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Abstract:

This paper addresses the novel three stage food grain distribution problem of Public
Distribution System (PDS) in India which comprises of farmers, procuremersrs;emase

silos and field silos. The Indian food grain supply chain consists of various activities such as
procurement, storage, transportation and distribution of food grain. In order to curb
transportation and storage losses of food grain, the Food Corporation of India (FCI) is moving
towards the modernized bulk food grain supply chain system. This paper develops a Mixed
Integer Non-Linear Programming (MINLP) model for planning the movement and storage of
food grain from surplus states to deficit states considering the seasonal procurement, silo
capacity, demand satisfaction and vehicle capacity constraints. The objective function of the
model seeks to minimize the bulk food grain transportation, inventory holding, and operational
cost. Therein, shipment cost contains the fixed and variable cost, inventory holding and
operational cost considered at the procurementererand base silos. The developed
mathematical model is computationally complex in nature due to nonlinearity, the presence of
numerous binary and integer variables along @ilige number of constraints, thus, it is very
difficult to solve it using exact methods. Therefore, recently developed, Hybrid Particle-
Chemical Reaction Optimization (HP-CRO) algorithm has been employed to solve the MINLP
model. Different problem instances with growing complexities are solved H+@RO and

the results are compared with basic Chemical Reaction Optimization (CRO) and Particle
Swarm Optimization (PSO) algorithms. The results of computational experiments illustrate
that the HP-CRO algorithm is competent enot@hbbtain the better quality solutions within
reasonable computational time.

Keywords. Food grain distribution problem, Transportation, Inventory, Mixed Integer Non-
Linear Programming, Chemical reaction optimization,

1. Introduction

Recently, the Government of India (GOI) has implemented the National Food Security Act
(NFSA), 2013 across the country including all states and Union Territories for providing the
food and nutritional security. This act is the key initiative for ensuring the food security which
can be defined as economic accesthe adequate quality food. Under this act, the targeted
beneficiaries can get the highly subsétifood grains, i.e. wheat, rice, and cereals through
PDS. The NFSA includsthe 75% rural population and 50% urban population which makes
the overall coverage of two third (67%) population of India (http://dfpd.nic.in/nfsa-act.htm). In
order to provide the food grains to the large volume of the population, India has to increase its
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production, procurement and reduce the losses during transportation and storage. The major
food grain supply chain related activities including procurement, storage, movement and
distribution are taken care by the Central nodal agency called FCI. The procurement is carried
out in the procurement caam of surplus states by FCI and State Government Agencies (SGAS)

at the rate of Minimum Support Price (MSP). Normally, the different food grains procured in
different seasons such as in Rabi season (April to June) wheat is procured and in Kharif season
(October to February) Rice procures. FCI takes over the procured stock of food grain from
SGAs and stords its own warehouses of producing states. Next, GOI allocates the foasl grain

to various deficit states and Union Territories based on their demand and offtake of the previous
period. In consuming states, food grain stock is moved from regional warehouses to block level
and block level to Fair Price Shops (FPS). Generally, FCI prefers the road mode for intra-state
transportation and rail mode for inter-state transportation. All these major food grain supply
chain activities are depicted in Fig. 1.

Sale food grain
at MSP Intra-state Transfer Surplus state

Procurement centres warehouses and
base silos

Allocation decision

Deficit state Distribution Sale of food grain

warehouses and Fair Price Shops Beneficiaries

Field silos

Fig. 1. Major activities of FCI

The IndianPDS is world’s largest distribution system and its management is a complex
issue due to the involvement of many entities such as FCI, SGAs, Railways, transporters and
private contractorsln the conventional method, food grain is stored in godowns and
transported using the gunny bags which has several flaws. The first and paramount important
shortcoming is the huge amount of transportation and storage cost. FCI transports the 40 to 50
million tons of food grains across the country in a year through rail, road and waterways which
incurred the average expenditure of 47.2737 billion (Comptroller and General of India,(CAG)
2013). The FCls total storage capacity including hired one was 336.04 Lakh Metric Tonne
(LMT) as against the central pool stock of 667.89 LMT at the end of the March 2012 thus
leaving a huge gap of 331.85 LMT. Next, the inadequate storage management practices and
unclear norms of operational and buffer stock maintenance of deficit state leads to increase of
food grains holding cost. In addition to the above inadequacies, FCI is also facing the problem
of food grain losses which mainly occurred from post-harvest to distribution stage of food grain
supply chain, i.e. during storage and transit. The shortages of labours and their huge salaries
(handling cost), shortages of different capaied vehicles (rakes and trucks), demurrage
payment, carry over charges, and loading and unloading time are some of the other major
challenges.



To tackle the aforementioned challenges, GOI is moving towards the modernized food
grain supply chain system of bulk grain handling, transportation and storage. In this
modernized system, food grain (wheat) is transported in bulk form using the truck as well as
specially designed wagons and staredteel #os. The silos located in the surplus and deficit
states are known as Base silo and Field silo, respectively. Proper planning and coordination
among all the entities of the food grain supply chain network can reduce the transportation as
well as inventory cost and helps to take the various timely decisionsasutiow much
guantity to be transferred from which origin node to which base silo and from which base silo
to which field silo” Similarly, the determination of each type of capacitated vehicles used for
shipment between different entities is also the crucial aspect of food grain supply chain problem
because the sufficient availability of capattl vehicles helps for quick transfer of food grain
from producing states to consuming states. Furthermore, FCI has to maintain the optimal level
of operational and buffer stock in each silo for food security purpose. This paper considers the
initial three stages of food grain supply chain network, including the origin nodes (farmers)
procurement centers, base silos and field silos. An MINLP model is formulated after the critical
analysis of Indian food grain supply chain network and various reports on PDS. The solution
of the model will be helpful to FCI for taking the timely intra-state as well as inter-state
movement and storage-related decisions. This paper extends the work carried out by the
Mogale et al. (2016) and differ in following aspects. Here, 1. Three stage food grain distribution
network is considered where food grain can be shipped droarigin node to procurement
ceners or base silos, 2. Inventory and operational costs considered at procurenesaceht
base silos, 3. Included the new vehicle capacity related constraints, 4. Different problem
instances of the formulated MINLP model are solved using the recently devél&peRO
algorithm and attained results compared with the CRO and PSO results. 5. Furthermore, the
convergence behavior and movement along with storage activities of few selected instances
are analyedin detailed.

The remaining article is organized as follows. Section 2 presents the critical review of
related work. In Section 3, the detailed delineation of considered problem is provided. The
mathematical model with notations, objective function and constraints are illustrated in Section
4. Section 5 discusses the solution approach employed for solving the mathematical model.
Section 6 depicts the results and analysis of computational experiments. Conclusion and future
scope of the study is given in Section 7.

2. Reated work

The supply chain distribution problem in the context of manufacturing industries has been
widely addressed by several researchers in the past. The existing relevant works focusing on
food supply chain related problems including inventory-transportation, post-harvest loss
minimization, food distribution system and their solution methodologies, review papers along
with advanced control techniques in agricultural systems have been described in this section.
Recently, the real-world optimization problem of wheat transportation and storage in Iran has
been effectively addressed by Asgari et al. (2013) by formulating the problem as a linear integer
programming (LIP) model. The LINGO optimization software was used to solve LIP model
and obtained results compared with the Genetic Algorithm (GA) which takes reasonable
computational time for solving large size problems. Authors have not taken into account the
different capacity and availability of transportation vehicles. An MINLP model has been



formulated considering rail road flexibility by Maiyar et al. (2015) to optimize food grain
transportation problem of Indian PDS. The food grain storage cost and capacity constraints of
transportation vehicles are absent in their model. In the same domain of Indian food grain
supply chain, Mogale et al. (2016) developed the two stage MINLP model for efficient
transportation and storage of food grain from surplus states to deficit states. They have tested
the model on single small size problem instance and results were not compared with other
evolutionary algorithms. A deterministic mathematical model was proposed by Reis and Leal
(2015) for optimization of tactical decisions of soybean supply chain in Brazil. Lamsal, Jones
and Thomas (2016) dealt with the problem of minimization of a number of trucks entailed for
transportation of harvested crops from field to storage point under the scenario of several
independent farmers and absence of on-farm storage. In two-phase solution approach, initially,
they fixed harvest starting time, then find out the number of trucks and their allocation to load.
Ma et al. (2011) worked on the shipment consolidation problem of distribution network which
involves manufactureysross docks and customers. They tried to minimize the trade-offs
among movement cost, storage cost and scheduling requirements.

