=

=                   (8) 

 
Constraint (8) depicts that total food grain quantity transferred from base silos must be equal 
to the demand of that particular field silo during time period t. 
 

( ) ( )1

1 1

 + . .   =                    ,
S B

t t t t t t
p sp sp pb pb p

s b

m X h Y p t −
= =

−                    (9) 

 

( ) ( )1

1 1 1

 + . . .   =                    ,
S P F

t t t t t t t t
b sb sb pb pb bf bf b

s p f

g V h Y w Z b t −
= = =

+ −               (10) 
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The inventory flow balance equations of procurement center and base silos are described by 
constraints (9) and (10), respectively.   
 

( )
1 1 1

.  .                   ,
P P I

t t it
sp sp sp i

p p i

m X n s t
= = =

                       (11) 

 

( )
1 1 1

.  .                   ,
B B I

t t it
sb sb sb i

b b i

g V u s t
= = =

                       (12) 

 

( )
1 1 1

. .                    ,
B B J

t t jt
pb pb pb j

b b j

h Y v e p t
= = =

               (13) 

 

( )
1 1 1

. .               ,
F F K

t t kt
bf bf bf k

f f k

w Z r q b t
= = =

               (14) 

 

Constraints (11) and (12) make sure that maximum food grain quantity transported from origin 
node to procurement center and origin node to base silo must be less than or equal to the 
maximum capacity of all trucks being used in that period on the same path, respectively. 
Similarly, Constraints (13) and (14) illustrates the truck and rake capacity constraints from 
procurement center to base silos and base silo to field silo, respectively.   
 

( )
1 1

                   , ,
P B

it it it
sp sb s

p b

n u Snum s i t
= =

+        (15) 

 
1

                   , ,
B

jt jt
pb p

b

v Pnum p j t
=

        (16) 

 
1

                   , ,
F

kt kt
bf b

f

r Bnum b k t
=

        (17) 

Constraint (15) guarantees that the number of trucks used on the route (s, p) and (s, b) must be 
less than or equal to the maximum trucks available at the origin node s in each time period. In 
the same way, Constraint (16) limits the number of trucks employed on the route (p, b), to 
maximum trucks available at the procurement center during given time period. Furthermore, a 
number of rakes used on the route (b, f) must be less than or equal to the maximum rakes 
available at the base silos in each time period and same represented by the Constraint (17).  

  , , ,  0,1             , , , ,t t t t
sp pb sb bfX Y V Z s p b f t=              (18) 

 

, , , , ,  0            , , , ,t t t t t t
sp pb sb bf p bm h g w s p b f t                (19) 

 

, , ,           , , , , , , ,it jt it kt
sp pb sb bfn v u r Z s p b f i j k t           (20) 
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Constraints (18) – (20) portrays the binary, continuous and integer variables respectively used 
in the model.  
 
5. Solution approach  
 In order to minimize the food grain supply chain cost, a MINLP model is formulated in the 
previous section after the critical analysis of Indian food grain supply chain scenario and taken 
into account the various factors such as fixed and variable cost of different capacitated vehicles 
along with their limited availability, capacitated procurement centers and base silos, 
operational and inventory cost in procurement centers and base silos, procurement quantity and 
demand of field silos. In FCTP problems, the presence of fixed costs makes the objective 
function discontinue and to get the solution of these FCTP problems in deterministic 
polynomial time is very difficult. (Antony Arokia Durai Raj & Rajendran, 2012; Balaji & 
Jawahar, 2010; Jawahar & Balaji, 2012). The current three-stage food grain transportation and 
storage problem also fall under the category of FCTP. Furthermore, due to the inclusion of 
several aforementioned factors into the problem, it becomes more complex and challenging 
problem.  
  
 Furthermore, to solve FCTP problems, typical MIP solution methods like a branch and 
bound method, cutting plane method are inefficient and computationally expensive. The 
linearization of the model requires the essential decomposition algorithm or process for 
linearizing the non-linear equations. The formulated mathematical model is non-linear in 
nature and complex due to the several decision variables including binary, integer and 
continuous along with a huge number of real life constraints. The number of variables and 
constraints increases exponentially as the problem size increases. In some cases, the product of 
binary and continuous decision variables can be linearized by incorporating new variable into 
the model, which has to take the value of the product. However, linearization process would 
increase the computational time inevitably due to the need of additional constraints satisfaction 
(Yu et al. 2017). Therefore, many authors have proposed the different metaheuristics like GA, 
SA, Tabu Search (TS) and Ant Colony Optimization (ACO) to solve the FCTP within 
reasonable computational time (Armentano, Shiguemoto, and Løkketangen, 2011; Panicker et 
al., 2013; Xie & Jia, 2012). Similarly, the chemical reaction inspired algorithm, called 
Chemical Reaction Optimization (CRO) was proposed by Lam and Li (2010) and many 
researchers have successfully implemented the CRO to solve the complex NP-hard problems 
(Lam, Li, & Yu, 2012; Truong, Li, & Xu, 2013). In recent times, the performance of CRO 
algorithm has been improved by hybridization with other algorithms like TS, SA and 
Differential Evolution (DE) algorithm (Li and Pan, 2013; Roy, Bhui and Paul, 2014). The CRO 
algorithm is inefficient at exploration (global search) and PSO often quickly stuck into the local 
minima. Therefore, the HP-CRO algorithm was recently developed by taking advantage of the 
compensatory property of CRO and PSO and proven to be effective for optimization problems 
(Li et al. 2015; Nguyen et al. 2014; Zhang and Duan 2014). Hence, we have employed this 
recent HP-CRO algorithm to solve the formulated MINLP model.  
  