In order to reduce the post-harvest loss (PHL), Nourbakhsh et al. (2016) presented a
mathematical model with the objective function of minimizing infrastructure investment and
economic cost from PHL of food grain supply chain network. The main aim of this study was
to determine the optimum new pre-processing facilities locations and transportation network
capacity growth. Liu et al. (2016) critically anaggthe macro-level trends of food waste in
Japan from 1960-2012 for additional prevention and mitigation of food waste. In this analysis,
they have determined the mismatch between calorie/protein supply and consumption,
elucidated the present status of waste in Japanese food supply chain and recontimeended
policies. Furthermore, An and Ouyang (2016) developed the bi-level robust optimization
model with objective functions of profit maximization and PHL minimization of a food
company. They have modelled a three stage food supply chain network considering the
farmers, storage facilities, and export markets. The decomposed single-level problem has been
solved using theagrangian relaxation algorithm and applied to Illinois and Brazil case studies.
To compare the conventional rail service accompanied by country elevators with shuttle service
accompanied by terminal elevators of U.S., Hyland, Mahmassani and Mjahed (2016)
developed three models of domestic grain transportation including trucking, elevator storage,
and rail shipment. These three models determine the travel time, variable cost and rail network
capacity, respectively.

Rancourt et al. (20)5o0lved the distribution center location problem in the perspective of
the food aid delivery system in Kenya with the help of Geographic Information System (GIS)
data, need assessment and population data. They designed last-mile food supply chain network
using realtime data of Garissa region in Kenya. A novel discrete/continuous time mixed
integer programming (MIP) model is proposed by Kopanos et al. (2012) considering the
families of products for simultaneous production and logistics operations planning in semi-
continuous food industries. Furthermore, two industrial case studies of Greek dairy industry
have been effectively solved using proposed approach. Moreover, Etemadnia et al. (2015)
developed the mixed integer linear programming (MILP) model for minimization of total
network cost containing transportation and facility location cost with two potential shipment
modes for the design of the optimal hub logistic network for efficient transfer of food from
production region to consumption region. To minimize the handling cost of Canadian wheat
supply chain under the new declaration system, Ge, Gray and Nolan (2015) developed the



analytic and agent-based simulation models assuming individual behavior and farmers as well
as handlers as rational and learning individual, respectively.

In the domain of fresh food supply chain, Soto-Silva et al. (2016) chyticediewed the
existing literature focusing on the operational research models employed to the fresh fruit
supply chain problems. They identified some of the major challenges of fresh fruit supply chain
problem such as long supply lead time, the disparity in supply and demand. An extensive
review of state of the art in the domain of production and distribution of crops has been carried
out by Ahumada and Villalobos (2009). They have divided the existing literature into three
contexts based on storability of products (perishable and non-perishable), scope (strategic,
tactical and operational) and modeling uncertainty (deterministic and stochastic).

In recent years, many solution methodologies like metaheuristics, optimization solver and
two stage approach, etc. have been employed in the literature to solve the different food supply
chain related problems depending on the problem complexities. A strategic vehicle routing and
assignment problem of the dairy industry in Canada has been effectively solved by Masson,
Lahrichi and Rousseau (2016) using the two-stage approach which depends on adaptive large
neighboured search (ALNS). The primary and secondary stage solves the transportation and
processing plant allocation problem, respectively. Jawahar and Balaji (2009) profga8ed a
based heuristic method to solve the mathematical model of fixed charge distribution problem
in the two-stage supply chain. The performance of proposed GA was compared with
approximate and lower bound solutions. Furthermore, a two-stage fixed charge transportation
problem (FCTP) was addressed under two situations by Antony Arokia Durai Raj and
Rajendran (2012). They have considered the fixed cost, variable cost and unlimited
Distribution Centres (DC) capacity in the first situation and variable cost from plant to DC,
from DC to customers and DC opening cost in the second situation. Therein, they used the
paired comparison-test to evaluate the performance of proposed GA with best existing
algorithms. Mousavi et al. (2015) examined the two-echelon distributor-retailer supply chain
network design problem considering various seasonal products and shortage as an integration
of the backorders and lost sales. They have implemented the modified fruit fly optimization
algorithm (MFOA) to solve the developed mixed binary integer programming model and
results were compared with other two algorithms namely PSO and Simulated Annealing (SA)
A CRO inspired from the chemical reaction was established by Lam and Li in 2010 and
effectively implemented to solve the real life Non-deterministic polynomial (NP) hard
problems such as Quadratic assignment problem (QAP), resource-constrained project
scheduling problem (RCPSP) and channel assignment problem (CAP). Truong, Li and Xu
(2013) efficiently solved the-@ knapsack problem (KP01) using the chemical reaction with
greedy strategy (CROG) algorithm which based on CRO structure and a greedy strategy. Also
Li and Pan (2013) studied the flexible job shop scheduling problem considering flexible
preventive maintenance activities and suggested the hybrid chemical reaction optimization
(HCRO) as a solution approach. In order to solve continuous optimization problemd,iLam,
and Xu (2012) proposed the new variant of CRO called real coded chemical reaction
optimization (RCCRO) considering the Gaussian distribution.

Few authors have utilized the various advanced control techniques in agricultural
systems and food engineering field for solving the supply chain related problems. Saint
Germain et al. (2007) worked on supply network coordination problem and discussed a multi-
agent coordination approach with factory control to manage the outbound and inbound logistics



in multiple site/multiple organization topologies. To solve the Emergency Supply Chain (ESC)
problem of supply of resources to the crisis-affected areas, Othman et al. (2017) proposed the
Decision Support System (DSS) based on multi-agent architecture and optimization tools. A
dynamic pickup and delivery problem with dial-a-ride service system has been addressed by
Nufiez et al. (2014) through a multi-objective model based predictive control method. The user
and operator cost were considered the two conflicting dynamic objective funatiander to
improve the temperature control and curtail the electricity cost in cold storage facilities for
agricultural produce (potatoes and onions), Lukasse et al. (2009) employed the receding
horizon optimal control (RHOC) technologyA brief summary of aforementioned relevant
works with main features is given in Table 1.



Table 1 A summary of relevant works in the literature

Authors and Year Slngle_/Mqu Single/Multi Model Objective/features Solving method
period product
Asgari et al. (2013) Multi Single LIP Minimization of the transportation and storage ¢ LINGO andGA
Self-learning particle swarm optimizatiol
Maiyar et al. (2015) Single Single MINLP Minimization of the transportation cost (SLPSO) and Particle Swarm Optimizati
with Composite Particles (PSOCP)
Mogale et al. (2016) Multi single MINLP Minimization of the trgnsportatlon , Storage an CRO
operational cost
Reis and Leal (2015] Single Multi LP Maximization of profit CPLEX 12.5
Lamsal et al. (2016)  Multi Multi MIP Minimization of a number of trucks for crop GUROBI OPTIMIZER 5.6.
transportation
Ma et al. (2011) Multi Single Integer programming  Minimization of transportation and holding cos Two-stage heuristic algorithm
Nourbakhsh et al. . : Minimization of infrastructure investment and
(2016) Single Single MIP economic cost from PHL Case study
Critically analyzed the macro-level trends of fog
Liu et al. (2016) - - - waste in Japan from 1960-2012 for additiona -
prevention and mitigation of food waste
An and Ouyang . . Maximization of profit and post-harvest loss . . .
(2016) Single Single MINLP minimization Lagrangian relaxation algorithm
Hyland et al. (2016) Multi Single Analytical model Determine the travel time, va_rlable cost and r3 Numerical method
network capacity
Ran(cz%ulré)et al. Single Single MILP Minimization of the total welfare cost CPLEX 12.5
Minimization of inventory, operating, batch
Kopanos et al. (2012 Multi Multi MIP recipes preparation, unit utilization, families CPLEX 11
changeover and transportation costs
Etemadnia et al. . . Minimization of total network cost including -
(2015) Single Mult MILP facility location and transportation cost Heuristic
Ge et al. (2015) Multi Single Analytic linear Minimization of handling cost Simulation analysis




Table1 Continue

Soto-Silva et al.
(2016)

Critically reviewed the existing literature focusin
on the operational research models employed
the fresh fruit supply chain problems.

Ahumada and
Villalobos (2009)

Extensive review of the state of the art in the
domain of production and distribution of crops

Masson et al. (2015 Multi Single MINLP Minimization of distance Adaptive large neighboured search
Jawatzg(r)gg)d Balaj Single Single MINLP Minimisation of the total cost of distribution GA
Antony Arokia Durai
Raj and Rajendran - - MINLP Minimization of fixed, variable and opening cos Two stage Genetic algorithm
(2012)
Mixed binary integer Minimization of total supply chain cost including
Mousavi et al. (2015 Multi Multi ry 9 transportation, holding, shortage, and purchag MFOA

programming

costs.

Germain et al. (2007

Discussed a multi-agent coordination approac

with factory control to manage the outbound ar

inbound logistics in multiple site/multiple
organization topologies

Othman et al. (2017

MILP

Minimization of the delivery costs of resources
the earliness penalty and the tardiness penal

Branch and Bound Algorithm

Nufiez et al. (204)

Non-linear
programming

Minimization of user and operator cost

GA

Lam and Li (2010)

A CROinspired from the chemical reaction wa
developed

Truong et al. (2013)

Maximization of profit (8-1 knapsack problem)

CROG algorithm

Minimization of the maximum fuzzy completion

Li and Pan (2013) - - - ; HCRO
time
Propose a real-coded version of CRO consider|
Lam et al. (2012) - - - the Gaussian distribution for solving the continu RCCRO

optimization problems




In the past, very few researchers have focused on food grain distribution problems. Nowadays,
due to the advancés technology, food grain is transported, handled and stored in bulk form
rather than conventional methods. There are a limited number of studies available in bulk food
grain supply chain domain. Therefore, the bulk food grain transportation, handling, and storage
problemis investigated here considering deterministic procurement, demand, capacitated silos,
and different capacitated vehiclesthe finite planning horizon.

3. Problem background

In this study, the food grain supply chain problem of PDS in India is considered with the
objective to minimize the transportation, handling and storage cost. There are several entities
like farmers, FCI, various SGAs of surplus states, Railways, private contractors, etc. presents
in the Indian food grain supply chain which makes it complex and unique compared with other
food supply chain problems. The improper coordination and planning among these entities lead
to the increase of food losses and other costs. Farmers take their food grains to nearby
procurement cests using different capacitated vehicles such as tractors, small trucks, etc. for
selling to FCl and SGAs at the rate of MSP. This procurement would take place in two seasons,
i.e. Wheat is procured in Rabi marketing season (April-June) and Rice in Kharif marketing
season (October-February). In this paper, we have considered several villages into one cluster
and named it as origin node, so quantity available at each origini;itite sum of all the
villages quantity considered in thatuster. The food grain from procurement esmtis
transported to base silos which are located in surplus states. The silos located in India are
normally used for storing wheat only, therefore we considered a wheat supply chain. Recently,
GOl has announced that the base silos will also work as procuremests ckming the Rabi
marketing season. Thus, farmers can sell their produce to either procuremeist mebase
silos depending on their requirements. Next, on the basis of deficit states demand and their
offtakes in the previous period, GOI distributes the food grain to various deficit states. Food
grain from base silos is transported to field silos which are located in deficit states using the
specially designed wagons of rail rakes. Intra-state movement of food grain is mostly carried
out by road. The overall scenario of these three stageglained in pictorial form in Fig. 2.

Origin nodes Procurement centers Base silos Field silos

Fig. 2. The depiction of food grain supply chain network



The food grain movement in all three stages is mainly affected by several constraints about
each stage. Major constraints include the food grain quantity available at each origin node, the
capacity of procurement cems and base silos, the demand of field silos, timely availability of
different capacitated vehicles (trucks and rakes) at each stage, fixed as well as the variable cost
of vehicles and operational and buffer stock maintenartas.problem aims to find out the
effective and efficient storage and movement plan of food grain supply chain which minimizes
the transportation, handling and inventory cost. The next section presents the MINLP
formulation of the considered problem.

4. Mathematical model formulation

Various assumptions considered and notations used while developing the model are
described below:

4.1 Assumptions:

1) The every origin node represents the cluster of villages.

2) The procurement quantity, the capacity of procurementererivase silos and
demand are well known and deterministic.

3) The truck and rake types along with their availability are limited at respective
stages.

4) The amount of food grain procured is adequate to fulfill the demand of each field
silo.

5) The field silos demand must be satisfied during the particular time period.

4.2 Notations
The following notations have been used to formulate the model.

4.2.1 Sets/indices

Set of time periods indexed by T

Set of origin nodes indexed ®e S

Set of procurement ceaas indexed byp e P

Set of base silos indexed by= B

Set of field silos indexed by € F

Set of trucks between origin nodes, base silos and procuremess ¢edéxed
byiel

J Syet of trucks between procurement eenaind base silos indexed Iy J

K Set of rakes between base silos and field silos indexéd:=y

- MW v wmw-H

4.2.2 Parameters

fciSp fixed cost for trucks of typeised on ar¢s, p)
fCisb fixed cost for trucks of typeised on ar¢s, b).
bejf fixed cost for trucks of typeised on ar¢p, b)
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1‘c,§f fixed cost for rakes of tygeaised on ar¢b, f)

VC; variable cost of food grain transportation by road (unit cost/km i.e. per Metric
Tonne (MT) per km)
ve, variable cost of food grain transportation by rail (unit cost/km i.eMpgver
km)
cinv, Inventory holding cost per MT quantity of food grain per time at procurement
cenerp
cinv, Inventory holding cost per MT quantity of food grain per time at bade silo
coper, Operational cost per MT quantity of food grain at procuremerdrgent
coper, Operational cost per MT quantity of food grain at basdsilo
Swum' number of types of trucks available at origin nosl time period
Pnumg,t number of types of trucks available at procurement eeptn time period
Bnum® number ok types of rakes available at base $iio time periodt
o, capacity aftypes of truck available at the origin node
€ capacity gftypes of truck available at procurement esnt
O, capacity df types of rakes available at base silos
D} demand ofield silo f during time period
diStSlo distance from origin nodeto procurement ceetp
distg, distance from origin nodgto base sild
diStpb distance from procurement cenp to base sild
dist, distance from base siloto field silof by rail
G; Food grain quantity available at origin ncgi@ periodt
Pcapp Inventory holding capacity of procurement et
Bcap, Inventory holding capacity of base sho

4.2.3 Decision Variables

As per the present practices of the public distribution system in India, FCI has to decide that
the, ‘‘how much quantity, from which origin node, procurement centre, base silos, or field

silos, when and where to transport”. Therefore, in order to decide from which node-where to
transport the food grains, allocation decisions (binary variables) needs to be taken into account
from origin nodes to field silos. Initially, FCI takes the allocation decisions (binary variables)
based on supply and demand of deficit states, then determines the amount of food grains to be
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transported (continuous variables) amehumber of vehicles used (integer variables). The
similar procedure of mathematical formulation with the combination of binary and continuous

variables used by Mousavi et al. (2014).