5.1 Chemical reaction optimization  

 CRO captures the chemical reaction phenomenon of molecules which tries to attain the 
stable state with low energy. A molecule is the key manipulating agent in CRO and candidate 
solution for a specific problem is stored or encoded into it. While searching the solution space, 
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each molecule depicts the one point and provides the likely solution to the problem. In CRO, 
the change in molecular structure occurs when molecules collide with each other or wall of the 

container. A molecule has many characteristics such as structure (M ), Potential Energy (PE), 

Kinetic Energy (KE) and Number of hit (Numhit) etc. PE represents the objective function 
value of the corresponding solution.  KE is a non-negative number and used for jumping out 
of local optima. The total number of moves (collisions) of the molecule is stored into the 
NumHit. The following four distinct elementary reactions with different energy manipulation 
approaches would take place because of collisions under different conditions. 1. On-wall 
ineffective collision, 2. Decomposition, 3. Inter-molecular ineffective collision. 4. Synthesis. 
The on-wall and inter-molecular ineffective reactions perform the intensification (local search), 
whereas decomposition and synthesis reaction handles the diversification (global search) in 
CRO.  The description of these four reactions is given as follows.  
1. On-wall ineffective operator 
 The on-wall ineffective collision takes place when a single molecule hits the wall of the 
container and bounces away as a singular entity. In this collision, a neighborhood search 

operator gives the new molecule ( 'M ) by perturbing the original molecule (M ). Therefore 

the molecular structure and PE of a new molecule is slightly different from the original 
molecule. This collision will occur only if  
 

                                                'PE KE PE  +                                                              (21) 

 Then we obtain,    ( )' ' .KE PE KE PE a   = + −                     (22) 

Where  ,1a KELossRate  and (1- a) indicates the random number and fraction of KE lost to 

the surrounding environment, respectively. The remaining energy is transferred to the central 
energy buffer which activates the decomposition reaction. 

     ( ) ( )' = . 1buffer buffer PE KE PE a  + + − −         (23) 

An original molecule with same structure remains in the population without any change, if 
Eq. (21) does not satisfied. The pseudocode of on-wall ineffective collision is given in Fig. 3.  
 

 
( )

'

'

' '

 On-wall ineffective collision               

 Molecule 

    ' ( )

   PE ( ')

    

        Get ,1

        Set 

        Update buffer

M

N

f

PE KE PE

a KELossRate

KE PE KE PE a




  

   

 




+ 


= + −

Algorithm 1.

Input :

if   then

( )( )' = 1

        Update ,  and 

   

 Molecule                                            

buffer PE KE PE a

M PE KE

M

  
  



+ + − −

 end if

Output :
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Fig. 3. Pseudocode of on-wall ineffective collision 

 
2. Inter-molecular ineffective collision  
An Inter-molecular ineffective collision represents the situation when two randomly selected 

molecules 
1

M and 
2

M collide with each other to generate the two new molecules '
1

M and

'
2

M . This collision is also not a vigorous like on-wall ineffective collision due to the 

production of new molecules from their own neighbourhoods. This reaction will take place 
when following criteria meet. 
 

     
1 2 1 2 1 2' 'PE PE KE KE PE PE     + + +  +        (24) 

The energy released is given by:   
      

    ( ) ( )
1 2 1 2 1 2inter ' 'E PE PE KE KE PE PE     = + + + − +      (25) 

We get   
1 ' inter.KE E p =          (26)

( )
2 ' inter. 1KE E p = −          (27) 

The remaining energy is disseminated in two newly generated molecules by means of 
uniformly generated random number p in the range of [0, 1]. The detailed steps of inter-
molecular ineffective collision are shown in the form of pseudocode in Fig. 4.  
 

( ) ( )
1 2

1 2

1 2 1 2 1 2

1 1 2 2

' 1 ' 2

inter ' '

int

 Intermolecular ineffective collision           

 Molecules and 

    ' ( )and  ' ( ) 

   PE ( ') and  PE ( ')

    

    (

M M

N N

f f

E PE PE KE KE PE PE

E

 

 
     

   
 

 
 
 + + + − +

Algorithm 2.