Binary variables

. 1 if origin nodes is allocated to procuremesnteep in period
X ,
* 0 otherwise
vt 1 if procurement centpr s allocated to b#eeban periodt
b 0 otherwise
V! 1 iforigin nodes is allocated to base &ilo periodt
® 0 otherwise
2t 1 if base sild is allocated to field silo pariodt
of 0 otherwise

Continuous variables

m;p Quantity of food grain transported from origin n@le procurement ceetp
during time period

h:)b Quantity of food grain transported from procurementemgmto base sild in
time periodt

g;b Quantity of food grain transported directly from origin nede base sild in
time perioct

Wéf Quantity of food grain transported from base bilo field silof in time period
t

af) Quantity of food grain at procurement canr in time period

/5'; Quantity of food grain at base skdn time period

Integer Variables

nistp number ofi types of trucks used on & p) in time period

Vlﬂfb number ofj types of trucks used on &g, b) in time period t
uistb number ofi types of trucks used on & b) during time period
rb'f(t number ofk types of rakes used on dlz; f) in time period t

12



4.3 Objective function

This study aims to determine the time-dependent movement and storage plan of food
grain supply chain of three stages starting from farmers (origin nodes), procuremers cent
base silos and field silos such that total cost of food grain supply chain is minimized. The
overall objective function of the model is to minimize the total cost which comprises of
transportation cost, operational cost and inventory holding cost. Various components of the
objective function are described as follows. In the transportation cost, first and the second term
gives shipment costs including fixed and variable costs from origin nodes to procurement
ceners and procurement cems to base silos, respectively. The direct transportation cost
comprises of fixed and variable costs from origin nodes to base silos is represented by the third
term. The last term provides the inter-state food grain movement cost containing fixed as well
as variable costs from base silos to field silos. There are two terms in operational cost, in which
first and second term indicates the operational cost at procuremeeaiscamti base silos,
respectively. The inventory holding costs at procuremenerseand base silos are included in
inventory holding cost component of the objective function.

Minimize Total cost = Transportation Cost + Operational Cost + Inventory Holding Cost

Components of objectives

Transportation cost =

ilzi[(fc;p.n;))+(distsp.vc5.rr§p)].x;,+iiii[(fcg,bv;}b) +(dist,, vcéh;b)] +

B9 [ HEEREER) VES b o [CTIRCRERN)

iia‘p cinv, + iiﬁ; cinv,
p=1 t=1 b=1t=1

Subject to constraints

The various constraints of the model are described as below.
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P B
ZZ(nﬁp.X;+g;V;)sG; Vst 1)
p=1 b=1

Constraint (1) restricts the food grain quantity transferred finwrigin node to procurement
ceners and base silos, to maximum food grain quantity available at the origin node during each
time period.

> (MY ) < a vpt )

b=

i(vxéf Zy )< B Vb, ©)

f=1

[N

Constraint (2) limits the food grain quantity transferred from procurement centers to the base
silo, to maximum available inventory at given procurementezent given time period
Similarly, Constraint (3) shows the supply constraint of the base silo.

a;* =0 vp t, (4)
=0 vb t, (5)

The initial inventory at starting period in each procurementecemd base silos is zero and
represented by constraints (4) and (5), respectively.

a;;l+i(m;p.x;p) < Pcap, vp t, (6)
s=1
4 ii(g;vt +h;bY0‘b) < Bcap, vbt (7)
s1 p-1

Constraints (6) and (7) ensures that inventory at procuremerr egrat base silo does not
exceed the inventory holding capacity of procurementecamid base silo, respectively.

> (w2, )=D vi @)

b=1

Constraint (8) depicts that total food grain quantity transferred from base silos must be equal
to the demand of that particular field silo during time petiod

S B
alt + Z( ) bZ(h;b Y;b) =al vpt (9)
s=1 =1
S P F
D (g Vi +h, ng)—Z(Mf Zy) =4 Vbt (10)
s=1 p=1 =1
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The inventory flow balance equations of procurementeremtd base silos are described by
constraints (9) and (10), respectively.

(nto;) Vst, (11)
Y g,Vi > Y (W o) vst (12)
YYD S (Ve vpt, (13)

im@f ZL < ZF:ZK:(rb'f ) Vbt (14)

Constraints (11) and (12) make sure that maximum food grain quantity transported from origin
node to procurement cemtand origin node to base silo must be less than or equal to the

maximum capacity of all trucks being used in that period on the same path, respectively.
Similarly, Constraints (13) and (14) illustrates the truck and rake capacity constraints from
procuremententer to base silos and base silo to field silo, respectively.

ZZ(n;O+u;))§Swurdst Vsi,t, (15)
p=1 b=1
B . .
vagfb < Pnum) vp jt, (16)
=1
F
> ry < Bnunff vb k t, (17)
f=1

Constraint (15) guarantees that the number of trucks used on thésy@litend(s, b) must be

less than or equal to the maximum trucks available at the originsinamch time periadn

the same way, Constraint (1&mits the number of trucks employed on the rofggeb), to
maximum trucks available at the procurementeehtiring given time period. Furthermoee,
number of rakes used on the ro(be f) must be less than or equal to the maximum rakes
available at the base silos in each time period and same represented by the Constraint (17).

Xep: Yoo Ve Zy = {0,3 Vs, p,b, f .t (18)
M, s O W 2y 2 0 Vsphft, (19)
MoV Us:lyy €2 Yspbfijkt (20)
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Constraints (18) (20) portrays the binary, continuous and integer variables respectively used
in the model.

5. Solution approach

In order to minimize the food grain supply chain cost, a MINLP model is formulated in the
previous section after the critical analysis of Indian food grain supply chain scenario and taken
into account the various factors such as fixed and variable cost of different capacitated vehicles
along with their limited availability, capacitated procurement centers and base silos,
operational and inventory cost in procurement centers and base silos, procurement quantity and
demand of field silos. In FCTP problems, the presence of fixed costs makes the objective
function discontinue and to get the solution of these FCTP problems in deterministic
polynomial time is very difficult. (Antony Arokia Durai Raj & Rajendran, 2012; Balaji &
Jawahar, 2010; Jawahar & Balaji, 20.IPhe current three-stage food grain transportation and
storage problem also fall under the category of FCTP. Furthermore, due to the inclusion of
several aforementioned factors into the problem, it becomes more complex and challenging
problem.

Furthermore, to solve FCTP problems, typical MIP solution methods like a branch and
bound method, cutting plane method are inefficient and computationally expensive. The
linearization of the model requires the essential decomposition algorithm or process for
linearizing the non-linear equations. The formulated mathematical model is non-linear in
nature and complex due to the several decision variables including binary, integer and
continuous along witla huge number of real life constraints. The number of variables and
constraints increases exponentially as the problem size increases. In some cases, the product of
binary and continuous decision variables can be linearized by incorporating new variable into
the model, which has to take the value of the product. However, linearization process would
increase the computational time inevitably due to the need of additional constraints satisfaction
(Yu et al. 2017). Therefore, many authors have proposed the different metaheuristics like GA,
SA, Tabu Search (TS) and Ant Colony Optimization (ACO) to solve the FCTP within
reasonable computational time (Armentano, Shiguemoto, and Lagkketangen, 2011; Panicker et
al., 2013; Xie & Jia, 2012). Similarly, the chemical reaction inspired algorithm, called
Chemical Reaction Optimization (CRO) was proposed by Lam and Li (2010) and many
researchers have successfully implemented the CRO to solve the coiRghaxd problems
(Lam, Li, & Yu, 2012; Truong, Li, & Xu, 2013). In recent times, the performance of CRO
algorithm has been improved by hybridization with other algorithms like TS, SA and
Differential Evolution (DE) algorithm (Li and Pan, 2013; Roy, Bhui and Paul,)20hé CRO
algorithm is inefficient at exploration (global search) B&Doften quickly stuck into the local
minima. Therefore, thelP-CRO algorithm was recently developed by taking advantage of the
compensatory property of CRO and PSO and proven to be effective for optimization problems
(Li et al. 2015; Nguyen et al. 2014; Zhang and Duan 2014). Hence, we have employed this
recent HP-CRO algorithm to solve the formulated MINLP model.

5.1 Chemical reaction optimization

CRO captures the chemical reaction phenomenon of molecules which tries to attain the
stable state with low energy. A molecule is the key manipulating agent in CRO and candidate
solution for a specific problem is stored or encoded into it. While searching the solution space,
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each molecule depicts the one point and provides the likely solution to the problem. In CRO,
the change in molecular structure occurs when molecules collide with each other or wall of the

container. A molecule has many characteristics such as strubMype Potential Energy (PE),

Kinetic Energy (KE) and Number of hit (Numhit) efeE represents the objective function
value of the corresponding solution. KE is a non-negative number and used for jumping out
of local optima. The total number of moves (collisions) of the molesustored into the
NumHit. The following four distinct elementary reactions with different energy manipulation
approaches would take place because of collisions under different conditicDis-wall
ineffective collision, 2. Decomposition, 3. Inter-molecular ineffective collision. 4. Synthesis.
The on-wall and inter-molecular ineffective reactions perform the intensification (locdisearc
whereas decomposition and synthesis reaction handles the diversification (global search) in
CRO. The description of these forgactionss given as follows.
1. On-wall ineffective operator

The on-wall ineffective collision takes place when a single molecule hits the wall of the
container and bounces away as a singular entity. In this collision, a neighborhood search
operator gives the new molecull¥l(.) by perturbing the original moleculé, ). Therefore

the molecular structure arféE of a new moleculas slightly different from the original
molecule. This collision will occur only if

PE, +KE, > PE,, (21)
Then we obtain, KE, =(PE,+KE,—PE,.).a (22)

Where a e [ KELossRate, 1] and (1- a) indicates the random number and fraction of KE lost to

the surrounding enrenment, respectively. The remaining energy is transferred to the central
enagy buffer which activates the decomposition reaction.

buffer = buffer + (PE, + KE, - PE,.) (1-a) (23)
An original molecule with same structure remains in the population without any change, if
Eq. (2] does not satisfied. The pseudocode of on-wall ineffective collision is given in Fig. 3.

Algorithm 1. On-wall ineffective collision

Input: MoleculeM ,
@'« N ()
PE, < f @)
if PE, +KE, > PE,. then
Geta e[ KELossRate ,1
SeKE, =(PE, +KE,-PE,.)a
Update buffer buffer + (PE, + KE, — PE,.)(1-a)
UpdateM , PE, anKE,
end if
Output : MoleculeM
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Fig. 3. Pseudocode of on-wall ineffective collision

2. Inter-molecular ineffective collision
An Inter-molecular ineffective collision represents the situation when two randomly selected

moleculesM , and M, collide with each other to generate the two new molecM%sand

M@. This collision is also not a vigorous like on-wall ineffective collision due to the

production of new molecules from their own neighbourhoods. This reaction will take place
when following criteria meet.

PE, +PE, +KE, +KE, >PE,.+PE,. (24)
The energy released is given by

E,... =(PE, +PE, +KE, +KE, )-(PE, +PE,,) (25)
We get KE(u_l' = Eir‘lter'p (26)
KEmz' = Einter'(l_ p) (27)

The remaining energy is disseminated in two newly generated molecules by means of
uniformly generated random numbgrin the range of [0, 1]. The detailed steps of inter-
molecular ineffective collision are shown in the form of pseudocode in Fig. 4.

Algorithm 2. Intermolecular ineffective collision

Input: MoleculesM,, and1,,
o, '« N(@)andw, < N {,)
PE, < f @) and PE. < f &, ')
E, < (PE, +PE, +KE, +KE, )-(PE,; +PE, )
if (B =0)then
Gep e[ O,]l
SeKE,. = B P
KE,, = Eimer( - p)
UpdateM,, PE, KE,and M, PE, KE,
end if
Output : MoleculeM , and M,

Fig. 4. Pseudocode of intermolecular ineffective collision

3. Decomposition and Synthesis operator

In decomposition, a single molecule hit the wall of the container and decomposed into two
new molecules with a very different structure from the original structure. This operator is used
for exploration of new search space after local search carried out by the on-wall ineffective

18



collision. To generate more number of molecules, additional energy that depends on two
random number:{ P, pze[O,J]) can be taken from the central energy buffer. The energy

conservation equation of decomposition reaction is given as follows:

PE, + KE, + p.p,buffer > PE, .+ PE, . (28)
The following equation gives the energy involved

eco

=(PE, +KE, + p,p buffer) - (PE, +PE, ) (29)
Next, the remaining energy is transformed into two newly generated molecules using the
following equations wherp, € [01] .

KE, . = Eieo-Ps (30)
KE{UZ' = Edeco'(l_ p3) (31)
buffer ' = (1- p,p, ) buffer (32)

Synthesis operator performs the opposite action of decomposition and it take place when
below criteria satisfy.
PE, +PE, +KE, +KE, >PE, (33)

The remaining energy is provided by:

KE,. = PE, + PE, +KE, +KE, —PE, (34)

In this paper, these two global search operators are not utilized due to their low efficiency
(Lam, Li, & Yu, 2012).

5.2 Particle swarm optimization

The PSO is a stochastic optimization technique based on the movement and intelligence of
swarms. It was inspired by social behavior of bird flocking or fish schooling. The PSO searches
the global optima in the solution space through the set of particles flying over the solution
space. Initially, the population of particles which correspond to the molecules in CRO is
randomly initialized. Each particle depicts the possible solution of the problem and the swarm
represents the population of solutions. The position and velocity are the two paramount features
of each particle. Every patrticle tries to attain the better position in the solution space by learning
from the cognitive knowledge of its experiences and social knowledge of the swarm. A particle
reacles to the new position using the updated velocity and after the attainment of a new
position, the best position of each particle and the best position of the swarm are updated as
required. Next, the velocity of each particle is adjusted based on the experiences of the particle.
These steps are repeated until a stopping criterion is satisfied. The velocity and position of the
pioneer particle in traditional PSO is updated using the equations (35) and (36).

V(t+D) =w-vi(t)+c -5 (B (1) =% (1) +Cy - - (P (1) — X (1)) (35)

X(t+D)=x(t)+v t+1) (36)

19



Where, v, (t) andv, {+ Lis the velocity of particle in tth and(t+1)th iteration, respectively;
X (t) andx €+ 1) is the position of particlein tth iteration andt+1)th iteration; p (t) is the
local best position (pbest) th particle intth iteration; p, (t) is the global best position (gbest)

in tth iteration;w is the inertia weightg, is the cognitive weight and, is a social weight and
o, y are the two uniform random numbers in the range of [0, 1].

The expression (35) and (36) are used to make the cluster or swarm of the population of
particles which are moving a random direction. While updating the new elements sometimes,
it takes the value out of boundaries. Therefore, in order to make sure that each updated particle
lies within its predefined boundaries, its position is checked using boundary constraint handling
methods at the end of the iteration. In this paper, we have employed the reflecting technique of
boundary constraint handling which is shown in equation (37). During reflecting method,
boundary acts@isa mirror and reflects the projection of the particle’s displacement which is
flying outside of a parameters boundary.

[2xu =% if x >u,
' 2x] - x if x <, (37)

The PSO is easy for implementation to any problem and adaptable to control the balance
between local and global exploration of the problem space. This approach of PSO helps to
overcome the premature convergence of elite strategy in HP-CRO and improves the searching
ability. The Fig. 5 shows the pseudocode of BEUpdate operator used in theP-CRO
algorithm.

Algorithm 3. PSOUpdate

Input : Particle ith
Update velocity of particle ith using below equation
Vi =WV G0 (P = %)+ 6y (Pg — X)
Update position of particle ith using below equation

X=XtV
Constraint handling by below equation of reflecting mel
if x >u then
X/'= 2 - X
end if
if x <I. then
X;=23-x
end if

Output : Particle ith with a new value

Fig. 5. Pseudocode d?SOUpdate operator
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5.3HP-CRO algorithm

5.3.1 Description of proposed approach

The HP-CRO algorithm is the combination of PSO and CRO algorithm. A solution can be

changed through theSOUpdate global search operator and CRO local search operator. PSO
and CRO algorithms functioning on the identical initial size of the population. HP-CRO
generates the new molecules using the neighbouring operators of CRO and PSO mechanisms.
Thesenewly generated molecules considered as molecules in the context of CRO or as particles

in the perspective of PSO. Molecular structuk& () represents the solution of the problem in

specific format, i.e. number, vector or even a matrix. In this paper, a solution of the problem is

stored into a vector which comprises of binary, continuous and integer variables. Each

molecule (particle) corresponds to sets of binary variables (assignment variables), continuous
variables (food grain quantity transported and stored in silos) and integer variables (number of
vehicles used). A schematic representation of molecule (particle) for problem instance 1 (S=3,
P=3, B=2, F=3, T=2) is presented in Fig. 6. Basic CRO has two global operators that are not
used in the HP-CRO algorithm, hence the population size does not changgfapdrameters

are excluded. Two local search operators, i.e. on-wall ineffective and inter-molecular

ineffective operators are employed in HP-CRO. There is an update operator in PSO algorithm,
called as #2S0Update operator. Thig?SOUpdate operator along with parameters set up and
boundary constraints handling is implemented for exploration of search space of HP-CRO
algorithm. The exploration (global search) and exploitation (local searctie HP-CRO

algorithm have well balanced usiBSOUpdate operator and CRO local search operators,
respectively. In the perspective of algorithmic parameters, this algorithm adopts all PSO

parameters as well as few CRO parameters excludiand append a new parameter)

for control of algorithm.