Input :

if   
( )1

2

1 1 1 2 2 2

1 2

er

' inter

' inter

0)

        Get 0,1

        Set 

        1

        Update , ,  , ,

   

 Molecule and M                                        

p

KE E p

KE E p

M PE KE and M PE KE

M




     

 




=
= −

 then

 end if

Output :

 

Fig. 4. Pseudocode of intermolecular ineffective collision 

 
3. Decomposition and Synthesis operator 

    In decomposition, a single molecule hit the wall of the container and decomposed into two 
new molecules with a very different structure from the original structure. This operator is used 
for exploration of new search space after local search carried out by the on-wall ineffective 
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collision. To generate more number of molecules, additional energy that depends on two 

random numbers  ( )1 2, 0,1p p   can be taken from the central energy buffer. The energy 

conservation equation of decomposition reaction is given as follows: 
         
     

1 21 2 ' '. .PE KE p p buffer PE PE   + +  +      (28) 

The following equation gives the energy involved.  
      

         ( ) ( )
1 2deco 1 2 ' '. .E PE KE p p buffer PE PE   = + + − +     (29) 

Next, the remaining energy is transformed into two newly generated molecules using the 

following equations where  3 0,1p  . 

 
        

1 ' 3.decoKE E p =           (30) 

        ( )
2 ' 3. 1decoKE E p = −         (31) 

        ( )1 2' 1buffer p p buffer= −         (32) 

Synthesis operator performs the opposite action of decomposition and it take place when 
below criteria satisfy. 
                  

1 2 1 2 'PE PE KE KE PE    + + +         (33) 

The remaining energy is provided by: 
 
      

1 2 1 2' 'KE PE PE KE KE PE     = + + + −       (34) 

In this paper, these two global search operators are not utilized due to their low efficiency 
(Lam, Li, & Yu, 2012).  
 

5.2 Particle swarm optimization 
 
The PSO is a stochastic optimization technique based on the movement and intelligence of 
swarms. It was inspired by social behavior of bird flocking or fish schooling. The PSO searches 
the global optima in the solution space through the set of particles flying over the solution 
space. Initially, the population of particles which correspond to the molecules in CRO is 
randomly initialized. Each particle depicts the possible solution of the problem and the swarm 
represents the population of solutions. The position and velocity are the two paramount features 
of each particle. Every particle tries to attain the better position in the solution space by learning 
from the cognitive knowledge of its experiences and social knowledge of the swarm. A particle 
reaches to the new position using the updated velocity and after the attainment of a new 
position, the best position of each particle and the best position of the swarm are updated as 
required. Next, the velocity of each particle is adjusted based on the experiences of the particle. 
These steps are repeated until a stopping criterion is satisfied. The velocity and position of the 
pioneer particle in traditional PSO is updated using the equations (35) and (36).   

 1 2( ) ( ( ) ( )) ( () )1 ) )( (i i i i g iw v t c p tv t x t c p t x t =  +   −  −+ +     (35) 

(( 1) ) ( 1)i i ix tt vx t= + ++         (36) 
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Where, ( ) and ( 1)i iv t v t + is the velocity of particle i in tth and (t+1)th iteration, respectively; 

( ) and ( 1)i ix t x t +  is the position of particle i in tth iteration and (t+1)th iteration; ( )ip t  is the 

local best position (pbest) of ith particle in tth iteration; ( )gp t  is the global best position (gbest) 

in tth iteration; w is the inertia weight; 1c  is the cognitive weight and 2c  is a social weight and 

,    are the two uniform random numbers in the range of [0, 1]. 

 The expression (35) and (36) are used to make the cluster or swarm of the population of 
particles which are moving in a random direction. While updating the new elements sometimes, 
it takes the value out of boundaries. Therefore, in order to make sure that each updated particle 
lies within its predefined boundaries, its position is checked using boundary constraint handling 
methods at the end of the iteration. In this paper, we have employed the reflecting technique of 
boundary constraint handling which is shown in equation (37). During reflecting method, 
boundary acts as a mirror and reflects the projection of the particle’s displacement which is 
flying outside of a parameters boundary.  
 

' 2             
 

2           

   

i i i i
i

i i i i

u x if x u
x

l x if x l

 − =   −         (37)  

The PSO is easy for implementation to any problem and adaptable to control the balance 
between local and global exploration of the problem space. This approach of PSO helps to 
overcome the premature convergence of elite strategy in HP-CRO and improves the searching 
ability. The Fig. 5 shows the pseudocode of the PSOUpdate operator used in the HP-CRO 
algorithm.  

1 2

                                                           

 Particle ith

    Update  velocity of particle ith using below equation

    

 

( ) ( )

   Upd
i i i i g iw v c p

PSOUpdate

v x c p x =  +   − +   −

Algorithm 3.