1 2 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2
nﬁl’n'l:lt27m13""m33 hll’h127""h32 gll’ 912""'932 V\417VV12’W13’""W23 al’a2""'a3 ﬂl’ﬂZ’""lZ
Binary variables Continuous variables Integer variables
A ‘ ‘
t t t t t t t t t t it jt it kt
Xsp Ypb Vo Ly | m, hpb Oy | Wi a, By Ng | Voo | Ug | T
»le o<
154 | 55-118 119 T 298
Variable positionr——»
1 1 1 2 1 1 2 1 1 2 1 1 1 2
X11’ X12' Xl3""'x 3z Y11’Y12! ----Yaz V11!V12’ ----v32 211’ 212’213’ A 2z
4
11 21 31 32 1,,21,,31 32 11 21 31 32 11 .21 .31 32
n:l.l’nll’nll""n33 VJ:.Ll’Vll’Vll""'V32 ull’ull’ull""'uSZ I’.ll'rll'rll""'r23
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Fig. 6. The representation of a molecule (particle) of propose HP-CRO for problem instance 1

5.3.2 Main algorithm

Similar to the other metaheuristics, HP-CRO algorithm is sequentially implemented in
three stages: Initialization, Iteration and Final stage (Termination). Theeddtawchart of
the algorithm is given in Fig. 7. In each run, the algorithm starts with initialization, execute a
number of iterations and stops at the final stage. Three stages are delineated in detail as follows:

Assign the values to input Define the algorithmic setting Compute the fitness
parameters of the model and perform Initialisation function

b 4

Yes Stopping Criteria No
matched?
(iter > Max Iter)

Obtain the Best
Minimum point

Satisfy the criteria of
PSOUpdate?
(PSOCoe >} )

v

Satisfy the criteria
of Intermolecular ineffective
collision?
(r>InterRate )

PSO Update

v v

On wall Ineffective Intermolecular
collision Ineffective collision

A 4

‘{ Check for new minimum point }4—

Fig. 7. Flowchart illustrating the working of HP-CRO algorithm

Stage 1:

Initially, the various inputs such as objective function, their constraints, and problem
dimensions are given to the algorithm. In initialization stage, there is a need to assign the values
to many variables and control parametersaafalgorithm like Pop size, KELossRate,

InitialKE, InterRate,w, C,, C,, &, andy , etc. The paramet&ELossRateis utilized to restrict

the maximum percentage of KE transmitted to buffer during each collision. InitialKE parameter
represents the KEs original value of molecules in the population. Next, we rgnddialize
thePop_size number of solutions in the solutions space to produce the population and compute
the fitness function of each molecule (particla)the initialization phase, firstly the binary

variablesXg,, Yy,, Vg, Zy pertaining to allocation of origin nodes, procurement centres, base

silos and field silos are randomly selected. The random allocations lying in between [0, 1] are
rounded to nearest binary integer numbers. Once nodes are assigned, quantities of food grains
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to be transferred among the four echelons is calculated. The quantity to be transported from
origin node to procurement centrafl;g) Is determined considering the quantity available at

origin node, the capacity of trucks available at origin node and procurement centres capacity
in a given time period. Then, the number of different capacitated trucks used(snpaio

given time period are estimated usiggantities to be shippedT{p). Similar to the binary

rounding, f anumber of trucks used are found to be a continuous integer, then it is rounded to
the nearest integer. Current inventory at procurement centre is updated and set equat to curren
inventory plus quantities arrived minus quantities shipped. Similarly, for other stages, quantity
to be transported, vehicles used and updated values of inventory are decided in exactly same
way as done in the case of origin node and procurement centre. Once the values of all the
decision variables are known, the total cost for each molecule (particle) is found using the
objective function. Constraints of the model are handled using the penalty function method.
When a solution violates a specific constraint, then a penalty is &mittedobjective function
value. This procedure makes sure that the infeasible solutions do not get selected because of
poor objective function value. Furthermore, the penalty is incliddide objective function
value in proportion to the constraint violation. Therefore, the solution with less constraint
violation is better than the one with more constraint violation.

Stage 2: During the iteration stage, the specific number of iterations are carried out after

the random selection of molecule (partich), from the population until the stopping criteria

is satisfied. Thenin order to decide the type of search to be executed (left: on-wall ineffective
collision or inter-molecular collision; rightSOUpdate), the comparison criteria between PSO
coefficient PSOCoe) and y is investigated. The balance between global and local search is

maintained using the paramejer If the comparison criterigPSOCoe > y)is satisfied, then
algorithm triggers th®SOUpdate operator (Algorithm 3). This means that the moleddlg

must be changed through global search operator after it undeygtieses of local search.

Otherwise, a unimolecular or intermolecular collision has to be selected based on the
intermolecular collision Ratér{ter Rate) criteria. The moves of unstable molecules in container
activates the collisions. A molecule can either hit on a wall of the container or collide with eac
other. ThenterRate criteria shows that if randomly generated numban the range of [0, 1]

is greater than thénterRate, then inter-molecular collision (inter-molecular ineffective
collision) will take place. Otherwise, molecule follows the unimolecular collision (On-wall
ineffective collision). Next, any new minimum point found in solution space is examined and
stored. This iteration stage will continue until any one of the stopping criteria is met.

Stage 3. The algorithm will stop after satisfying the stopping criteria and provides the
minimum total cost (best solution value) found in the final stage. The pseudocode of HP-CRO
algorithm is given in Fig. 8.
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Algorithm 4 HP-CRO

1:Input: Problem specific information (Objective function, constraints
and the problem dimensions)

2:\\ Initialization

3: Set the algorithmic parameters valueBapSze KELossRate ,
Sepsize, buffer , InitialKE , ¥ , InterRate ,w (nertia weight ),
¢, (cognitive /local weight), c, (social /global weight).

4: Generate the PopSize number of molecules (Particles)

5:for each of molecules (particle$)

6: Assign random solution to the molecular structure
(particle positiony

7 Compute the fitenss function of  bfw)

8: SePSOCoe = O

9:endfor

10: \\ Iterations

11:while (the stopping criteria not satisty)

12: Randomly select one molecule (partitde)  mfmopulation
13: if PSOCoe >y Yhen

14. TriggePOUpdate N, )

15: PSOCog, =0

16: dse

17: Generate randomly in the interval [0, 1]
18: if (> InterRate) then

19: Randomly select the molecigsand M,
20: Trigger the intermolecular ineffective collisidh, (M, )
21: PSOCoeMM =P3)COQV|M + 1

22: PSOCoeMW2 = PSOCoeMW2 +1

23: ese

24: Trigger On-wall Ineffective CollisioM(, )
25: PSOCos, #30Cog, + 1

26: end if

27  endif

28: Check for angew minimum solution

29:end while

30: \\ The final stage
31:Output : Best solution and its objective function value

Fig. 8. Pseudocode of HP-CRO

6. Computational resultsand discussion

This section describes the various developed problem instances, parameters setting of the
proposed algorithm and computational experiments along with results and managerial insights.
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6.1 Problem instances

In this paper, we develop the nine problem instances based on the secondary data gathered
from many reliable source3he paramount reliable sources include the CAG report 2013,
High-level Committee report 2015, FCI portal (http://fci.gov.in) and PDS Portal of India
(http://pdsportal.nic.in/main.aspx), etc. The summary of overall essential model parameter
values required for solving the model provided in Table 2. Each problem instance is
characterized by the number of origin nodes (S), number of procuremesis &)t number
of base silos (B), number of field silos (F) and number of time periods (T). The detail
delineation of all the nine problem instances along witital number of constraints and each
type of total decision variables are mentioned in Table 3. Furthermore, all the problem
instances are classified three groups based on the total number of decision variables of the
problem instances. The small size group of problem comprises of maximum 3000 variables
and medium size includes up to 10000 variables. Finally, the problem instances with more than
10000 variables come under the group of large size. According to this sorting, all the nine
problem instances are equally divided into three groups, i.e. small, medium and large size.

Table 2 Data ranges of parameters used in the model

Parameters Range of values
Fixed cost of three different types of trucks used or{sag 200, 150, 100
Fixed cost of three different types of trucks used or{sut) 200, 150, 100
Fixed cost of three different types of trucks used or{@o) 300, 400, 500
Fixed cost of three different types of rakes at used ofbafc 1000, 700, 500
Variable cost of road transportation 20

Variable cost of rail transportation 15

Inventory holding cost at procurement centres 150

Inventory holding cost at base silo 100
Operational cost at procurement centre 80
Operational cost at base silo 50

Number ofi; types of trucks available at origin node 500-1000
Number ofi, types of trucks available at origin node 6001100
Number ofiz types of trucks available at origin node 7001200
Number ofj; types of trucks available at procurement centre 600-1000
Number ofj, types of trucks available at procurement centre 7001100
Number ofjs types of trucks available at procurement centre 800-1200
Number ofk; types of rakes available at base silo 6-15

Number ofk, types of rakes available at base silo 8-18

Number ofks types of rakes available at base silo 9-20
Capacity ofi types of trucks (i=1, 2, 3) 20, 18, 15
Capacity of] types of trucks (j =1, 2, 3) 30, 25, 20

Capacity ofk types of rakes (k =1, 2, 3)
Demand of field silo

3000, 1800, 1500
15000-30000

Distance from origin node to procurement centre 1050
Distance from origin node to base silo 20-70
Distance from procurement centre to base silo 40-100
Distance from base silo to field silo 500-1000

Food grain quantity available at origin node
Inventory holding capacity of procurement centre
Inventory holding capacity of base silo

20000-40000
30000-70000
50000-200000
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Table 3 Dimensions of problem instances

Problem Problem instance | Origin | Procuremen|{ Base | Field | Time . Binary | Continues| Integer
Instance - ) - Constraints, . . .
size (S-P-B-F-T) node centre silo silo | period variables| variables | variables
'B”_Et)a”ce 13321 4 3 2 3 2 1628 54 64 180
Small size '4”_2;""”06 2(543-1 4 4 3 4 2 7051 118 132 402
g‘_gt)ance 3(865-| ¢ 6 5 6 2 41903 296 318 996
'S“_Et)ance 412971 45 9 7 8 2 | 175602 | 622 654 | 2136
Medium | Instance 5 ( 13:0-
Size 8-10-2) 15 10 8 10 2 348246 860 896 3000
Instance 6 ( 182
10-12-2) 18 12 10 12 2 751978 1272 1316 4392
Instance 7 ( 205
12-13.3) 20 15 12 13 3 2036328 2628 2709 8964
Large Size '1”55237”3)6 8(22& | 54 20 15 | 18 | 3 | 4393254 | 3753 | 3852 | 12393
Instance 9 ( 22-2-
18.20-3) 28 25 20 23 3 8645029 5268 5388 17190

6.2 Parameter setting

The solution quality and convergence rate of evolutionary algorithms are mainly influenced
by the parameter tuning of the algorithm (Wisittipanich & Hengmeechai 2017). Therefore,
suitable parameters of the algorithms are essential to avoid the bad simulation results. The
scientific method®f parameter tuning of metaheuristic are rare in the literature and it mostly
depends on the experience of researchers. Furthermore, the comprehensive analysis of all
possible combinations of parameters is impractical (Lam, Li and Yu 2012). Hence, the
appropriate parameter values which give the good perfornmaaedoeen assigned through the
numerous runs and analyses of problem instance 1 using the proposed algorithm. The crucial
parameters of thelP-CRO algorithm arePop_Sze, KELossRate, IntitalKE, -, InterRate, w
(inertia weight), ¢ (cognitive/local weight), and:¢social/global weight). The performance of
the proposed algorithms on problem instance 1 are investigated on ten different parameter
combinations considering the various values of each parameter. The results of parameter tuning
experiments are shown in Table 4 and the best values of parameters for each algorithm are
highlighted in bold.
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Table 4 The total cost of problem instance 1 according to the ten parameter tuning combinations

Parameter tuning combinations

Algorithm | Parameter 1 2 3 4 5 6 7 8 9 10
Pop_size 50 100 150 200 150 150 200 150 100 50
lterations 100 200 300 400 100 100 300 100 200 300
InitialKE 1000 850 | 10000 | 10000000, 1000 | 10000000 | 10000 | 10000000 850 | 10000
KELossRate| 0.2 0.4 0.6 0.8 0.4 0.2 0.6 0.2 0.4 0.8
4 10 20 100 10 100 10 10 20 100 10
InterRate 0.2 0.5 0.7 0.9 0.7 0.2 0.7 0.2 0.5 0.2

HP-CRO | Inertia 0.8 0.85 0.9 0.95 0.85 0.9 0.8 0.95 0.85 0.9
weight
Local 0.1 0.2 0.3 0.4 0.2 0.1 0.3 0.4 0.2 0.1
weight
Global 0.65 0.75 0.85 0.95 0.75 0.95 0.65 0.85 0.65 0.95
weight
Total cost
@in millions | 1938.9 | 1944.2 | 19353 | 19408 | 1937.1 | 19320 | 1940.3| 1933.6 | 19459 | 1937.3
of INR)

Pop_size 50 100 150 200 150 150 200 150 100 50
lterations 100 200 300 400 100 100 300 100 200 300
InitialKE 1000 850 | 10000 | 10000000 1000 850 | 10000 | 10000000 | 850 | 10000
KELossRate| 0.2 0.4 0.6 0.8 0.4 0.6 0.6 0.2 0.4 0.8
CRO | InterRate 0.2 0.5 0.7 0.9 0.7 0.9 0.7 0.2 0.5 0.2
Alpha 15 50 200 15 50 200 15 15 15 50
Beta 10 20 100 10 10 100 10 10 100 10
Total cost
(in millions | 1975.5 | 1977.6 | 1972.6 | 1976.5 | 1985.9| 198.8 | 1979.5| 19708 | 1982.3 | 19%
of INR)
Pop_size 50 100 150 200 150 150 200 150 100 50
lterations 100 200 300 400 100 100 300 100 200 300
Inertia 0.8 0.85 0.9 0.95 0.9 0.85 0.8 0.95 0.85 0.9
weight
Local
PSO | weight 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.2 0.1
Global
. 0.65 0.75 0.85 0.95 0.95 0.75 0.65 0.85 0.65 0.95
weight
Total cost
((in millions | 2030.18 | 2040.43 | 203271 | 20436 | 202534 | 203656 | 2040.2| 202845 | 203816 | 2030.87
of INR)