Input :

ate position of particle ith using below equation

    

    Constraint handling by below equation of reflecting method

      

          ' 2

       

 then

    

i

i i

i i

i i i

i i

x

x u

x u x

l

x v

x


=



+

= −
   if then

end if

       if  

      ' 2

 Particle ith with a new value                                     

ii ix l x= −
       end if    

Output :
 

Fig. 5. Pseudocode of PSOUpdate operator  
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5.3 HP-CRO algorithm  
 
5.3.1 Description of proposed approach  
 
 The HP-CRO algorithm is the combination of PSO and CRO algorithm. A solution can be 
changed through the PSOUpdate global search operator and CRO local search operator. PSO 
and CRO algorithms functioning on the identical initial size of the population. HP-CRO 
generates the new molecules using the neighbouring operators of CRO and PSO mechanisms. 
These newly generated molecules considered as molecules in the context of CRO or as particles 

in the perspective of PSO. Molecular structure (M ) represents the solution of the problem in 

specific format, i.e. number, vector or even a matrix. In this paper, a solution of the problem is 
stored into a vector which comprises of binary, continuous and integer variables. Each 
molecule (particle) corresponds to sets of binary variables (assignment variables), continuous 
variables (food grain quantity transported and stored in silos) and integer variables (number of 
vehicles used). A schematic representation of molecule (particle) for problem instance 1 (S=3, 
P=3, B=2, F=3, T=2) is presented in Fig. 6. Basic CRO has two global operators that are not 
used in the HP-CRO algorithm, hence the population size does not change and ,   parameters 

are excluded. Two local search operators, i.e. on-wall ineffective and inter-molecular 
ineffective operators are employed in HP-CRO. There is an update operator in PSO algorithm, 
called as a PSOUpdate operator. This PSOUpdate operator along with parameters set up and 
boundary constraints handling is implemented for exploration of search space of HP-CRO 
algorithm. The exploration (global search) and exploitation (local search) in the HP-CRO 
algorithm have well balanced using PSOUpdate operator and CRO local search operators, 
respectively. In the perspective of algorithmic parameters, this algorithm adopts all PSO 

parameters as well as few CRO parameters excluding ,  and append a new parameter ( )
for control of algorithm.  
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Fig. 6. The representation of a molecule (particle) of propose HP-CRO for problem instance 1 

5.3.2 Main algorithm 
  
 Similar to the other metaheuristics, HP-CRO algorithm is sequentially implemented in 
three stages:  Initialization, Iteration and Final stage (Termination). The detailed flowchart of 
the algorithm is given in Fig. 7. In each run, the algorithm starts with initialization, execute a 
number of iterations and stops at the final stage. Three stages are delineated in detail as follows: 
 

Define the algorithmic setting 

and perform Initialisation 

Satisfy the criteria of 

PSOUpdate?

(PSOCoe >      )

PSO Update

Satisfy the criteria 

of Intermolecular ineffective 

collision?

( r > InterRate )

On wall Ineffective 

collision 

Intermolecular 

Ineffective collision 

Check for new minimum point

Obtain the Best 

Minimum point

End

YesNo

Yes
No

Yes No

Assign the values to input 

parameters of the model

Compute the fitness 

function

Stopping Criteria 

matched?

(iter > Max Iter)

Start

 
 

Fig. 7. Flowchart illustrating the working of HP-CRO algorithm 

 
Stage 1: 
Initially, the various inputs such as objective function, their constraints, and problem 
dimensions are given to the algorithm. In initialization stage, there is a need to assign the values 
to many variables and control parameters of an algorithm like Pop_size, KELossRate, 

InitialKE, InterRate, 1 2,  ,  ,  ,  and w c c   , etc. The parameter KELossRate is utilized to restrict 

the maximum percentage of KE transmitted to buffer during each collision. InitialKE parameter 
represents the KEs original value of molecules in the population. Next, we randomly initialize 
the Pop_size number of solutions in the solutions space to produce the population and compute 
the fitness function of each molecule (particle). In the initialization phase, firstly the binary 

variables ,  ,  ,  t t t t
sp pb sb bfX Y V Z  pertaining to allocation of origin nodes, procurement centres, base 

silos and field silos are randomly selected. The random allocations lying in between [0, 1] are 
rounded to nearest binary integer numbers. Once nodes are assigned, quantities of food grains 
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to be transferred among the four echelons is calculated. The quantity to be transported from 

origin node to procurement centre (tspm ) is determined considering the quantity available at 

origin node, the capacity of trucks available at origin node and procurement centres capacity 
in a given time period. Then, the number of different capacitated trucks used on arc (s, p) in 

given time period are estimated using quantities to be shipped (tspm ). Similar to the binary 

rounding, if a number of trucks used are found to be a continuous integer, then it is rounded to 
the nearest integer. Current inventory at procurement centre is updated and set equal to current 
inventory plus quantities arrived minus quantities shipped. Similarly, for other stages, quantity 
to be transported, vehicles used and updated values of inventory are decided in exactly same 
way as done in the case of origin node and procurement centre. Once the values of all the 
decision variables are known, the total cost for each molecule (particle) is found using the 
objective function. Constraints of the model are handled using the penalty function method. 
When a solution violates a specific constraint, then a penalty is added to the objective function 
value. This procedure makes sure that the infeasible solutions do not get selected because of 
poor objective function value. Furthermore, the penalty is included in the objective function 
value in proportion to the constraint violation. Therefore, the solution with less constraint 
violation is better than the one with more constraint violation.  
 Stage 2: During the iteration stage, the specific number of iterations are carried out after 

the random selection of molecule (particle) wM  from the population until the stopping criteria 

is satisfied. Then, in order to decide the type of search to be executed (left: on-wall ineffective 
collision or inter-molecular collision; right: PSOUpdate), the comparison criteria between PSO 
coefficient (PSOCoe) and   is investigated. The balance between global and local search is 

maintained using the parameter . If the comparison criteria (  > )PSOCoe  is satisfied, then 

algorithm triggers the PSOUpdate operator (Algorithm 3). This means that the molecule wM  

must be changed through global search operator after it undergoes   times of local search. 

Otherwise, a unimolecular or intermolecular collision has to be selected based on the 
intermolecular collision Rate (InterRate) criteria. The moves of unstable molecules in container 
activates the collisions. A molecule can either hit on a wall of the container or collide with each 
other. The InterRate criteria shows that if randomly generated number r, in the range of [0, 1] 
is greater than the InterRate, then inter-molecular collision (inter-molecular ineffective 
collision) will take place. Otherwise, molecule follows the unimolecular collision (On-wall 
ineffective collision). Next, any new minimum point found in solution space is examined and 
stored. This iteration stage will continue until any one of the stopping criteria is met.  
Stage 3: The algorithm will stop after satisfying the stopping criteria and provides the 
minimum total cost (best solution value) found in the final stage. The pseudocode of HP-CRO 
algorithm is given in Fig. 8.  
 



24 

 

  HP-CRO                                                                               

1:  Problem specific information (Objective function, constraints 

    and the problem dimensions)

Algorithm 4

Input :

1 2

2: \\ Initialization

3: Set the algorithmic parameters values to ,  ,  

    ,  ,  ,  ,  ,  (  ),  

    ( /  ),  ( /  

PopSize KELossRate

Stepsize buffer InitialKE InterRate w inertia weight

c cognitive local weight c social global


). 

4: Generate the PopSize number of molecules (Particles)

5:  each of molecules (particles) 

6:       Assign random solution to the molecular structure

           (particle position) 

7:     

weight


for do

    Compute the fitenss function of  by ( )

8:         Set   0

9: 

10: \\ Iterations 

11: (the stopping criteria not satisfy) 

12:     Randomly select one molecule (particle)  frow

f

PSOCoe

M

 
=

end for

while do

m population

13:       (  > )  

14:           Trigger  ( )

15:           = 0

16:      

17:          Generate  randomly in the interval [0, 1]

18:          (

w

w

M

PSOCoe

PSOUpdate M

PSOCoe

r

r InterRate





if  then

else 

 if

1 2

1 2

1 1

) 

19:              Randomly select the molecules  

20:              Trigger the intermolecular ineffective collision ( , )

21:                =  1

22:               
w w

w w

w w

M M

M and M

M M

PSOCoe PSOCoe

PS

+

then

2 2
 =  1

23:          

24:               Trigger On-wall Ineffective Collision ( )

25:                 =  1

26:          

27:       

28:         Check for any 

w w

w w

M M

w

M M

OCoe PSOCoe

M

PSOCoe PSOCoe

+

+
else

end if

end if

new minimum solution

29:  

30: \\ The final stage

31:  Best solution and its objective function value                                         

 end while

Output :

 

Fig. 8. Pseudocode of HP-CRO  

6. Computational results and discussion 
 

This section describes the various developed problem instances, parameters setting of the 
proposed algorithm and computational experiments along with results and managerial insights.  
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6.1 Problem instances 
  
 In this paper, we develop the nine problem instances based on the secondary data gathered 
from many reliable sources. The paramount reliable sources include the CAG report 2013, 
High-level Committee report 2015, FCI portal (http://fci.gov.in) and PDS Portal of India 
(http://pdsportal.nic.in/main.aspx), etc. The summary of overall essential model parameter 
values required for solving the model is provided in Table 2. Each problem instance is 
characterized by the number of origin nodes (S), number of procurement centers (P), number 
of base silos (B), number of field silos (F) and number of time periods (T). The detail 
delineation of all the nine problem instances along with a total number of constraints and each 
type of total decision variables are mentioned in Table 3. Furthermore, all the problem 
instances are classified in three groups based on the total number of decision variables of the 
problem instances. The small size group of problem comprises of maximum 3000 variables 
and medium size includes up to 10000 variables. Finally, the problem instances with more than 
10000 variables come under the group of large size. According to this sorting, all the nine 
problem instances are equally divided into three groups, i.e. small, medium and large size. 