6.3 Experimental results

In this subsection, the HP-CROROand PSO algorithms are catin MATLAB R2014a and
the codes are implemented on a machine with the configuration of Intel Core i5, 2.90 GHz
processor with 8 GB RAM. In order to evaluate the performance of the prop&s€RO
algorithm, initially, we solved all the generated problem instances usingHfRE€RO
algorithm. Similarly, all nine instances are solved using the original CRO and PSO algorithm
under the same setting of population size andmber of iterations. Then, comparisons have
been carried out between the numerical results obtained through HP-CRO, CRO and PSO
algorithm. The computational results of 20 runs of each algorithm for each instance are reported
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in Table 5. This table illustrates the minimum, maximum, average and standard deviation of
the total cost (in millions of INR) obtained from teachalgorithm with computational time.
Furthermore, the convergence behavior of tHE-CRO algorithm is compared with
conventional CRO and PSO using the graph of total cost versus number of iterations as shown
in Figs. 9(a), (b) and (c). According to the results from Table 5, the HP-CRO algorithm obtained
better results in terms of minimum total cost (best solution) and maximum total cost (worst
solution) of each instance compared with CRO and PSO. In addition, the average and standard
deviation of the total cost of 20 runs of this algorithm are smaller than the CRO and PSO. The
computational time taken by ti#P-CROto solve the each instance is less than CRO and PSO
computational time. This overall result of nine problem instances enlightens the superiority of
HP-CRO algorithm when compared with CRO and PSO algorithm. The convergence behavior
of the algorithm is another crucial aspect for evaluation of its performance. FiggbPéa)d

(c) clearly depict the faster convergence behavior diR"€RO algorithm compared to the

basic CRO and PSO when solving each type of problem sizes. This shows that the HP-CRO
needs the fewer number of iterations to search the best near optimal solution.
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Table 5 The total cost comparison between HP-CRO and CRO

PSO (All cost in millions of INR)

CRO (All cost in millions of INR)

HP-CRO (All cost in millions of INR)

Instance Minimum | Maximum Avg Cost SD of Time | Minimum | Maximum Avg Cost SDof | Time | Minimum | Maximum Avg Cost SDof | Time
Cost Cost Cost (s) Cost Cost Cost (s) Cost Cost Cost (s)
(3-3-2-32) 2010.23 2120.08 | 2072.15| 35.21 21.63 1959.80 2046.50 | 2001.85 | 33.09 18.86 1922.00 1993.60 | 1953.94 | 24.79 14.90
(5-4-3-42) 2760.41 2980.63 | 2855.26 | 73.82 57.26 2697.60 2862.30 | 2762.85 | 50.51 46.64 2584.20 2730.30 | 2653.94 | 47.20 32.63
(8-6-5-62) 3560.75 | 3990.00 | 3845.54 | 131.42 | 110.30 | 3500.50 | 3824.60 | 3718.53 | 92.95 | 98.70 | 3372.40 | 3700.90 | 3537.66 | 85.19 | 80.57
(12-9-7-8-2) 5920.36 6050.18 | 5985.80 | 49.05 256.08 | 5889.30 5958.10 | 5925.94 | 26.17 | 211.78| 5835.40 5904.90 | 5876.01 | 18.56 | 170.65
(1510-8-10-2) 6650.00 6870.57 | 6756.27 | 84.88 348.72 | 6574.30 6781.90 | 6682.35| 82.39 | 309.14| 6455.60 6697.50 | 6600.23 | 82.07 | 237.80
(18-12-10-12-2) | 8170.72 8400.14 | 827457 | 78.34 430.84 | 8129.90 8306.60 | 8204.09 | 63.28 | 405.50| 8056.50 8218.20 | 8131.48 | 59.28 | 349.32
(20-1512-13-3) | 35900.61 | 39200.20 | 37780.50| 816.22 | 689.16 | 35522.00 | 38355.00 | 37444.20| 752.08 | 629.56 | 35342.00 | 37709.00 | 37147.09| 688.48 | 515.05
(22-18-1517-3) | 57200.35 | 60800.08 | 59450.15| 1054.36| 942.73 | 56317.00 | 59968.00 | 58323.11| 1026.35| 885.92| 54723.00 | 57549.00 | 56654.78| 832.71 | 768.94
(25-22-18-20-3) | 84700.60 | 90500.45 | 87300.79| 1995.55| 1023.47| 83886.00 | 89821.00 | 86223.11| 1835.33| 956.60 | 83038.00 | 88594.00 | 85110.33| 1695.35| 817.62
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The overall scenario of movement and storage activities of all the stages in a finite
planning horizon for selected three instanisedepicted in Figs. 10(a), (b) and (c). Therein,
Fig. 10(a) provides the aggregate total quantity transported from each stage and inventory in
procurement ceets and silos. The total number of each type of trucks used during the
particular time period of chosen three problem instances are depicted in Fig. 10(b). Similarly,
Fig. 10(c) portrays the number of each type of rakes used between base silos and field silos in
a given time period. Additionally, the comprehensive flow analysis of the problem instance 1
is shown in Fig. 11. The movement and storage activities of the second time pegdobha
been shown in Fig. 11 for the clarity. The quantity transferred and each type of vehicles used
between the particular nodes are represented on the upper side and lower side of the arc,
respectively. The food grain quantity shipped from origin nodes to base silos is more than those
transferred to procurement cerstbecause of the less waiting time, low handling cost and fully
mechaniedfacility at the base silo. The results of this model will be very helpful for making
the timely movement and storage activity plan of FCI. The issue of shortages of trucks as well
as rakes can be effectively tackled through proper planning and coordination between the FClI,
railways and private contractors. The FCI and SGAs can prepare the planrber of each
type of vehicles required for transportation in advance using the available procured quantity
and inventory in each time period. Moreover, the vehicle scheduling and optimal utilization of
resources are another important decisions which governed by the movement and storage plan
of FCI. The huge amount of food grain supply chain cost and losses can be reduced by the
effective and efficient movement as well as storage of food grain in bulk form rather than a
conventional method of gunny bags.

31



Total number of eachtype of

1600000

1400000 b

1200000
1000000
800000
600000
400000

200000 ==

-
0

m, g5 a, B;

t f
hpb Wyr
Continuous Decision Variables

Aggregate Values of Decision
Variables

HInstance 3 HInstance5S HInstance8

Fig. 10(a). The sample aggregate values of continuous variables (food grain quantity
transported and stored) of three different instances

25000 | {
20000
15000
10000 | Y
5000 J I
0 n? it u utt vy
p sb sb sb b

30000

trucks used

At

Vb

it it
n$ n »

“a

u

Types of trucks

HInstance3 MInstanceS wlInstance8

Fig. 10(b). The total number of each type of vehicles (trucks) used in three different instances

32



=
S 300
Q_ o
2 =
= 230 . —
-
S 2200 - —
33
5 £ 150
-
E 100
=
= 50
P
0
it kst Kt
Top Tyf Byt

Types of rakes

HInstance3 HInstanceS EInstance8

Fig. 10(c). The total number of each types of vehicles (rakes) used in three different instances

16990.12
——————————

—~

— i =34L1 =320.7, =204 ~

s (_ ‘]
Ve 11203.38 Pogp_ =40000 8402.25
§=2104,=1945 =231 | o —2801.13 | /=10 =110 =104 _ ) Boap, =75000
s Bi=9759.05

- ———

D =263%0

-
-~
-—

—_—-_—
—_—— ——

i =5114 =497.3 =480

Origin nodes Procurement centers Base silos Field silos

Fig. 11. Detailed analysis of food grain supply chain network of problem instance 1

7. Conclusions and futurework

This paper examines the new problem of three stage food grain distribution in India,
including the origin nodes, procurement @it base silos and field silos where farmers can
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sell their food grain directly to FCI at base silos or SGAs in the procuremeetscertie
mathematical model in the form of MINLP is formulated to minimize the transportation,
inventory and operational cost of food grain. The various realistic aspects are taken into account
while formulating the model such as the fixed and variable cost of transportation, capacitated
silos, inventory and operational cost of food grain, seasonal procurement, deterministic demand
and finite planning horizon. Due to the non-linear nature, numerous binary and integer
variables along with a huge number of constramethematical model has been solved using

the recently establishddP-CRO and results attained are validated using the original CRO and
PSQ The results of the computational experiments of all the generated problem instances
clearly illustrate that theHP-CRO algorithm finds the good quality solutions with faster
convergence rate compartabasic CRO and PSO. The valuable insights evolved from this
research can be useful to take the proper planning and coordination decisions among the many
entities involved in the food grain supply chain like FCI, SGAs, Railways and private
contractors. This study can be extended by relaxing the some of the assumptions in the model
like deterministic demand and procurement. The multi food grain distribution is another topic
for future work. Furthermore, the performance of the algorithm can be enhanced through the
comprehensive analysis of the parameter values.
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