 

Table 2 Data ranges of parameters used in the model 

Parameters Range of values 

Fixed cost of three different types of trucks used on arc (s, p) 200, 150, 100 
Fixed cost of three different types of trucks used on arc (s, b) 200, 150, 100 
Fixed cost of three different types of trucks used on arc (p, b) 300, 400, 500 
Fixed cost of three different types of rakes at used on arc (b, f) 1000, 700, 500 
Variable cost of road  transportation 20 
Variable cost of rail transportation  15 
Inventory holding cost at procurement centres 150 
Inventory holding cost at base silo 100 
Operational cost at procurement centre 80 
Operational cost at base silo 50 
Number of i1 types of trucks available at origin node 500-1000 
Number of i2 types of trucks available at origin node 600-1100 
Number of i3 types of trucks available at origin node 700-1200 
Number of j1 types of trucks available at procurement centre 600-1000 
Number of j2 types of trucks available at procurement centre 700-1100 
Number of j3 types of trucks available at procurement centre 800-1200 
Number of k1 types of rakes available at base silo 6-15 
Number of k2 types of rakes available at base silo 8-18 
Number of k3 types of rakes available at base silo 9-20 
Capacity of i types of trucks (i = 1, 2, 3) 20, 18, 15 
Capacity of j types of trucks (j = 1, 2, 3) 30, 25, 20 
Capacity of k types of rakes (k = 1, 2, 3) 3000, 1800, 1500 
Demand of field silo 15000-30000 
Distance from origin node to procurement centre 10-50 
Distance from origin node to base silo 20 - 70 
Distance from procurement centre to base silo 40-100 
Distance from base silo to field silo 500-1000 
Food grain quantity available at origin node 20000-40000 
Inventory holding capacity of procurement centre 30000-70000 
Inventory holding capacity of base silo 50000-200000 

 
 

http://pdsportal.nic.in/main.aspx
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Table 3 Dimensions of problem instances 
 

 
6.2 Parameter setting  

 The solution quality and convergence rate of evolutionary algorithms are mainly influenced 
by the parameter tuning of the algorithm (Wisittipanich & Hengmeechai 2017). Therefore, 
suitable parameters of the algorithms are essential to avoid the bad simulation results. The 
scientific methods of parameter tuning of metaheuristic are rare in the literature and it mostly 
depends on the experience of researchers. Furthermore, the comprehensive analysis of all 
possible combinations of parameters is impractical (Lam, Li and Yu 2012).  Hence, the 
appropriate parameter values which give the good performance have been assigned through the 
numerous runs and analyses of problem instance 1 using the proposed algorithm. The crucial 
parameters of the HP-CRO algorithm are Pop_Size, KELossRate, IntitalKE, , InterRate, w 

(inertia weight), c1 (cognitive/local weight), and c2 (social/global weight). The performance of 
the proposed algorithms on problem instance 1 are investigated on ten different parameter 
combinations considering the various values of each parameter. The results of parameter tuning 
experiments are shown in Table 4 and the best values of parameters for each algorithm are 
highlighted in bold.   
 
 
 
 
 
 
 
 
 
 

Problem 
Instance 

size 

Problem instance 
(S-P-B-F-T) 

Origin 
node 

Procurement 
centre 

Base 
silo 

Field 
silo 

Time 
period 

Constraints 
Binary 

variables 
Continues 
variables 

Integer 
variables 

Small size 

Instance 1 ( 3-3-2-
3-2) 

3 3 2 3 2 1628 54 64 180 

Instance 2 ( 5-4-3-
4-2) 

5 4 3 4 2 7051 118 132 402 

Instance 3 ( 8-6-5-
6-2) 

8 6 5 6 2 41903 296 318 996 

Medium 
Size 

Instance 4 ( 12-9-7-
8-2) 

12 9 7 8 2 175602 622 654 2136 

Instance 5 ( 15-10-
8-10-2) 

15 10 8 10 2 348246 860 896 3000 

Instance 6 ( 18-12-
10-12-2) 

18 12 10 12 2 751978 1272 1316 4392 

Large Size 

Instance 7 ( 20-15-
12-13-3) 

20 15 12 13 3 2036328 2628 2709 8964 

Instance 8 ( 22-18-
15-17-3) 

24 20 15 18 3 4393254 3753 3852 12393 

Instance 9 ( 25-22-
18-20-3) 

28 25 20 23 3 8645029 5268 5388 17190 
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Table 4 The total cost of problem instance 1 according to the ten parameter tuning combinations 

 
6.3 Experimental results 
 
In this subsection, the HP-CRO, CRO and PSO algorithms are coded in MATLAB R2014a and 
the codes are implemented on a machine with the configuration of  Intel Core i5, 2.90 GHz 
processor with 8 GB RAM. In order to evaluate the performance of the proposed HP-CRO 
algorithm, initially, we solved all the generated problem instances using the HP-CRO 
algorithm. Similarly, all nine instances are solved using the original CRO and PSO algorithm 
under the same setting of population size and a number of iterations. Then, comparisons have 
been carried out between the numerical results obtained through HP-CRO, CRO and PSO 
algorithm. The computational results of 20 runs of each algorithm for each instance are reported 

  Parameter tuning combinations  

Algorithm Parameter 1 2 3 4 5 6 7 8 9 10 

HP-CRO 

Pop_size 50 100 150 200 150 150 200 150 100 50 

Iterations 100 200 300 400 100 100 300 100 200 300 

InitialKE 1000 850 10000 10000000 1000 10000000 10000 10000000 850 10000 

KELossRate 0.2 0.4 0.6 0.8 0.4 0.2 0.6 0.2 0.4 0.8   10 20 100 10 100 10 10 20 100 10 

InterRate 0.2 0.5 0.7 0.9 0.7 0.2 0.7 0.2 0.5 0.2 
Inertia 
weight 

0.8 0.85 0.9 0.95 0.85 0.9 0.8 0.95 0.85 0.9 

Local 
weight 

0.1 0.2 0.3 0.4 0.2 0.1 0.3 0.4 0.2 0.1 

Global 
weight 

0.65 0.75 0.85 0.95 0.75 0.95 0.65 0.85 0.65 0.95 

Total cost 
(in millions 
of INR) 

1938.9 1944.2 1935.3 1940.8 1937.1 1932.0 1940.3 1933.6 1945.9 1937.3 

CRO 

Pop_size 50 100 150 200 150 150 200 150 100 50 

Iterations 100 200 300 400 100 100 300 100 200 300 

InitialKE 1000 850 10000 10000000 1000 850 10000 10000000 850 10000 

KELossRate 0.2 0.4 0.6 0.8 0.4 0.6 0.6 0.2 0.4 0.8 

InterRate 0.2 0.5 0.7 0.9 0.7 0.9 0.7 0.2 0.5 0.2 

Alpha 15 50 200 15 50 200 15 15 15 50 

Beta 10 20 100 10 10 100 10 10 100 10 
Total cost 
(in millions 
of INR) 

1975.5 1977.6 1972.6 1976.5 1985.9 1984.8 1979.5 1970.8 1982.3 1984 

PSO 

Pop_size 50 100 150 200 150 150 200 150 100 50 

Iterations 100 200 300 400 100 100 300 100 200 300 
Inertia 
weight 

0.8 0.85 0.9 0.95 0.9 0.85 0.8 0.95 0.85 0.9 

Local 
weight 

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.2 0.1 

Global 
weight 

0.65 0.75 0.85 0.95 0.95 0.75 0.65 0.85 0.65 0.95 

Total cost 
((in millions 
of INR) 

2030.18 2040.43 2032.71 2043.6 2025.34 2036.56 2040.2 2028.45 2038.16 2030.87 
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in Table 5. This table illustrates the minimum, maximum, average and standard deviation of 
the total cost (in millions of INR) obtained from the each algorithm with computational time. 
Furthermore, the convergence behavior of the HP-CRO algorithm is compared with 
conventional CRO and PSO using the graph of total cost versus number of iterations as shown 
in Figs. 9(a), (b) and (c). According to the results from Table 5, the HP-CRO algorithm obtained 
better results in terms of minimum total cost (best solution) and maximum total cost (worst 
solution) of each instance compared with CRO and PSO. In addition, the average and standard 
deviation of the total cost of 20 runs of this algorithm are smaller than the CRO and PSO. The 
computational time taken by the HP-CRO to solve the each instance is less than CRO and PSO 
computational time. This overall result of nine problem instances enlightens the superiority of 
HP-CRO algorithm when compared with CRO and PSO algorithm. The convergence behavior 
of the algorithm is another crucial aspect for evaluation of its performance. Figs. 9(a), (b) and 
(c) clearly depict the faster convergence behavior of an HP-CRO algorithm compared to the 
basic CRO and PSO when solving each type of problem sizes. This shows that the HP-CRO 
needs the fewer number of iterations to search the best near optimal solution.  
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 Table 5 The total cost comparison between HP-CRO and CRO 

 

 

Instance 
PSO (All cost in millions of INR) CRO (All cost in millions of INR) HP-CRO (All cost in millions of INR) 

Minimum 
Cost 

Maximum 
Cost 

Avg Cost 
SD of 
Cost 

Time  
(s) 

Minimum 
Cost 

Maximum 
Cost 

Avg Cost 
SD of 
Cost 

Time 
(s) 

Minimum 
Cost 

Maximum 
Cost 

Avg Cost 
SD of 
Cost 

Time 
(s) 

(3-3-2-3-2) 2010.23 2120.08 2072.15 35.21 21.63 1959.80 2046.50 2001.85 33.09 18.86 1922.00 1993.60 1953.94 24.79 14.90 

(5-4-3-4-2) 2760.41 2980.63 2855.26 73.82 57.26 2697.60 2862.30 2762.85 50.51 46.64 2584.20 2730.30 2653.94 47.20 32.63 

(8-6-5-6-2) 3560.75 3990.00 3845.54 131.42 110.30 3500.50 3824.60 3718.53 92.95 98.70 3372.40 3700.90 3537.66 85.19 80.57 

(12-9-7-8-2) 5920.36 6050.18 5985.80 49.05 256.08 5889.30 5958.10 5925.94 26.17 211.78 5835.40 5904.90 5876.01 18.56 170.65 

(15-10-8-10-2) 6650.00 6870.57 6756.27 84.88 348.72 6574.30 6781.90 6682.35 82.39 309.14 6455.60 6697.50 6600.23 82.07 237.80 

(18-12-10-12-2) 8170.72 8400.14 8274.57 78.34 430.84 8129.90 8306.60 8204.09 63.28 405.50 8056.50 8218.20 8131.48 59.28 349.32 

(20-15-12-13-3) 35900.61 39200.20 37780.50 816.22 689.16 35522.00 38355.00 37444.20 752.08 629.56 35342.00 37709.00 37147.09 688.48 515.05 

(22-18-15-17-3) 57200.35 60800.08 59450.15 1054.36 942.73 56317.00 59968.00 58323.11 1026.35 885.92 54723.00 57549.00 56654.78 832.71 768.94 

(25-22-18-20-3) 84700.60 90500.45 87300.79 1995.55 1023.47 83886.00 89821.00 86223.11 1835.33 956.60 83038.00 88594.00 85110.33 1695.35 817.62 
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Fig. 9(a). Graph depicts the convergence behaviour of instance 3  

 

 

Fig. 9(b). Graph depicts the convergence behaviour of instance 5  
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Fig. 9(c). Graph depicts the convergence behaviour of instance 8 

 The overall scenario of movement and storage activities of all the stages in a finite 
planning horizon for selected three instances is depicted in Figs. 10(a), (b) and (c). Therein, 
Fig. 10(a) provides the aggregate total quantity transported from each stage and inventory in 
procurement centers and silos. The total number of each type of trucks used during the 
particular time period of chosen three problem instances are depicted in Fig. 10(b). Similarly, 
Fig. 10(c) portrays the number of each type of rakes used between base silos and field silos in 
a given time period. Additionally, the comprehensive flow analysis of the problem instance 1 
is shown in Fig. 11. The movement and storage activities of the second time period have not 
been shown in Fig. 11 for the clarity. The quantity transferred and each type of vehicles used 
between the particular nodes are represented on the upper side and lower side of the arc, 
respectively. The food grain quantity shipped from origin nodes to base silos is more than those 
transferred to procurement centers because of the less waiting time, low handling cost and fully 
mechanized facility at the base silo. The results of this model will be very helpful for making 
the timely movement and storage activity plan of FCI. The issue of shortages of trucks as well 
as rakes can be effectively tackled through proper planning and coordination between the FCI, 
railways and private contractors. The FCI and SGAs can prepare the plan of a number of each 
type of vehicles required for transportation in advance using the available procured quantity 
and inventory in each time period. Moreover, the vehicle scheduling and optimal utilization of 
resources are another important decisions which governed by the movement and storage plan 
of FCI. The huge amount of food grain supply chain cost and losses can be reduced by the 
effective and efficient movement as well as storage of food grain in bulk form rather than a 
conventional method of gunny bags. 
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Fig. 10(a). The sample aggregate values of continuous variables (food grain quantity 
transported and stored) of three different instances 

Fig. 10(b). The total number of each type of vehicles (trucks) used in three different instances  
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Fig. 10(c). The total number of each types of vehicles (rakes) used in three different instances 

 

Fig. 11. Detailed analysis of food grain supply chain network of problem instance 1 

 

7. Conclusions and future work 
 

This paper examines the new problem of three stage food grain distribution in India, 
including the origin nodes, procurement centers, base silos and field silos where farmers can 
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sell their food grain directly to FCI at base silos or SGAs in the procurement centers. The 
mathematical model in the form of MINLP is formulated to minimize the transportation, 
inventory and operational cost of food grain. The various realistic aspects are taken into account 
while formulating the model such as the fixed and variable cost of transportation, capacitated 
silos, inventory and operational cost of food grain, seasonal procurement, deterministic demand 
and finite planning horizon. Due to the non-linear nature, numerous binary and integer 
variables along with a huge number of constraints, mathematical model has been solved using 
the recently established HP-CRO and results attained are validated using the original CRO and 
PSO. The results of the computational experiments of all the generated problem instances 
clearly illustrate that the HP-CRO algorithm finds the good quality solutions with faster 
convergence rate compared to basic CRO and PSO. The valuable insights evolved from this 
research can be useful to take the proper planning and coordination decisions among the many 
entities involved in the food grain supply chain like FCI, SGAs, Railways and private 
contractors. This study can be extended by relaxing the some of the assumptions in the model 
like deterministic demand and procurement. The multi food grain distribution is another topic 
for future work. Furthermore, the performance of the algorithm can be enhanced through the 
comprehensive analysis of the parameter values.       
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